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Abstract: Over the past 30 years, the majority of (pre)clinical efforts to find an effective therapy
for Alzheimer’s disease (AD) focused on clearing the β-amyloid peptide (Aβ) from the brain since,
according to the amyloid cascade hypothesis, the peptide was (and it is still considered by many)
the pathogenic determinant of this neurodegenerative disorder. However, as reviewed in this article,
results from the numerous clinical trials that have tested anti-Aβ therapies to date indicate that this
peptide plays a minor role in the pathogenesis of AD. Indeed, even Aducanumab and Lecanemab,
the two antibodies recently approved by the FDA for AD therapy, as well as Donanemab showed
limited efficacy on cognitive parameters in phase III clinical trials, despite their capability of markedly
lowering Aβ brain load. Furthermore, preclinical evidence demonstrates that Aβ possesses several
physiological functions, including memory formation, suggesting that AD may in part be due to a
loss of function of this peptide. Finally, it is generally accepted that AD could be the result of many
molecular dysfunctions, and therefore, if we keep chasing only Aβ, it means that we cannot see the
forest for the trees.
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1. Alzheimer’s Disease

Alzheimer’s disease (AD) is the neurodegenerative disorder responsible for approxi-
mately 60–70% of all cases of dementia, which affects more that 55 million people world-
wide and is predicted to reach 152 million by 2050, assuming that prevalence will remain
constant [1]. The main neuropathological features of AD are represented by extracellular
deposits of Aβ, known as plaques, and aggregates of hyperphosphorylated tau, known as
neurofibrillary tangles (NTFs), inside neurons. The early clinical sign of AD is represented
by a decline in the capacity of remembering recent events, but with the progression of the
disease, more symptoms manifest (e.g., confusion, disorientation, mood changes, memory
loss, cognitive alterations, increasing difficulties in writing, reading, speaking, etc.) and
become more and more severe over time, thus dramatically affecting patients’ daily life [2].

Two main forms of the disease can be distinguished based on the age onset. Thus, late
onset AD (LOAD) manifests at an age older than 65 years and accounts for approximately
95% of all AD cases, whereas early onset AD (EOAD) shows an age of onset ranging from
35 to 65 years and represents 1–6% of all cases [3,4]. Moreover, AD can be also classified
from a genetic point of view into sporadic (SAD) and familial (FAD) forms [3,4]. SAD
shows no familial aggregation and is considered to result from a complex combination of
genetic variants, environmental and lifestyle risk factors, as well as comorbidities. FAD
is a rare form of the disease (1–2% of all AD patients), also known as ADAD (autosomal
dominant AD) or DIAD (dominantly inherited AD), caused by mutations of the amyloid
precursor protein (APP) gene or of the PSEN1/2 genes (see below). Most of sporadic cases
are LOAD, while familial AD predominantly presents with early onset.

Among the risk factors for AD, age is considered the most important one, with an
estimated prevalence increase of 19% in persons aged 75–84 years and up to 50% for those
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older than 85 years. Apolipoprotein E (APOE) gene variants follow next, as one copy
of the ε4 allele can increase the risk of developing AD by 2–6 times, while two copies
increase the risk by 7–21 times. Genetic studies have identified many other AD suscep-
tibility loci and a large number of rare variants associated to AD (e.g., TREM 2, SORL1,
ABCA7) [3,5–7]. Moreover, environmental factors (e.g., heavy metals, pesticides), comor-
bidities (e.g., diabetes, traumatic brain injury) and lifestyle (e.g., smoking, high-fat diet)
can impact AD risk [5,8]. Finally, growing evidence suggest that dysbiosis of the gut micro-
biome can be involved in the pathogenesis of AD by dysregulating the gut–brain axis [9,10].

2. The Amyloid Cascade Hypothesis: From Plaques to Soluble Oligomers

Since its discovery in the early 1980s [11], no endogenous molecule has been witch-
hunting like Aβ. Indeed, following its characterisation as the peptide monomer forming the
insoluble senile plaques in the brain of Alzheimer’s disease patients, researchers focused
their attention almost exclusively on its toxic properties. In 1992, this view culminated in
the formulation of the original version of the amyloid cascade hypothesis (ACH) by Hardy
and Higgins [12]. Briefly, it postulated that the peptide deposition in brain parenchyma
plaques is the trigger of a pathocascade of cellular events leading to synaptic loss and neu-
rodegenerative processes responsible for extensive neuronal cell death and, consequently,
AD dementia. The ACH soon became a dogma that has been driving the search for effective
pharmacological and non-pharmacological therapies for AD in the last three decades.

Studies to unveil the biochemical origin of Aβ led in a few years to the discovery of
the transmembrane APP [13–16] and its different processing in the non-amyloidogenic and
amyloidogenic pathways [17–22]. Basically, the key difference between the two pathways
lies in the first enzymatic processing of APP. In the non-amyloidogenic pathway, APP is
cleaved by α-secretase in the middle of the Aβ sequence, generating a soluble fragment
alpha (sAPPα) and leaving the C-terminal fragment alpha (αCTF) in the membrane. On
the contrary, in the amyloidogenic pathway, β-secretase cleaves APP at the N-terminus
of the Aβ sequence, originating sAPPβ and transmembrane βCTF. Therefore, upon the
subsequent action of γ-secretase, the cleavage of βCTF, but not that of αCTF, results in the
production of Aβ [23,24]. The processing of βCTF by γ-secretase occurs at different sites,
thus yielding many Aβ peptides of variable length, with Aβ40 being the most abundant
form in the brain, followed by Aβ38 and Aβ42 [25]. Among these forms, Aβ42 was consid-
ered the culprit of AD since it is the major form deposited in senile plaques, in line with
its higher hydrophobicity and propensity to self-aggregation. Moreover, it was initially
thought that Aβ was not generated during physiological APP metabolism but occurred
only under pathological conditions [26]. However, it soon became clear that this is not the
case, since it was later found that Aβ is normally produced in the healthy brain, where it
underlies important physiological processes (see below).

The finding of mutations in the APP gene and in the genes of the two γ-secretase com-
plex proteins PSEN1/2 in FAD, leading to an increased production of Aβ42 and alteration
of the Aβ42/Aβ40 ratio, provided further support to the ACH.

Yet, the evidence that the amount of Aβ plaques in the AD brain did not correlate
either with disease severity or cognitive impairment, along with the observation that a
highly significant percentage of cognitively unimpaired elderly people (up to 40%) showed
abnormal amyloid plaque burden, led researchers to modify the original ACH.

Thus, the current version of the hypothesis indicates that the accumulation of soluble
Aβ oligomers is the upstream pathogenic process for AD that occurs over many years
before clinical onset [27]. However, Aβ accumulation seems to occur through different
mechanisms, being mainly due to increased production or decreased clearance in the
familial and sporadic forms, respectively [27].

The amyloidocentric view of AD pathogenesis also predicts that Aβ accumulation
is the causative factor of hyperphosphorylated tau (p-tau) aggregation and formation of
neurofibrillary tangles, leading to neurodegeneration and cognitive deficits in a defined
chronological order [28,29].
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3. Is (Pre)Clinical Evidence in Favour of or against the Amyloid Cascade Hypothesis?

Scientific progress is based on the formulation of hypotheses that then need to be
confirmed or disproved by using all the available means to gather experimental data, which,
after being adequately validated, become scientific evidence in favour of or against the
original premise.

This section briefly summarises the main points regarding preclinical data of the ACH,
and then focuses on the results reported over the last 20 years or so from the most relevant
phase III clinical trials (or phase II if phase III is not available) that tested immunisation
against Aβ on cognitive deterioration. The results of other Aβ-lowering therapeutic
approaches with β- and γ-secretase inhibitors, though mostly negative, have not been
considered, since they could be biased by the fact that these two enzymes can process a
hundred endogenous substrates other than APP and CTFs.

