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ABSTRACT: Lysyl hydroxylase 2 (LH2) catalyzes the formation of highly stable
hydroxylysine aldehyde-derived collagen cross-links (HLCCs), thus promoting lung cancer
metastasis through its capacity to modulate specific types of collagen cross-links within the
tumor stroma. Using 1 and 2 from our previous high-throughput screening (HTS) as lead
probes, we prepared a series of 1,3-diketone analogues, 1−18, and identified 12 and 13 that
inhibit LH2 with IC50’s of approximately 300 and 500 nM, respectively. Compounds 12 and
13 demonstrate selectivity for LH2 over LH1 and LH3. Quantum mechanics/molecular
mechanics (QM/MM) modeling indicates that the selectivity of 12 and 13 may stem from
noncovalent interactions like hydrogen bonding between the morpholine/piperazine rings
with the LH2-specific Arg661. Treatment of 344SQ WT cells with 13 resulted in a dose-
dependent reduction in their migration potential, whereas the compound did not impede the migration of the same cell line with an
LH2 knockout (LH2KO).
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Lysyl hydroxylase 2 (LH2)-mediated telopeptidyl hydrox-
ylysines form structurally rigid hydroxylysine aldehyde-

derived collagen cross-links (HLCCs) resistant to cleavage by
collagenases.1 It is well-known that reduced lysine hydrox-
ylation is a cause of genetic connective tissue disorders such as
Bruck Syndrome,2−6 while abnormally elevated HLCC
formation is associated with fibrosis and cancer metastasis.7−11

Three lysyl hydroxylase isoforms (LH1−3) play essential
roles in collagen modifications. Each isoform possesses two
functionally distinct enzymatically active domains.12 LH2 can
hydroxylate Lys residues in the telopeptides, while all three LH
isoforms hydroxylate lysine residues in the helical domain.2 In
fibrotic diseases of the lung13 and liver,14 HLCCs are the
predominant types of cross-links attributable to excessive
hydroxylation of the telopeptidyl Lys, owing to the over-
expression of LH2 in fibroblasts.8,15 A similar switch is
associated with tumor stroma, where an increased level of LH2
leads to metastasis and is correlated with lower survival.7,9

Heretofore, LH2 was thought to be localized in the ER, where
it hydroxylates procollagen Lys residues before the triple helix
formation.16 However, it was recently found to modify collagen
in the extracellular space as it is secreted by carcinoma cells.17

It is shown to be expressed in cancer-associated fibroblasts and
contributes to a switch toward a high-HLCC, low-LCC state in
the tumor stroma.18

Minoxidil (Figure 1A), a widely recognized antifibrotic
agent, was believed to reduce LH expression, thereby
decreasing hydroxylysylpyridinoline cross-linking.19 However,

Pfeffer et al. found that minoxidil does not significantly impact
LH activity during postnatal mouse lung development.20

Berberine (Figure 1B) inhibits LH2 expression in TNBC
cells, reducing the proliferation, motility, and glycolysis. This is
achieved by suppressing interleukin-6 (IL-6) secretion,
indirectly regulating LH2 activity.21 β-Aminopropionitrile
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Figure 1. Compounds reported as LH2 inhibitors.
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(Figure 1C) has been observed to induce downregulation of
LH2 expression and impede the formation of a stable matrix,
likely by direct inhibition of LOX family members.22

Our previous high-throughput screening utilizing lumines-
cence-based lysyl hydroxylase activity assay identified two 1,3-
diketone analogues (Figure 1D and compounds 1 and 2 in
Figure 2) with IC50 values of 3.4 and 1.9 μM, respectively.31

The same assay conducted in the presence of an excess of Fe2+
demonstrated that the activity of 1 arises from its direct
interaction with the enzyme rather than any interference with
the assay components (Figure S48). While 1,3-diketone
analogues are widely distributed in natural products and
exhibit various pharmacological activities, including antibacte-
rial, antioxidant, antiviral, insecticidal, and antifungal proper-
ties,23−27 their inhibition activity toward LH2 has not been
reported. Notably, owing to their inherent tautomerism, these
compounds are uniquely poised to engage in metal chelation
and hydrogen bonding, endowing them with considerable
potential as a molecular scaffold for intermediates in various
organic reactions, metal−organic hybrid materials, and novel
drug design.28,29 Indeed, our molecular docking studies
confirmed the chelation of Fe(II) by the dicarbonyl moiety
and hydrogen bonding of the pyridine nitrogen with LH2
active-site residues (Y655 and R728, human PLOD2), as
illustrated in Figure 3A,B, providing a foundation for
compounds 1 and 2 as leading probes for further optimization.
Here we report a structure-based rational design strategy of