3.1. Preclinical Evidence

A myriad of in vitro studies have reported that Aβ is cytotoxic in a variety of cell
models by activating many molecular death-inducing cascades (e.g., calcium overload,
mitochondrial toxicity, oxidative stress) through different cellular mechanisms (e.g., PrPc,
i/mGluRs, RAGE, nAChRs). In addition, Aβ also induces a neuroinflammatory response
by interacting with astrocytes and microglia, leading to the release of proinflammatory
cytokines and chemokines that further exacerbate neuronal cell death [30–33].

However, it has been argued that many of these studies used concentrations of Aβ up
to 1000 times higher than biological ones [34]. Nevertheless, the real concentration of the
different forms of Aβ (monomers, dimers, oligomers) in the extracellular microenvironment
of the AD brain can be difficult to assess and remains highly controversial [35].

On the contrary, what is not controversial is the observation that there is no widespread
frank neuronal death, and no neurofibrillary tangles (NTFs) are present in the vast majority
of transgenic murine models of FAD. This is observed in mice overexpressing human
mutant APP (note that there is no evidence of APP overexpression in AD patients, except
in very rare forms of early onset FAD [36]) or mutated hAPP/hPSEN1 that, on the other
hand, produce high levels of Aβ [37,38]. NTFs are observed in transgenic mice when, in
addition to mutated hAPP or hAPP/hPSEN1 genes, they carry also the P301L human gene
for protein tau (hMAPT), a mutation not associated with FAD [39,40]. However, NTFs,
neurodegeneration, and memory deficits are also present in murine models with only the
expression of the mutated hMAPT gene, indicating that Aβ does not seem necessary for
tau-induced neuropathological alterations but can enhance them [39,41].

Finally, memory deficits are almost completely reversed in AD animal models upon
genetic or pharmacological manipulations reducing Aβ levels, suggesting some sort of
reversible damage, which does not occur in AD patients.

Undoubtedly, however, in vivo experimental models of human pathologies, with their
pros and cons, have the merit of providing the possibility for novel therapeutic approaches
to enter the clinical trial phases, which have the final word on confirming or refuting the
original working hypothesis.

3.2. Clinical Evidence: Active Immunotherapies

The first immunotherapy for AD patients started with the active immunisation proto-
col using the AN1972 vaccine (aggregated human Aβ1–42) on a total of 372 (300 vaccine
vs. 72 placebo) patients with mild to moderate AD in a randomised, placebo-controlled,
double-blind, phase IIa trial [42]. However, the trial was stopped, as 6% of patients experi-
enced meningoencephalitis, most of them (274) after two administrations. Analysis of the
small antibody-responder group (59 patients) revealed no differences from placebo in cog-
nitive, disability, and global change scores at 12 months (Alzheimer’s Disease Assessment
Scale—cognitive subscale, ADAS-cog; Disability Assessment for Dementia, DAD; Clinical
Dementia Rating Scale, CDR; Mini-Mental State Examination, MMSE; AD Cooperative
Study—Clinical Global Impression of Change, ADCS-CGIC) [43]. Instead, the z-score
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composite of the nine-component Neuropsychological Test Battery (NTB) showed some
reduced decline, which was reported to be maintained at 4.6 years in a smaller group of the
original antibody-responder population (25 patients) [43]. Results of another 6-year follow-
up study on AN1972 showed that progression to severe AD stages was not prevented in
immunised patients, and there was no evidence of improved survival despite a reduction
of the Aβ load [44].

CAD106 is a second-generation vaccine, comprising multiple copies of Aβ1–6 coupled
to a bacteriophage Qb coat protein carrier, able to induce a consistent anti-Aβ immune
response (approx. 74% responders) with a better safety profile in a 52-week, randomised,
double-blind, placebo-controlled, first-in-human trial enrolling two cohorts of patients
(58 total) with mild to moderate AD [45]. Free Aβ concentration in plasma decreased
in immunised patients, suggesting binding of antibodies to the peptide. However, no
significant differences were detected between immunised and unimmunised patients in CSF
biomarkers (Aβ and p-tau), cognitive function assessment (MMSE; CDR; AD Cooperative
Study—Activities of Daily Living, ADCS-ADL) and brain atrophy (volumetric MRI).

Another study reported the results obtained with CAD106 in two phase IIa, 52-week,
randomised, placebo-controlled trials (core study), followed by a 66-week open-label evalu-
ation (extension study), on a total of 58 patients with mild AD [46]. In these trials, CAD106
induced a prolonged anti-Aβ immune response both in the core and extension studies,
with 63.8% of patients considered responders. CAD106 was generally well tolerated, with
mild or moderate adverse events consistent with earlier studies. Overall, however, no
treatment-related effects were observed in the core studies on CSF biomarkers (Aβ40/42
and p-tau), on brain volume (MRI), and on cognitive assessment (MMSE; ADAS-Cog;
Global Deterioration Scale, GDS). A decrease of CSF p-tau from the core study baseline was
observed in the extension studies.

Finally, two different doses of CAD106 (150 and 450 mg), with and without adjuvants,
were trialled in a 90-week, randomised, double-blind, placebo-controlled phase IIb study
on a total of 121 patients with mild AD, most of them (101/121) being APOE ε4 carriers [47].
The administration of CAD106 was generally well tolerated, and most of adverse events
were of mild to moderate severity. CAD106 induced a significant immune response in a
dose-dependent manner, with the higher dose showing the higher increase of Aβ-IgG and
higher frequency of responders (89.1%). Indeed, most responders (81.1%) were classified
as strong serological responders (SSRs). An amyloid-PET exploratory analysis in a small
subgroup of patients (11 SSRs, 2 non responders, and 2 placebos) showed a longitudinal
decrease in amyloid-PET signal in SSRs but not in controls. Of note, the volumetric MRI
results indicated an unexpected larger decrease in cortical grey matter in SSRs versus
controls from baseline to week 78, although there was no correlation with the antibody re-
sponse. Lastly, CAD106 did not show any significant longitudinal change in the exploratory
assessment of cognitive effects (ADAS-cog, MMSE, ADCS-ADL, CDR) in comparison with
the placebo.

Recently, CAD106 has been included in one pivotal phase 2/3 study of 5–8-duration
under the umbrella of the Alzheimer’s Prevention Initiative Generation Program. The
study will assess vaccine safety and efficacy to slow progression or even prevent onset of
AD in cognitively healthy subjects at high risk for the development of clinical AD, based
on their age, APOE genetics, and elevation of brain amyloid [48].

A third vaccine, named ACC-001 (Vanutide Cridificar), consisting of Aβ1–7 peptides
conjugated to a carrier protein, was tested on 245 patients with mild-to-moderate AD in
two randomised, third-party-unblinded, placebo-controlled phase IIa trials with a multiple
ascending-dose schedule (3, 10, 30 mg) [49]. Patients were treated with up to five doses of
vaccine or placebo and followed for up to 12 months after last administration. The results
indicated that, although ACC-001 had an acceptable safety profile and was able to evoke
significant and sustained anti-Aβ IgG titers, it did not show differences for exploratory
cognitive assessment, volumetric brain MRI measurements, and CSF biomarker analysis
between the treatment and placebo groups.
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3.3. Clinical Evidence: Passive Immunotherapies

The second approach to lower Aβ levels evaluated in clinical trials is passive immuni-
sation with anti-Aβ antibodies.

3.3.1. Bapineuzumab

Bapinezumab, a N-terminus (Aβ1–5)-directed antibody able to bind fibrillar, oligomeric,
and monomeric forms of the peptide, was the first to be tested in a phase III development
program consisting of four randomised, double-blind, placebo-controlled, phase III trials
conducted in parallel on mild to moderate AD patients with (carriers) or without (non-
carriers) the APOE ε4 genotype (Table 1). In the first two trials (studies 301 and 302), the
modified intention-to-treat population included 1090 carriers and 1114 non-carriers [50].
Bapineuzumab was intravenously (i.v.) administered at the dose of 0.5 mg/kg to 658 carri-
ers and to 314 non-carriers, and at the dose of 1 mg/kg to 307 non-carriers, every 13 weeks
(up to six infusions) for 78 weeks. Bapineuzumab was planned to be evaluated also at
2 mg/kg in non-carriers, but this dose was discontinued early in the trial due to a high
rate of clinically symptomatic side effects (i.e., amyloid-related imaging abnormalities with
effusion or oedema). All the 141 participants initially assigned to receive the 2.0 mg/kg
dose were reassigned to the 1 mg/kg group and were included only in the safety analyses.
In both trials, approximately 70% of patients in the bapineuzumab groups completed the
study, and the antibody did not show any beneficial effect on cognitive coprimary (ADAS-
cog11 and DAD) or other clinical endpoints (MMSE; CDR—Sum of Boxes, CDR-SB; NTB)
with respect to placebo, except for a significant difference in the DAD score in a mild AD
subpopulation (MMSE ≥ 20). As for target engagement, Aβ load, assessed by amyloid-PET,
was almost unchanged at week 71 in the APOE ε4 carrier group treated with bapineuzumab,
whereas it increased in the placebo group, a finding confirmed in a subsequent analysis [51].
On the other hand, significant reductions in CSF p-tau concentration were observed in
the carrier population and in the 1 mg/kg non-carrier group. Finally, the volumetric MRI
analysis showed no significant effects of bapineuzumab on brain volume loss rate in both
patient populations.

In the other two trials (studies 3000 and 3001), which were prematurely terminated
due to the negative results observed in the first two ones, 398 carriers and 102 non-carriers
treated with 0.5 mg/kg bapineuzumab and 94 non-carriers treated with 1 mg/kg bap-
ineuzumab completed the study [52]. Also in these trials, bapineuzumab failed to show
significant effects for coprimary (ADAS-Cog11, DAD) and secondary efficacy (NTB, CDR-
SB, DS) outcomes both in carriers and non-carriers, with the only exception of a significant
0.1 difference in favour of bapineuzumab (0.5 mg/kg) for non-carrier NTB total z-score. In
addition, in subgroups of patients, no significant differences versus placebo were reported
for amyloid-PET, CSF p-tau, and whole-brain volume loss.

Finally, two phase III extension studies of the 3000 and 3001 trials (3002 non-carriers
and 3003 carriers, respectively) reported no significant changes between the dose groups
in exploratory analysis for cognitive and functional outcomes, although interpretation of
these results was limited by the absence of a placebo group in the extension period and the
early discontinuation of the trials [53]. Analysis of CSF p-tau and of whole-brain volume on
small groups of patients showed that bapineuzumab did not induce significant differences.

3.3.2. Solanezumab

Solanezumab is a humanised immunoglobulin G1 monoclonal antibody recognising
the mid-domain of soluble monomeric Aβ, which was tested in two randomised, double-
blind, placebo-controlled, phase III trials on mild-to-moderate AD patients at the dose of
400 mg i.v., once every 4 weeks for 80 weeks (EXPEDITION 1 and 2) (Table 2) [54]. A total
of 1027 patients in the two trials were assigned to receive the antibody, and 776 completed
the study. Primary outcomes for efficacy analysis originally included ADAS-Cog11 and
ADCS-ADL, whereas ADAS-Cog14, CDR-SB, MMSE, NPI (Neuropsychiatric Inventory),
RUD-Lite scale (Resource Utilization in Dementia Lite), EQ-5D (the European Quality
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of Life 5 Dimensions scale) and QOL-AD (Quality of Life in Alzheimer’s Disease scale)
were secondary outcomes. Patients were also APOE genotyped and were subjected to
analysis of Aβ plasma levels, Aβ and tau CSF levels, MRI brain volumetric measures, and
amyloid-PET imaging. In general, both trials did not reveal meaningful improvement
in primary and secondary outcomes from baseline to week 80. The EXPEDITION 2 trial
reported a significant change of 2.3 points in the ADCS-ADL score (range 0 to 78) only for
patients with mild AD, a significant change of 0.8 points in the MMSE score (range 0 to 30)
in the whole population, and a significant change of 1 point in the MMSE score for patients
with moderate AD. With regards to biomarkers, solanezumab was able to induce a large
and sustained increase of plasma Aβ40 and Aβ42, whereas in CSF it caused an increase of
total Aβ and a decrease of free Aβ, indicating target engagement. There were no significant
effects in CSF tau and p-tau levels. No differences were observed with respect to the placebo
for whole-brain and hippocampal volume loss, as well as for amyloid-PET, although the
sample set was small. Overall, these two phase III studies were considered negative [54].
However, a subsequent secondary analysis of efficacy on the pooled mild AD population
of the two trials found a reduction of cognitive and functional decline, as indicated by
significant changes in ADAS-Cog11 and 14, MMSE, and ADCS-i(instrumental)ADL, in
solanezumab-treated patients with respect to those receiving the placebo [55]. Thus, a
third randomised, double-blind, placebo-controlled, phase III trial (EXPEDITION 3) was
conducted only on patients with mild AD (MMSE 20–26) and with amyloid deposition as
assessed by PET or Aβ42 measurements in CSF [56]. The study enrolled 2197 patients, 1057
of whom were assigned to receive solanezumab at the dose of 400 mg every 4 weeks for
76 weeks. The primary outcome was the change of ADAS-Cog14 score, whereas secondary
outcomes were changes in MMSE, ADCS-ADL, ADCS-iADL, CDR-SB, FAQ (Functional
Activities Questionnaire), and iADRS (Integrated Alzheimer’s Disease Rating Scale), in all
cases from baseline to 80 weeks. Approximately 86% of patients in the solanezumab group
and 85% in the placebo group completed the study. Unfortunately, the results of this trial
were negative, with solanezumab not showing robust beneficial effects both on primary
and secondary outcomes, despite the observation that it was able to reduce free plasma Aβ
levels by more than 90%.

A recent meta-analysis performed on the pooled data of the three EXPEDITION trials
on a total of 3437 patients with mild AD (1728 randomised to placebo and 1709 randomised
to solanezumab) reported a significant, but limited, slowing in cognitive and functional
decline (ADAS-Cog14, ADCS-ADL, ADCS-iADL, CDR-SB, iADRS, and MMSE; range of
slowing from 14 to 21%) at 80 weeks in patients treated with solanezumab [57].

Since accumulation of Aβ and tau begins more than a decade before the manifes-
tation of clinical symptoms of cognitive impairment, an early therapeutic intervention
should produce more evident beneficial effects or even halt the progression to dementia.
On this basis, solanezumab was trialled on cognitively unimpaired older persons hav-
ing elevated amyloid accumulation who are considered to represent an asymptomatic
stage of AD (preclinical AD) and are at high risk of progressing to cognitive decline over
3–5 years. The A4 study was a randomised, double-blind, placebo-controlled phase III trial
that enrolled preclinical AD individuals who were cognitively normal at baseline (CDR = 0;
MMSE = 25–30; Wechsler Memory Scale Logical Memory Delayed Recall, LMDR = 6–18)
and presented elevated amyloid levels, as assessed by amyloid-PET imaging using a quanti-
tative method with a defined threshold [58]. At the end of the screening and randomisation,
578 persons were assigned to receive solanezumab (initially 400 mg, then increased to
1600 mg i.v. every 4 weeks for 240 weeks) and 591 to receive the placebo. The primary
efficacy endpoint was the change in the PACC (Preclinical Alzheimer Cognitive Composite,
including four components) score at 4.5 years, while secondary endpoints included changes
in CFI (Cognitive Function Index), ADCS-ADL Prevention Questionnaire, and CDR-SB,
with assessments performed at five time points after baseline. Also in this case, there were
no significant differences in the change of the PACC score between solanezumab- and
placebo-administered patients, with an unexpected greater decline in the solanezumab
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group. Although failure to reach significance in the primary endpoint did not allow the
analysis of significance for the secondary endpoints, the results showed an unexpected
worsening in the solanezumab group as compared with the placebo group. PET analyses
showed that tau increased to the same extent in both groups, whereas solanezumab seemed
to slow amyloid accumulation.