1,3-diketone analogues (compounds 1−18) as LH2 inhibitors
along with their inhibitory activity and computation inves-
tigation. Although compounds 1−8 were previously known,
their biological activity against LH2 has not been studied.
Compounds 9−18 were newly designed specifically for this

study. The 1,3-diketone analogues were synthesized as
depicted in Scheme 1. Compounds 3 and 4 were prepared
via modified Claisen condensation.29 Compounds 5−10 were
synthesized from acyl chlorides with enolated ketones by soft

Figure 2. Rational design flowcharts of LH2 inhibitors.

Figure 3. Binding interactions between HTS hit compounds 1 (A and
C), 2 (B), and 5 (C) and the LH2 active site predicted by molecular
docking studies and observed in MD and QM/MM simulations. (A)
Calculated distance between the phenol hydrogen (Y655) and the
pyridine nitrogen of 1 is 2.1 Å. (B) Calculated distance between the
guanidine hydrogen (R728) and the pyridine nitrogen of 2 is 1.9 Å.
(C) The entry of the active site of LH2 associated with 1 shows the
hydrophobic environment in proximity to trifluoromethyl (−CF3)
group of 1. (D) Docked model of 5 presenting the surface
environment of the benzene ring of the compound.
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enolization30 in the presence of magnesium bromide diethyl
etherate and Hünig’s base. 11−13, and 18 were synthesized
from acylation of meta-substituted acetophenones 1g−1h with
esters 2d−2f in the presence of lithium bis(trimethylsilyl)
amide. The meta-substituted acetophenones also underwent an
acylation reaction with 2-methoxypropyl-protected ethyl
tetrazole-5-carboxylate to afford tetrazole-substituted variants
14 and 16. Pyrazole-substituted derivatives 15 and 17 were
prepared by reacting 12 or 13 with hydrazine monohydrate in
ethanol.
Previously, we conducted an exhaustive computational

investigation on forty-four molecules,32 which included most
of the compounds discussed in this paper. Based on polarizable
molecular dynamics (MD) simulation and coupled quantum
mechanics/molecular mechanics (QM/MM) optimizations,
we found that the enolate forms of 1 and 2 have considerably
strong interactions with the active site (−169.4 and −139.7
kcal mol−1, respectively) as well as several NCIs (noncovalent
interactions) with the residues of the active site including Y655
and R728.
First, compounds 3 and 4 featuring para-substituted benzene

rings in the R1 position were prepared to investigate the
involvement of pyridine in the interaction with inner residues

Y655 and R728. These compounds displayed diminished
inhibitory activity relative to 1 and 2 and weaker calculated
polarizable QM/MM interaction with LH2 (−50.4 and −38.7
kcal mol−1, respectively),32 underscoring the necessity of
pyridine in mediating the interaction with the LH2 active site.
We then implemented a modification to the R3 position. We

hypothesized that the trifluoromethyl (−CF3) group plays a
role not only in withdrawing electron density, which stabilizes
the formation of an enolate but also interacts with nonpolar
residues situated at the entrance of the LH2 active site via
hydrophobic interactions, as shown in Figure 3C. Thus, we
opted to substitute the trifluoromethyl group with a benzene
ring, which is considered to possess similar characteristics,
along with better accessibility for functionalization. Notably, 5
(IC50 = 5.0 μM) and 6 (IC50 = 1.0 μM) retained inhibitory
activity relative to the original hits from HTS. Compared with
compounds 1 and 2, compounds 532 and 6 (Table S2) show
considerably stronger interactions with the LH2 (−185.2 and
−200.1 kcal mol−1, respectively).
We further functionalized compound 5 by introducing

additional groups at the para position of the benzene ring (7
and 8) and at the 6-position of the tetralin group, which is
linked to the R2 position (9 and 10). However, including