Table 1. Phase III trials testing bapineuzumab.

Study Design
and Duration

Study
Population

Cognitive Primary
Endpoint

CSF or Plasma
Aβ

Amyloid
PET

Volumetric
MRI

Phase III, randomised,
double-blind,
placebo-controlled
78 weeks
[50,51]

Mild to moderate
AD, APOE ε4
carriers and
non-carriers

ADAS-cog11 and
DAD
No significant
effects in the whole
population

ND Significant
effects in carriers

No significant
effects

Phase III, randomised,
double-blind,
placebo-controlled (3000
and 3001 studies)
78 weeks
Terminated early
[52]

Mild to moderate
AD, APOE ε4
carriers and
non-carriers

ADAS-cog11 and
DAD
No significant
effects in the whole
population

Significant
increase in
plasma

No significant
effects

No significant
effects

Phase III extension of
3000 and 3001 studies
208 weeks
Terminated early
[53]

Mild to moderate
AD, APOE ε4
carriers and
non-carriers

ADAS-cog11,
DAD, and MMSE
No significant
effects in the whole
population

ND Insufficient data No significant
effects

ND, not determined.

3.3.3. Gantenerumab

Gantenerumab is a fully human IgG1 anti-Aβ monoclonal antibody designed to
promote the clearance of plaques by binding with high affinity to a conformational epitope
present on Aβ fibrils. The antibody recognises both N-terminal and central regions of the
peptide and induces its removal by Fc receptor-mediated microglial phagocytosis [59,60]. A
recent in vitro study showed that gantenerumab preferentially binds Aβ fibrils over small
and large protofibrils and has a low affinity for monomers [61]. Table 3 summarises the
main results obtained with this antibody in phase III trials.

Gantenerumab was tested in the Scarlet RoAD (SR) trial, a randomised, double-blind,
placebo-controlled phase III study on patients with prodromal AD, a symptomatic prede-
mentia phase of AD also referred to as mild cognitive impairment (MCI) due to AD [62].
A total of 799 patients met the eligibility criteria for prodromal AD according to the Inter-
national Working Group criteria [63], showing biomarker evidence of amyloid pathology
(CSF Aβ42 levels ≤ 600 ng/L) and absence of dementia diagnosis assessed with MMSE,
CDR, CDR-SB, and FCSRT (Free and Cued Selective Reminding Test). Gantenerumab
was administered subcutaneously (s.c.) at the doses of 105 mg (APOE ε4 homozygotes)
and 225 mg (APOE ε4 heterozygotes and non-carriers) every 4 weeks for two years. The
primary endpoint was the change in CDR-SB, while secondary cognitive, functional, and
behavioural endpoints included changes in ADAS-Cog13, MMSE, CANTAB (Cambridge
Neuropsychological Test Automated Battery), FCSRT, NPI-Q (Neuropsychiatric Inventory
Questionnaire), and FAQ (Functional Activities Questionnaire).

The trial was halted after 4 years (December 2014) for futility, following the pre-
planned interim analysis. At that time, 316 patients had completed the 2 years of the trial
(108 placebo, 110 and 98 with gantenerumab 105 and 225 mg, respectively). The results
from the exploratory efficacy analysis showed that no treatment effects were observed
at 2 years for primary and secondary endpoints. Analysis of amyloid-PET, carried out
on a small number of patients completing the 2-year treatment, revealed that the higher
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dose of gantenerumab was able to slightly reduce Aβ load from baseline by an average of
4.8%. As for CSF biomarkers, significant reductions of total/p-tau were observed in the
gantenerumab groups, whereas there were no effects on Aβ42 levels. No differences were
detected for any of the MRI volumetric measures at both gantenerumab doses.

A further exploratory analysis was performed by applying the algorithm of an AD
progression model to identify individuals predicted to be fast or slow progressors in the
population of patients with prodromal AD [62,64]. The results of this analysis suggested a
slowing of decline in the change of ADAS-Cog13, CANTAB, and MMSE but not of CDR-
SB, in the gantenerumab-treated fast progressor subgroup, whereas no differences were
observed in slow progressors.

A second randomised, double-blind, placebo-controlled phase III trial, named Mar-
guerite RoAD (MR), was also initiated in 2014 to evaluate the efficacy and safety of gan-
tenerumab (105 or 225 mg s.c. every 4 weeks) in patients with mild AD, but recruitment
was stopped following the futility analysis of the SR trial, while dosing continued.

Since the results of the first trial suggested that higher doses of gantenerumab may
have resulted in a more marked reduction of brain Aβ and in more relevant clinical effects,
in 2015 both SR and MR trials were transformed in open-label extension (OLE) studies
to evaluate the effects of a high dose of the antibody (1200 mg) achieved by titration
regimens to minimise adverse events. An amyloid-PET sub-study interim analysis of the
two OLE studies reported the results at 12 and 24 months for three different cohorts of
patients with prodromal to moderate AD who participated in the double-blind period
of the SR and MR trials: SR patients (SR), MR patients receiving the placebo (MR-DBP),
and MR patients receiving the active drug (MR-DBA) [65]. The reduction in amyloid-
PET in absolute centiloids was highly significant in all subgroups at both time points,
with a reduction at 2 years of 64%, 77%, and 78% from baseline for SR, MR-DBA, and
MR-DBP patients (39 completers), respectively. In addition, at the same time point, 51%
of the patients showed Aβ levels below the positivity threshold. This open-label, non-
placebo-controlled study was not designed to investigate clinical efficacy in terms of
slowing disease progression. However, exploratory analyses of change from baseline to
year 2 for some clinical endpoints (CDR-SB, ADAS-Cog11, and MMSE) were performed on
completers and suggested a tendency for slower clinical decline at higher amyloid removal
by gantenerumab [65]. The results of the amyloid-PET analysis were further confirmed by
the results obtained at 3 years on 30 completers, demonstrating a continued reduction, with
mean amyloid levels approaching zero centiloids for the three cohorts (SR, MR-DBP, and
MR-DBA) and with the proportion of patients below the positivity threshold increasing to
80% [66].

In 2018, two other randomised, double-blind, placebo-controlled phase III parallel
studies (GRADUATE I and II) began, with the aim of evaluating the efficacy and safety
of gantenerumab (titrated over 9 months to a final dose of 520 mg every two weeks s.c.
for 27 months) in patients with MCI due to AD and mild AD, collectively termed early
AD (1965 participants randomised 1:1 to receive active drug or placebo). In November
2022, the sponsor announced that both studies did not meet the primary endpoint of
slowing clinical decline as assessed with CDR-SB at 116 weeks. In fact, the results showed
insignificant −0.31 and −0.19 changes from baseline, representing a relative reduction of 8%
and 6% compared with the placebo in GRADUATE I and II, respectively [67]. The results on
secondary endpoints were similar, showing only trends favouring gantenerumab. However,
in these trials, gantenerumab significantly reduced Aβ load on average by approximately
23 (−24%) and 53 centiloids (−45%) vs. baseline, respectively, at years 1 and 2 [68].

3.3.4. Solanezumab and Gantenerumab in DIAD

Dominantly Inherited Alzheimer’s Disease (DIAD) is the rare familial form of the dis-
order, accounting for <1% of all AD cases, in which the age of dementia manifestation can
be largely predicted based on genetic mutations. In addition, the disease pathology mani-
fests many years before symptom onset [69–71]. Therefore, in 2012, the DIAN-Trials Unit
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(DIAN-TU) was launched as a two-year phase II trial to evaluate the effects of solanezumab
and gantenerumab on biomarkers in a population of asymptomatic or mildly symptomatic
individuals with DIAD (Tables 2 and 3). However, in 2015 the trial was transformed into
a 4-year phase II/III trial to test whether the antibodies were able to prevent or slow dis-
ease progression [72]. In DIAN-TU, 52 individuals (60% asymptomatic) were randomised
to receive solanezumab (dose increased from 400 to 1600 mg i.v. every 4 weeks), 52
(60% asymptomatic) to receive gantenerumab (dose increased from 225 to 1200 s.c., every
4 weeks), and 40 (55% asymptomatic) to receive a placebo for 4 years. A total of 105 persons
completed the study (36 solanezumab, 39 gantenerumab, and 30 placebo). The primary
endpoint was the measure of cognition using the DIAN Multivariate Cognitive End Point
(DIAN-MCE), which included four different analyses, whereas secondary outcomes in-
cluded CDR-SB and FAS (Functional Assessment Scale). Biomarker outcomes included
amyloid-PET for gantenerumab, CSF total Aβ42, total tau, p-tau, and NfL (neurofilament, a
marker of neurodegeneration) for solanezumab and gantenerumab. Overall, the analyses
indicated no significant differences in cognitive decline between gantenerumab and placebo
groups despite a significant between-group difference of 24.3% for Aβ deposition, 42.6%
for increased CSF Aβ42 levels, and a 20.6% and 32.8% reduction for CSF total and p-tau,
respectively. Also in the case of solanezumab, data analysis revealed no beneficial effects
on cognitive measures or on biomarkers. Actually, the solanezumab group showed a faster
cognitive decline.

Table 2. Phase III trials testing solanezumab.

Study Design
and Duration

Study
Population

Cognitive Primary
Endpoint CSF or Plasma Aβ

Amyloid
PET

Volumetric
MRI

Phase III, randomised,
double-blind,
placebo-controlled
(EXPEDITION 1, 2)
80 weeks
[54]

Mild to
moderate AD

ADAS-Cog11 and
ADCS-ADL
Significant small
effects for ADCS-ADL
only in EXPEDITION 2
Significant small effects
in a secondary analysis
on the pooled mild
AD-population [55]

Significant
increase in plasma
and CSF

No significant
effects

No significant
effects

Phase III, randomised,
double-blind,
placebo-controlled
(EXPEDITION 3)
76 weeks
[56]

Mild AD
ADAS-Cog11
No significant
effects

Significant
increase in plasma
and CSF

No significant
effects

No significant
effects

Phase III, randomised,
double-blind,
placebo-controlled (A4)
240 weeks
[58]

Preclinical AD
PACC
No significant
effects

ND Smaller increase vs.
placebo

No significant
effects

Phase II/III, randomised,
double-blind,
placebo-controlled
(DIAN-TU)
208 weeks
[72]

Dominantly
inherited AD

DIAN-MCE
No significant
effects

Significant increase
in CSF

No significant
effects

No significant
effects

ND, not determined.
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Table 3. Phase III trials testing gantenernumab.

Study Design
and Duration

Study
Population

Cognitive Primary
Endpoint

CSF or Plasma
Aβ

Amyloid
PET

Volumetric
MRI

Phase III, randomised,
double-blind,
placebo-controlled
(Scarlet RoAD)
104 weeks
Terminated early [62]
Transformed in OLE

Prodromal AD
CDR-SB
No significant
effects

No significant
effects in CSF Slight reduction No significant

effects

Phase III, randomised,
double-blind,
placebo-controlled
(Marguerite RoAD)
100 weeks
Terminated early
Transformed in OLE

Mild AD ___ ___ ___ ___

Phase III, randomised,
double-blind,
placebo-controlled
(GRADUATE I–II)
27 months
Terminated early
[67,68]

Early AD
CDR-SB
No significant
effects

___
Significant reduction
(on average −44% at
2 years)

___

Phase II/III,
randomised,
double-blind,
placebo-controlled
(DIAN-TU)
208 weeks
[72]

Dominantly
inherited AD

DIAN-MCE
No significant
effects

Significant
increase in CSF

Significant reduction
(−24% at 4 years) ND

ND, not determined.

3.3.5. Crenezumab

Crenezumab is a humanised monoclonal immunoglobulin G4 antibody that binds
different forms of Aβ, including monomers, oligomers, and fibrils, although it shows
a higher affinity for oligomeric Aβ [73,74]. Crenezumab (60 mg/kg i.v., every 4 weeks
for 100 weeks) was tested in two randomised, double-blind, placebo-controlled phase III
studies, CREAD and CREAD2, on individuals with early AD with confirmed Aβ pathology
(Table 4) [75]. In the CREAD trial, a total of 173 (88 placebo and 85 active drug) out
of 813 patients completed the study before it was discontinued for futility, following
a pr-planned interim analysis. In the CREAD2 trial, no participants (399 placebo and
407 crenezumab) completed the study before discontinuation. The primary endpoint was
the change in CDR-SB from baseline to week 105. Secondary endpoints included changes
in CDR, MMSE, ADAS-Cog11 and 13, ADCS-ADLS, ADCS-iADL, and NPI-Q, as well as
some analyses on quality of life and caregiver burden.

In CREAD, no significant differences were demonstrated in CDR-SB between
crenezumab and the placebo at any time point investigated, and the difference in mean
change from baseline to week 105 was −0.17, favouring the placebo. No treatment effect
was observed also for secondary endpoints. In CREAD2, analysis of the smaller dataset
found a mean change in CDR-SB from baseline to week 77 of 1.3, favouring crenezumab. No
significant effects were reported for secondary outcomes. Also, there were no differences in
individuals with prodromal AD (MCI due to AD) in comparison with patients with mild
AD from baseline to week 105 in the pooled CREAD/CREAD2 dataset of CDR-SB and
other secondary outcomes. In CREAD, crenezumab significantly increased Aβ40 and Aβ42
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in plasma and CSF, but there were no significant differences in longitudinal changes in
amyloid-PET, volumetric MRI, Aβ oligomers in CSF, and total and p-tau.

In 2013, a randomised, double-blind, placebo-controlled phase II study, named the
API (Alzheimer’s Prevention Initiative) ADAD (Autosomal Dominant AD) Colombia
Trial, was initiated to evaluate the safety and efficacy of crenezumab in a cognitively
unimpaired Colombian family of individuals carrying the PSEN1 E280A mutation and
in non-carriers [76]. In this family, the median age of onset for fibrillar Aβ deposi-
tion was 28 years, whereas the onset age for MCI and dementia was 44 and 49 years,
respectively [77–79]. This 5- to 8-year trial enrolled 252 individuals, with approximately
two thirds (167) carrying the mutation randomised to receive crenezumab initially at the
dose of 300 mg s.c. every 2 weeks. In 2015, the dose was increased to 720 mg every 2 weeks,
and in 2019 to 60 mg/kg i.v., every two weeks. The primary outcome was the change in the
API Composite Cognitive (APICC) test score (comprising elements from five different tests)
from baseline to week 260. Secondary outcomes included time to progression to MCI or
dementia due to AD, time to a CDR >0, change of CDR-SB, and change in amyloid-PET,
cerebral glucose metabolism (FDG PET), volumetric MRI, CSF levels of Aβ, and total and p-
tau. Exploratory measurements also included the Free and Cued Selective Reminding Test
(FCRST), Functional Assessment Staging of Alzheimer’s Disease (FAST), Geriatric Depres-
sion Scale (GDS), Neuropsychiatric Inventory (NPI), Repeatable Battery for the Assessment
of Neuropsychological Status (RBANS), and Subjective Memory Checklist (SMC).