Scheme 1. Synthesis of Inhibitors 3−18

aReagents and reaction conditions: (i) NaH, THF, 0 °C to RT, 12 h; (ii) MgBr2·OEt, DIPEA, DCM, RT, 12 h; (iii) 3-chloroacetopheone,
morpholine or 1-methyl-piperazine, Pd2 (dba)3, DavePhos, K3PO4, DME, Ar, 100 °C, 12 h; (iv) LiN(SiMe3)2, Ar, THF, −40 °C, 6 h; (v) (a) 2-
methoxypropene, p-TSA, THF, RT, 1 h. (b) LiN(SiMe3)2, Ar, THF, −40 °C, 6 h, (c) HCl; vi) NH2NH2·H2O, ethanol, RT, 12 h.
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functional groups at the para position of the benzene led to a
decrease in the potency of the compounds (7; IC50 = N/A, 8;
IC50 = > 10 μM, 9; IC50 = > 10 μM, 10; IC50 = N/A). This
implies that the para position of the benzene ring may offer
restricted space for functional groups to occupy, which is
further corroborated by the molecular docking analysis and
MD simulation of compound 5 onto the LH2 homology
model, as depicted in Figure 3D. The calculated QM/MM
interaction energies (IEQM/MM) for compounds 7−10 were
−114.2, −190.5, −212.6, and −212.9 kcal mol−1, respec-
tively.32 This suggests that the presence of −CF3 in the para
position of the benzene ring in compound 7 led to a significant
decrease in the interaction energies. At the same time, it was
slightly increased for the other three compounds compared to
compound 5. Interestingly, the number of residues having
noncovalent interactions with these four compounds showed a
slight decrease compared to compound 5, especially in the case
of compounds 7 and 9.32 This suggested that our modifications
at the para position of the benzene ring do not improve
interaction between the inhibitor and the residues at the
binding pocket. Given the LH2−inhibitor interaction energies,
noncovalent interactions, and distinct hindrance by F651 on
the para-modification, we investigated whether a meta-
substitution could enhance binding to LH2.
The docked model of 5 revealed possible additional

recognition sites, R661 and R659, proximal to the meta
position of the benzene of 5 (Figure 3D). This was later
supported by MD simulation of the ligand-bound system of
this compound.32 These two basic amino acid residues
adjacent to the LH2 active site are specific to this member
of the LH family. (The corresponding residues in LH1 and
LH3 are Glu and Pro, respectively.) These residues are
thought to play a role in the electrostatic interactions with
acidic aspartate and glutamate residues positioned adjacent to
the Lys residues on fibrillar collagens.12 We postulated that
LH2’s unique telopeptidyl lysyl hydroxylase activity and
selectivity are determined partly by electrostatic interactions
between the basic domain of LH2 and the acidic domain of
collagen telopeptides. To achieve favorable interactions with
the basic residues, morpholine (11 and 12) and 1-methyl
piperazine (13) rings, which possess the intrinsic capability to
participate in hydrogen bonding33,34 were incorporated at the
meta-position of the benzene of compounds 5 and 6.
Introducing the meta-substituted morpholine and methyl
piperazine rings boosts the potencies (11; IC50 = 1.5 μM,
12; IC50 = 0.3 μM, and 13; IC50 = 0.5 μM) compared with the
parent inhibitors 5 and 6. Notably, the weaker potency of 11
compared to that of 12 indicates that the pyridine nitrogen
atom in the 4-position is optimal for interacting with inner
residues in the active site.
The results of IEQM/MM between compounds 12 and 13 with

LH2 are −259.9 and −216.3 kcal mol−1, respectively (see
Table S2). The low values of IEQM/MM suggest a strong
interaction between these two analogues and the enzyme.
Table S2 also shows that the calculated interactions due to the
QM region in compounds 12 and 13 are similar, −197.6 and
−197.4 kcal mol−1, respectively, but the interactions due to the
MM region in compound 12 are about three times greater than
those in compound 13 (−62.3 and −18.9 kcal mol−1,
respectively). In the case of 6, the interaction is weaker than
the other two but the MM region stability is enhanced
compared with the other two ligands.