In June 2022, the sponsor announced that the trial did not demonstrate a statistically
significant clinical benefit for co-primary, multiple secondary, and exploratory endpoints,
although small numerical differences favouring crenezumab were observed [80]. More
detailed results were presented at the Alzheimer’s Association International Conference
(AAIC) in July–August 2022 and confirmed that differences in the cognitive primary and
in all the clinical secondary endpoints, as well as biomarker outcomes, did not reach
statistical significance, although there was a trend favouring crenezumab [81]. In fact,
crenezumab-treated individuals declined more slowly on the primary endpoint APICC
(23%) and in some secondary and exploratory outcomes (20% on FCRST, 8% on CDR, 9%
on CDR-SB, and 44% on RBANS). Progression to MCI or dementia due to AD also showed
some slowing down. However, all differences were insignificant. Similarly, differences in
biomarkers showed a non-significant trend in favour of crenezumab. The only exceptions
were CSF Aβ40 levels, which significantly increased, and Aβ42 levels, which were stable in
crenezumab-treated patients while decreasing in controls.

Table 4. Phase II/III trials testing crenezumab.

Study Design
and Duration

Study
Population

Cognitive Primary
Endpoint

CSF or Plasma
Aβ

Amyloid
PET

Volumetric
MRI

Phase III, randomised,
double-blind,
placebo-controlled (CREAD,
CREAD2)
100 weeks
Terminated early
[75]

Early AD
CDR-SB
No significant
effects

Significant
increase in CSF
and plasma

No significant
effects

No significant
effects

Phase II, randomised,
double-blind,
placebo-controlled (API
ADAD Colombia)
5 to 8 years
Terminated early
[76,80,81]

Cognitively
healthy
Colombian
family

APICC
No significant
effects

Stable lev-
els/significant
increase in CSF

No significant
effects

No significant
effects
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3.3.6. Aducanumab

Aducanumab is a human monoclonal antibody selectively targeting different forms
of aggregated Aβ, which, like gantenerumab, shows preferred binding to fibrils over
protofibrils and has low affinity for Aβ monomers [61,82]. This antibody was tested in two
randomised, double-blind, placebo-controlled phase III trials, EMERGE and ENGAGE,
which randomised 1643 and 1653 patients with early AD to placebo or to aducanumab,
respectively (Table 5). Two doses of the antibody were i.v. administered to patients every
4 weeks for 76 weeks. The low dose was 3 mg/kg for APOE ε4 carriers and 6 mg/kg
for non-carriers; the high dose was 6 mg/kg for carriers and 10 mg/kg for non-carriers.
In EMERGE, 874 patients completed the study (288 placebo, 291 low dose, and 295 high
dose), whereas 938 completed ENGAGE (325 placebo, 325 low dose, and 288 high dose).
The primary endpoint was the change in CDR-SB, secondary endpoints were changes in
MMSE, ADAS-Cog13, and ADCS-iADL-MCI, and the tertiary endpoint was NPI-10. The
endpoint measures were assessed at baseline and at weeks 26, 50, and 78. In subsets of
patients, amyloid-PET, tau-PET, and biomarker (CSF Aβ42, tau, and p-tau levels) analyses
were performed.

The story of these trials is very interesting. The two studies initiated in 2015 and, as
announced by the sponsor, were terminated in March 2019 following a pre-specified interim
analysis for futility on the pooled data from EMERGE and ENGAGE, which indicated the
drug to be ineffective on primary endpoints [83]. Some months later (October 2019), a
post-hoc analysis on a larger dataset showed that EMERGE had met its primary endpoint in
the high-dose group, while ENGAGE did not, and the sponsor announced its intention to
pursue regulatory approval for aducanumab [84]. As recently published, a slight significant
difference of −0.39 in the CDR-SB mean change from baseline to week 78 was found in
EMERGE in the high-dose aducanumab group in comparison with the placebo, indicating
a relative 22% reduction in cognitive decline [85]. Significant differences for aducanumab
vs. the placebo were found in the MMSE (0.6 points, 18%), ADAS-Cog13 (−1.4 points, 27%),
and ADCS-ADL-MCI (−1.7, 44%) at week 78. As for biomarker analyses, it was shown
that the high dose of aducanumab was able to significantly and markedly reduce amyloid-
PET from baseline to week 78 by 71% and 59% in EMERGE and ENGAGE sub-studies,
respectively. In addition, 48% of EMERGE patients and 31% of ENGAGE patients treated
with the high aducanumab dose showed a PET score at week 78 that was equal to or below
the threshold value for amyloid positivity. In addition, significant effects of aducanumab
(mean change vs. baseline) were observed in EMERGE for CSF p-tau (approx. −23 and
−17 pg/mL for high and low dose, respectively), total tau (approx. −130 and −90 pg/mL),
and CSF Aβ42 levels (approx. 280 and 140 pg/mL). Significant effects were also found
for CSF Aβ42 in ENGAGE, but only at the high aducanumab dose. On the other hand,
aducanumab did not show beneficial effects on brain atrophy, according to volumetric MRI
analyses. Surprisingly, it caused significant increases in ventricular volume at both doses
and in both trials.

In November 2020, the FDA Peripheral and Central Nervous System Drugs Advisory
Committee voted on several questions regarding the results for aducanumab [86,87]. In
particular, the Committee voted one yes, eight no, and two uncertain on the question as to
whether the EMERGE study had provided strong evidence supporting the effectiveness
of aducanumab for the treatment of AD. Nevertheless, in June 2021, the FDA approved
aducanumab using an accelerated approval pathway based on the fact that aducanumab
was the first drug directly targeting the underlying pathophysiology of AD, namely Aβ
plaques, and that the decrease in those plaques as shown in the clinical trials is expected
to lead to a reduction of clinical decline. Of note, three standing members of the FDA
PCNS Drugs Advisory Committee resigned following the FDA accelerated approval of
aducanumab [88]. The very limited results obtained in the aducanumab phase III trials
and the FDA’s decision to approve aducanumab based on the reduction of Aβ plaques
as a surrogate measure of clinical efficacy, a claim that lacks conclusive evidence, has
fuelled an endless and controversial debate in the scientific community [89–100]. Lastly,



Int. J. Mol. Sci. 2023, 24, 14499 13 of 25

in December 2021, the European Medicine Agency (EMA) recommended the refusal of
marketing authorisation of aducanumab, since the link between Aβ plaque reduction
and clinical efficacy had not been established, the results of the two studies (EMERGE
and ENGAGE) were conflicting and did not show efficacy in treating patients with early
AD [101]. The company requested a re-examination of EMA’s recommendation, but the
application was withdrawn in April 2022 before the re-examination procedure had been
completed [102].

3.3.7. Lecanemab

Lecanemab is a humanised IgG1 antibody targeting soluble Aβ oligomers and showing
some preference for fibrils over protofibrils [61,103]. The Clarity AD study, a randomised,
double-blind, placebo-controlled trial, investigated lecanemab in early AD patients over
18 months (Table 5) [104]. Following randomisation, patients with MCI due to AD and
with mild AD (early AD) were assigned to receive a placebo (897, with 757 completing the
trial) or 10 mg/kg lecanemab (i.v.) every two weeks (898, with 729 completing the trial).
The primary efficacy endpoint was the change in the CDR-SB score, whereas secondary
endpoints were change in ADAS-Cog14, ADCOMS (AD Composite Score), ADCS-MCI-
ADL, and amyloid-PET, all from baseline to month 18. Biomarkers in CSF (Aβ40/42, total
tau, p-tau, neurogranin, and NfL) and plasma (Aβ40/42 ratio, total tau, p-tau, GFAP, and
NfL) were also assessed. Results showed that lecanemab caused a significant, though small,
difference of −0.45 points in the mean change of the primary endpoint CDR-SB score (27%
relative effect). However, it has been highlighted that, with regard to the primary endpoint,
lecanemab was less effective in women, who have twice the risk of AD compared to men,
and in APOE ε4 carriers, especially in homozygotes who showed increased decline [105].
As for the secondary endpoints, changes of −1.44 points for ADAS-Cog14, −0.05 points for
ADCOMS, and 2 points for ADCS-MCI-ADL were found with respect to the placebo.

Amyloid-PET analysis of a subgroup of patients (698) showed a marked mean change
vs. baseline of −55.48 centiloids in the lecanemab group (71% reduction), leading to
amyloid levels below the threshold for positivity (approx. 30 centiloids). Analysis of
biomarkers in plasma and CSF all showed non-significant numerical improvements in
comparison with the placebo, except for CSF NfL.

Similarly, the hazard ratio for progression of the disease (worsening of the CDR global
score) numerically favoured lecanemab. Following accelerated approval in January 2023, in
July 2023, it was announced that lecanemab received the traditional approval for marketing
by FDA [106]. Also in this case, there is debate as to whether the limited effects of lecanemab
observed in the Clarity AD trial could be clinically meaningful in the real world [107–118].

3.3.8. Donanemab

Donanemab is a humanised IgG1 antibody able to bind the pyroglutamyl E3 Aβ
peptide (Aβp3–42), present only in brain amyloid plaques, thus inducing their removal
by microglial phagocytosis [119]. In July 2023, the results of the 76-week, randomised,
double-bind, placebo-controlled trial TRAILBLAZER-ALZ 2, testing donanemab, were
published (Table 5) [120]. The study randomised 1736 early AD patients with low/medium
or high tau pathology to receive a placebo (876, 80% completing the study) or donanemab
(860, 72% completing the study) i.v. every four weeks, at the initial dose of 700 mg for
the first three administrations and 1400 mg thereafter for up to 76 weeks. The primary
endpoint was the change in the iADRS score (range 0–144) from baseline to week 76 in
the low/medium or in the combined (low/medium + high) tau populations. Secondary
outcomes were CDR-SB, ADAS-Cog13, ADCS-iADL, and MMSE. Additional secondary
outcomes were amyloid-PET reduction at week 76, percentage of patients with amyloid
clearance (<24.1 centiloids) at weeks 24 and 76, and change in tau-PET and in volumetric
MRI. The results showed that, in the low/medium tau population, there was a significant
mean change difference of 3.25 in the iADRS score between the donanemab and placebo
groups, indicating a relative 35.1% slowing of disease progression. In the combined tau
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population, the significant mean change difference was 2.92, representing a relative 22.3%
slowing of progression. As for secondary outcomes, significant mean change differences
were observed both in low/medium and combined tau populations (respectively, −0.67 and
−0.7 for CDR-SB, 1.83 and 1.70 for ADCS-iADL, and −1.52 and −1.33 for ADAS-Cog13).
According to the time-based analysis reported, disease progression in the low/medium
population was delayed by donanemab by 4.36 months on iADRS and 7.53 months on
CDR-SB over 18 months. In the case of amyloid-PET, donanemab was able to induce a huge
reduction of Aβ load in both populations at week 76 (−85.5% and −83.7% from baseline in
medium/low and combined populations, respectively), with 80.1% (low/medium) and
76.4% (combined) of patients reaching amyloid clearance at week 76. On the contrary,
frontal p-tau PET did not show significant differences from the placebo group at week 76 in
both populations, whereas a significant decrease was observed in plasma. Volumetric MRI
analyses in both populations showed that donanemab caused a significant greater decrease
in whole brain volume, a greater increase in ventricular volume, and a lesser decrease in
hippocampal volume.

Again, whether the beneficial changes can be clinically relevant in the heterogeneous
population of patients with early AD in the real world is under debate [121–124].

Table 5. Phase III trial testing aducanumab, lecanemab and donanemab.

Study Design and Duration Study
Population

Cognitive Primary
Endpoint

CSF or Plasma
Aβ

Amyloid
PET

Volumetric
MRI

Aducanumab
Phase III, randomised,
double-blind,
placebo-controlled (EMERGE,
ENGAGE)
76 weeks
Terminated early
[85]

Early AD

CDR-SB
Significant
effect only in
EMERGE (−0.39
mean change vs.
placebo)

Significant
increase

Significant
reduction
(−71% EMERGE,
−59% ENGAGE)

Significant
increase in
lateral ventricle volume

Lecanemab
Phase III, randomised,
double-blind,
placebo-controlled (Clarity
AD)
18 months
[104]

Early AD

CDR-SB
Significant effect
(−0.45 mean change
vs. placebo)

No significant
effects

Significant
reduction (−71%) ___

Donanemab
Phase III, randomised,
double-blind,
placebo-controlled
(TRAILBLAZER-ALZ 2)
76 weeks
[120]

Early AD

iADRS
Significant effect
(2.92–3.25 mean
change vs. placebo)

ND

Significant
reduction
(−85% on
average)

Significant
decrease in whole brain
volume
Significant increase in
lateral ventricle volume

ND, not determined.

In conclusion, the results of the many clinical trials summarised above hardly demon-
strate beyond any doubt that Aβ, in any form, is the etiological factor of Alzheimer’s
disease, as indicated in the amyloid cascade hypothesis. Although some studies investigat-
ing the anti-Aβ immunotherapy effects on cognitive decline did not include amyloid-PET
to evaluate brain Aβ load as a direct measure of efficacy in target engagement, this is not
the case for other, more recent trials.

To summarise the phase III studies that evaluated cognition and amyloid-PET variations:

- In the SR-MR OLE trials, gantenerumab showed a non-significant modest trend for
slowing disease progression in early AD patients, despite a decrease of brain Aβ levels
of up to 78% and 51% of patients below amyloid positivity threshold at 2 years.

- In the GRADUATE I and II trials, gantenerumab caused a very modest, insignificant
effect on cognition in early AD patients at two years, although a 44% decrease in brain
Aβ levels was observed, and 27% of patients became amyloid-negative at the same
time point.
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- In the ENGAGE study in early AD patients, aducanumab induced almost no variation
in the cognitive primary endpoint with respect to the placebo at 78 weeks, but caused
a 60% reduction of brain Aβ load, with 31% of patients having an amyloid-PET score
at or below the threshold for positivity.

- In the EMERGE study (with exactly the same design as ENGAGE), aducanumab
was able to significantly affect the cognitive primary endpoint, but the effect was
modest (−0.39 in the CDR-SB mean change vs. placebo), despite a 71% reduction of
Aβ burden and 48% of patients at or below threshold for amyloid-PET positivity.

- In the Clarity AD trial, lecanemab produced a significant change in the cognitive
primary endpoint (−0.45 in the CDR-SB mean change vs. placebo) at 18 months, but
again the effect was small if compared to the 71% reduction in brain Aβ levels, with
all patients below the threshold for positivity.

- In the TRAILBLAZER-ALZ 2 trial, in early AD patients, donanemab produced a
dramatic, more than 80%, decrease in brain Aβ, with almost 80% of participants
reaching amyloid clearance at week 76. On the other hand, its significant effect on the
cognitive primary endpoint was still limited (on average, −0.7 in the CDR-SB mean
change vs. placebo).

Therefore, these data suggest that Aβ plays a minor, and not a central, role in the
pathophysiology of AD.

Of note, the effects observed with aducanumab, lecanemab, and donanemab are simi-
lar to those obtained with acetylcholinesterase inhibitors, such as donepezil (−2.67 points
on ADAS-Cog, 1.05 points on MMSE, and −0.53 points on CDR-SB, compared to placebo
over 6 months) [125].

While a thorough discussion on the side effects of anti-Aβ antibodies is outside the
scope of this article, it must be borne in mind that these immunotherapy strategies, showing
modest efficacy, are associated with amyloid-related imaging abnormalities (ARIA), charac-
terised by cerebral microhaemorrhages/haemosiderosis (ARIA-H) and oedema/effusion
(ARIA-E), especially in APOE ε4 carriers [126,127]. Although it is reported that most cases
were asymptomatic and resolved with discontinuation of therapy, limited data are available
on what could happen with continuation of antibody administration. Furthermore, a recent
meta-analysis showed that different Aβ-lowering therapies can induce an accelerated brain
volume loss in AD patients, with a major impact on ventricular enlargement by anti-Aβ
antibodies (aducanumab, bapineuzumab, donanemab, and lecanemab), thus suggesting
their potential to alter brain health in the long term [128].