A closer look into the NCI plots shows that compound 12
has two hydrogen bonds with R728 and R661 (Figure 4A-

middle), and compound 13 has weak interactions with R661
(Figure 4A-right). In comparison, compound 6 only has two
hydrogen bonds with two water molecules in the active site
(Figure 4A-left). The interactions of 12 and 13, particularly
with the R661 residue, suggest that their potencies might
derive from the engagement of morpholine and methyl
piperazine rings with LH2-specific R661.
Our previous study suggested that three major tunnels exist

in the apo-LH2, which can transport molecular oxygen to the
active site, with tunnel availability probabilities of 63%, 51%,
and 32% for blue, green, and red tunnels, respectively.32 Our
results also showed that compounds 7 and 8 and some other
studied molecules in that study considerably decreased the
availability of these tunnels and elongated the tunnels’ lengths.
As seen in Figure 4B, the tunneling results for compounds 6,
12, and 13 showed the same trend in which the availability/
length of the tunnels decreased/increased. Interestingly, in the
case of compounds 12 and 13, only two major putative tunnels
are available for oxygen transportation.
A final set of modifications were performed, based on 12 and

13, by replacing the pyridine moiety with tetrazole (16; IC50 =
> 10 μM, 14; IC50 = > 10 μM) and the 1,3-diketone with
pyrazole (17; IC50 = > 10 μM, 15; IC50 = > 10 μM). The
results indicated that pyridine and 1,3-diketone scaffolds are
essential for the activity of the studied compounds. In addition,
18 with the toluene group on the R1 position shows no activity,
supporting the importance of pyridine.

Figure 4. (A) The plot of the noncovalent interactions between
compounds 6, 12, and 13 and the surrounding amino acid residues.
The inhibitors are given in ball-and-sticks, and Fe(II) is shown in pink
sphere. Residues forming noncovalent interactions with the inhibitor
are shown in sticks. Red surfaces are related to repulsive interactions,
while green surfaces denote weak interactions like van der Waals, and
blue ones show strong attractive interactions such as hydrogen bonds.
(B) O2-transporting tunnels with largest calculated percentages along
the trajectory observed in compounds 6, 12, and 13. Calculated
tunnels are colored in blue, green, and red, respectively, based on the
tunnel’s length (Å) (blue: shortest, red: longest).
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In light of the initial investigation of the structure−activity
relationship (SAR) using a luminescence-based LH activity
assay (Table 1) and further supported by computational

studies, the HTS hit compounds (1 and 2) and the four most
potent compounds (6, 11, 12, and 13) were further evaluated
using the same activity assay against all three LH isoforms for
selectivity profiling (Table 2). Compounds 12 and 13
exhibited the most promising LH2 selectivity among the six

inhibitors tested. Specifically, the inhibition potency of
compound 12 against LH2 was approximately 8-fold and 9-
fold stronger than those against LH1 and LH3, respectively. In
the case of 13, the LH2 selectivity over LH3 was observed as 9-
fold, while it displayed a relatively lower selectivity (3-fold)
over LH1. These results indicate that the engagement of the
morpholine and methyl piperazine rings with the LH2-specific
residue R661 is responsible for the selective binding to LH2.
Compound 6 demonstrated modest selectivity toward LH2,

with 6-fold and 5-fold more potency than LH1 and LH3,
respectively, while compounds 1, 2, and 11 showed less than 3-
fold or no selectivity. The moderate selectivity of compound 6
can be attributed to the hydrophobic interactions between the
benzene ring of 6 and hydrophobic residues (F651 and F734)
at the entry of the active site, which aids in the stable binding
to LH2, as shown in Figure 4A.
To further assess the selectivity of compounds 6, 12, and 13,

we subjected them to screening against other Fe(II)/2OG-
dependent enzymes. These enzymes included FTO (fat mass
and obesity-associated protein, which preferentially demethy-
lates N6-methyladenosine in RNA35), JMJD2A (the histone
demethylase Jumonji domain-containing protein 2A36),
EGLN1 (Egl-9 family hypoxia-inducible factor 1, also called
prolyl hydroxylase domain-containing protein 2 or PHD237),
and mimivirus L230, which hydroxylates lysine and glyco-
sylates hydroxylysine residues on collagen.38 The percent
inhibition of each of these enzymes at a dose of 11 μM
compound (6, 12, or 13) is shown in Figure 5. The results

indicate that all three compounds display a more pronounced
inhibitory effect toward LH2 than other enzymes. Compound
6 shows lower selectivity for LH2 than the other compounds as
it inhibits JMJD2A similarly to LH2.
High expression of LH2 has been shown to drive cell

migration in multiple cancer types.12,39,40 To determine if the
most potent compounds identified in our study have selective
activity against LH2 in cells, we evaluated the inhibitory effect
of representative compound 13 on metastatic murine NSCLC
(nonsmall cell lung cancer) cell line 344SQ that harbor
mutations in Kras and p53.41 We used the parental 344SQ,
Crispr-Cas9 edited LH2 KO 344SQ cell lines for the
proliferation and migration assays.