4. The Aβ Loss-of-Function Hypothesis

Most studies focused on the Aβ gain of toxic function, underlying its key role in
triggering the neurodegenerative/synaptotoxic processes in AD. However, it is now clear
that this small peptide can play a variety of physiological roles in the central nervous
system. As a matter of fact, BACE1, the enzyme driving APP amyloidogenic processing, is
highly expressed in the normal brain, both at the mRNA and protein levels [129]. Also, Aβ
peptides are physiologically produced in the brain of mammals, as demonstrated by their
presence in the extracellular space of mice through in vivo intracerebral microdialysis, or
in the CSF of healthy, cognitively unimpaired individuals [130–133].

Some of the first preclinical evidence for the physiological roles of Aβ was already
published in the late 1980s/early 1990s, when it was shown that low concentrations of the
peptide exerted neurotrophic effects on cultured hippocampal neurons [134,135]. Indeed, it
was later found that the reduction of Aβ levels, obtained with secretase inhibitors or with
its immunodepletion, induced neuronal cell death, which was prevented by application of
exogenous Aβ [136]. In line with this, the addition of exogenous monomeric Aβwas able
to rescue neurons from insulin-deprivation- or excitotoxicity-induced cell death, further
confirming the neuroprotective potential of this peptide [137].

Moreover, Aβ was shown to possess neurogenic effects [138], increase the density
of total dendritic spines in organotypic hippocampal slices [139], promote oligodendro-
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cyte differentiation and survival, and enhance remyelination in organotypic cerebellar
slices [140].

Interestingly, Aβ could exert also protective effects after CNS injury, since it was
reported that BACE1 deletion worsened cognitive and motor functions in experimental
models of traumatic brain injury [141] and spinal cord injury [142]. Furthermore, it has
been proposed that Aβ serves important antioxidant functions in the brain, especially by
means of its metal-binding properties, and that its increase under different pathological con-
ditions with oxidative stress components could represent the attempt of a neuroprotective
response [143,144].

At the level of neurotransmission, evidence has accumulated showing that Aβ is an
endogenous regulator of release probability, controls neuronal excitability, and interacts
with different neurotransmitter systems at the presynaptic level [145,146].

One of the most striking findings is the physiological role of the amyloid peptide in
memory, which started to emerge in the mid 1990s, when exogenous Aβ was shown to
enhance hippocampal long-term potentiation (LTP), the synaptic plasticity phenomenon
representing the electrophysiological correlate of memory formation/consolidation [147].
This observation was confirmed and extended by several studies demonstrating that low
concentrations of exogenous Aβ enhanced hippocampal LTP and improved hippocampal-
dependent memory (both effects mediated by α7-nicotinic receptors), whereas its immuno-
mediated depletion abrogated LTP and induced significant cognitive impairments, which
were rescued by physiological concentrations of the amyloid peptide [148–151]. In ad-
dition, it was found that physiological Aβ production is enhanced by both cAMP and
cGMP, although through different mechanisms, and that the peptide is necessary for
both nucleotides to trigger LTP and memory formation [152–155]. Indirect evidence of
Aβ involvement in memory was also provided by studies showing that BACE1 knock-
ing out or its pharmacological inhibition caused LTP alterations and cognitive deficits in
mice [156,157].

Furthermore, an in vitro study evaluating the effects of 138 mutations in human
PSEN1 found that 90% of them decreased, and not increased, the production of Aβ40 and
Aβ42 [158].

Based on those findings, the loss of function (LOF), as opposed to the gain of toxic
functions (GOF) proposed by the ACH, has been hypothesised as one of the possible
pathophysiological mechanisms of AD due to the decreased availability of physiologi-
cally relevant forms of Aβ [159–165]. As a matter of fact, support of the LOF hypothesis
comes from a recent preclinical study demonstrating that the in vivo intrahippocampal
administration of the N-Aβcore (a synthetic peptide comprising amino acids 10–15 of the
N-terminal region of Aβ) to 5xFAD APP/PS1 transgenic mice (a widely used model for
familial AD) reversed the dramatic reduction of LTP as well as the enhancement of LTD
observed in hippocampal slices of untreated controls [166]. The N-Aβcore also significantly
reduced astrogliosis and microgliosis in ex vivo organotypic coronal brain slices obtained
from 7-month-old 5xFAD mice, thus resulting in decreased neuronal loss [167]. Moreover,
intracerebroventricular administration of human Aβ42 improved the impaired hippocam-
pal LTP in APP/PS1/Tau triple transgenic AD mice, an effect that was associated with the
amelioration of cognitive deficits in the Y maze spontaneous alternation test and in the
object-location task [168].

However, what Aβ form(s) play key physiological roles and whose LOF can participate
in the pathophysiology of AD has yet to be established, with some lines of evidence
indicating the monomeric peptide and others pointing to oligomers [160,163,166,168–171].

In line with the LOF hypothesis, a cross-sectional study on 598 amyloid-positive indi-
viduals of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort reported that
CSF soluble Aβ42 levels were higher in those amyloid-PET-positive participants performing
better in neuropsychological evaluation for memory and executive functions [172]. Specifi-
cally, CSF levels of Aβ42 were significantly higher, cognitive performance was significantly
better, and hippocampal volume was significantly greater in cognitively normal individ-
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uals with amyloid-PET positivity (155) than in those with MCI (271) who, in turn, had
significantly higher peptide levels, better cognitive performance, and larger hippocampal
volume than patients with AD (172). Moreover, the analysis of conversion from MCI to AD
(103 subjects) suggested that the decrease in soluble Aβ42 was more critical than an equiva-
lent elevation in amyloid brain load, thus supporting the LOF hypothesis. Intriguingly, a
retrospective longitudinal study on 108 amyloid-PET-positive subjects of the DIAN cohort
(patients at risk for carrying a mutation responsible for ADAD; see above) revealed that the
risk of CDR progression (i.e., worsening of cognition) was significantly reduced in those
individuals with higher CSF Aβ42 levels, which were also associated with a decreased
hazard of time to first CDR progression, even at high amyloid-PET values [173].

Of course, the LOF and GOF hypotheses may not be mutually exclusive in that the
generation of toxic Aβ oligomers could reduce the monomeric pool of the peptide to a
level that jeopardises several important physiological cellular functions. However, given
the now generally accepted multifactorial nature of AD, in which dysfunctions of many
pathways occur also independently of Aβ [174–178], it is unlikely that Aβ GOF or LOF, or
both, can be the sole triggers precipitating the brain in the neurodegenerative processes
characterising AD.

5. Concluding Remarks

Over last decade, the amyloid cascade hypothesis has been increasingly subjected
to a growing number of criticisms confuting the etiopathogenetic role of amyloid-beta,
especially considering the negative results of most of the numerous clinical trials that
tested the efficacy of anti-Aβ antibodies [34,161,179–184]. Paradoxically, the positive results
recently obtained with aducanumab, lecanemab, and donanemab in early AD seem to
support this view, as they showed modest beneficial effects on cognition despite marked
effects on the clearance of the amyloid peptide from the brain. This is not to say that Aβ
is not involved in the evolution of AD, but it is one of the participants in the pathological
processes of the disease and not the culprit we were looking for. Moreover, the key
physiological roles of this peptide in brain processes uncovered to date indicate that the use
of anti-Aβ antibodies in AD needs to be cautiously evaluated, especially in the preclinical
phase of the disease.

Finally, like other neurodegenerative disorders, AD is now considered a multifactorial
pathology and, therefore, greater efforts are required to identify and characterise in depth
other druggable pathocascades for the development of multitarget therapeutic strategies
able to halt or effectively modify this devastating disease.
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