Table 1. SAR of 1,3-Diketone Analogues

aIC50 values were measured using a luminescence-based LH activity
assay against LH2. See Supporting Information for a detailed
description of the assay conditions. bPy = pyridyl, Ph = phenyl

Table 2. Selectivity of Inhibitors toward All Three LH
Isoforms

IC50 (μM)a

Cpds LH2 LH1 LH3

1 3.4 ± 1.1 4.3 ± 1.3 5.2 ± 4.0
2 1.9 ± 0.6 4.8 ± 0.9 4.8 ± 0.8
6 1.0 ± 0.9 6.4 ± 8.0 5.2 ± 6.0
11 1.5 ± 0.5 1.7 ± 0.8 4.8 ± 1.9
12 0.3 ± 0.1 2.3 ± 0.9 2.7 ± 2.9
13 0.5 ± 0.1 1.6 ± 0.6 4.7 ± 8.8

aIC50 values were measured using a luminescence-based LH activity
assay. See Supporting Information for a detailed description of the
assay conditions.

Figure 5. Selectivity profile of compounds against other Fe(II)/2OG-
dependent enzymes. Compounds 6, 12, and 13 were tested at 11 μM
for inhibition of LH2 and other Fe(II)/2OG-dependent enzymes
L230, JMJD2A, EGLN1, and FTO. Inhibition (%) is the percent
decrease in the luminescence signal relative to DMSO controls in the
luminescence-based selectivity assay. All samples were performed in
duplicate, and error bars indicate standard error.
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Figure 6 shows that compound 13 demonstrated a dose-
dependent inhibition on the parental 344SQ cells. In contrast,
it was observed that compound 13 did not exert any obvious
impact on the proliferation of parental 344SQ cells at the
concentrations that were tested (Figure S47). Importantly, the
compound did not hamper the migration of LH2KO cells, as
depicted in Figures 6A and B, strongly suggesting its discerning
activity for LH2 in both in vitro and cellular settings.
Notably, LH2KO cells were employed as a reference control

to investigate whether the inhibitory effect of compound 13 is
solely due to its action on LH2 or whether it interferes with
other targets. If compound 13 targets additional molecules that
promote cell migration, then it would still exhibit an inhibitory
effect. Although there is no statistically significant difference
between the migrations of WT and LH2KO cells treated with
20 μM compound 13 (p-value = 0.07 based on nine readings
from a two-sided Student’s t test analysis), the observation that
compound 13 induces a slight increase in the migration of
LH2KO cells is intriguing. One plausible explanation for this
observation is that compound 13 shows preferential binding to
LH2 in the presence of LH2. In contrast, the compound
interacts with alternative targets in its absence, resulting in the
observed effect. Further experiments are underway to explore
the potential alternative targets of compound 13 and to
elucidate the mechanisms underlying its effect on cell
migration in LH2KO cells.
In conclusion, the current study delineates the synthesis,

design, and evaluation of a series of 18 1,3-diketone analogues
(compounds 1−18) with respect to their potential to inhibit
the LH2 enzymatic activity through luciferase-based bio-
chemical and cell migration assays. The pyridine moiety at R1
was found to be a prerequisite for efficient hydrogen-bonding
interactions with LH2’s active site residues. R3 was tailored to
accommodate a benzene ring, replacing the trifluoromethyl
group in the HTS compounds. Meta-substitution of the
benzene ring conveys an advantageous effect on the LH2
inhibitory activity, whereas para-modification attenuates
potency due to hindrance by F651. Notably, compounds 12
and 13, featuring morpholine and 1-methyl piperazine,
respectively, on the meta position of the benzene moiety,

exhibit improved potencies and selectivity for LH2 compared
with the other isoforms and Fe(II)/2OG-dependent enzymes.
Further investigations by MD and QM/MM calculations

suggest that 12 and 13 can firmly interact with the enzyme,
corroborating their inhibitory activities and selectivity.
Migration assays in the 344SQ lung adenocarcinoma cell line
reveal that compound 13 demonstrates a dose-dependent
antimigratory effect. While we acknowledge that there is still
much to be done in the field of LH2 inhibition for the
treatment of cancer metastasis, the findings presented in this
study may represent a significant step forward in developing
potential LH2 inhibitors, particularly given the limited
availability of effective LH2 antagonists.
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