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Abstract

Background: Severe bronchiolitis (i.e., bronchiolitis requiring hospitalization) during infancy is 

a major risk factor for childhood asthma. However, the exact mechanism linking these common 

conditions remains unclear. We examined the longitudinal relationship between nasal airway 

miRNAs during severe bronchiolitis and the risk of developing asthma.

Methods: In a 17-center prospective cohort study of infants with severe bronchiolitis, we 

sequenced their nasal miRNA at hospitalization. First, we identified differentially expressed 

miRNAs (DEmiRNAs) associated with the risk of developing asthma by age 6 years. Second, 

we characterized the DEmiRNAs based on their association with asthma-related clinical features, 

and expression level by tissue and cell types. Third, we conducted pathway and network analyses 

by integrating DEmiRNAs and their mRNA targets. Finally, we investigated the association of 

DEmiRNAs and nasal cytokines.

Results: In 575 infants (median age=3 months), we identified 23 DEmiRNAs associated with 

asthma development (e.g., hsa-miR-29a-3p, FDR<0.10), particularly in infants with respiratory 

syncytial virus infection (FDRinteraction<0.05). These DEmiRNAs were associated with 16 

asthma-related clinical features (FDR<0.05)—e.g., infant eczema and corticosteroid use during 

hospitalization. These DEmiRNAs were also highly expressed in lung tissue and immune cells 
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(e.g., TH cells, neutrophils). Third, DEmiRNAs were negatively correlated with their mRNA 

targets (e.g., hsa-miR-324-3p/IL13), which were enriched in asthma-related pathways (FDR<0.05)

—e.g., toll-like receptor, PI3K-Akt, and FcɛR signaling pathways, and validated by cytokine data.

Conclusion: In a multicenter cohort of infants with severe bronchiolitis, we identified nasal 

miRNAs during illness that were associated with major asthma-related clinical features, immune 

response, and risk of asthma development.
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INTRODUCTION

Bronchiolitis is the leading cause of infant hospitalizations in the U.S., accounting for 

~110,000 hospitalizations (i.e., severe bronchiolitis) annually [1, 2]. Its chronic morbidity 

burden is also substantial. Of these infants with severe bronchiolitis, approximately 30% 

develop asthma in childhood [3–8]. Yet, the underlying mechanisms linking these two 

common conditions remain unclear, and thereby hinder efforts to prevent asthma in this 

high-risk population.

MicroRNAs (miRNAs) are small non-coding RNAs consisting of 15 to 22 nucleotides. 

MiRNAs post-transcriptionally regulate gene expression by directly binding to their mRNA 

targets. Dysregulated expression of miRNAs leads to aberrant immune function [9, 10] 

and respiratory outcomes [11, 12], such as prevalent asthma [13–22], asthma severity [23, 

24], asthma treatment (e.g., corticosteroids) response [25], and asthma remission [26]. Yet, 

these earlier reports [13, 15–25]—mostly based on a case-control design testing non-airway 

specimens from a small sample size of prevalent adult asthma—have precluded researchers 

from determining the role of airway miRNAs in incident asthma in childhood. Despite the 

clinical and research significance, no study has investigated miRNA signatures in infants, 

let alone high-risk infants (i.e., those with severe bronchiolitis), their post-transcriptional 

regulation of gene expression during the critical period of airway development, and their 

contribution to the development of asthma.

To address this knowledge gap in the literature, by applying a small RNA sequencing (RNA-

seq) approach to a large prospective cohort of infants with severe bronchiolitis , we aimed to 

identify nasal airway miRNAs that are associated with the development of childhood asthma 

and to examine their potential mechanisms linking bronchiolitis and asthma.

METHODS

Study Design, Setting, and Participants

The study design and analytic workflow are summarized in Figure 1. We analyzed data from 

a multicenter prospective cohort study of infants hospitalized for bronchiolitis—the 35th 

Multicenter Airway Research Collaboration (MARC-35) study [27, 28]. Details of the study 

design, setting, participants, data collection, testing, and statistical analysis may be found 

in the Supplementary Methods. At 17 medical centers across 14 U.S. states (Table E1), 
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MARC-35 enrolled infants (age <1 year) who were hospitalized with an attending physician 

diagnosis of bronchiolitis during three bronchiolitis seasons in 2011-2014. The diagnosis 

of bronchiolitis was made according to the American Academy of Pediatrics bronchiolitis 

guidelines, defined as an acute respiratory illness with a combination of rhinitis, cough, 

tachypnea, wheezing, crackles, or retraction [29]. We excluded infants with preexisting heart 

or lung disease, immunodeficiency, immunosuppression, or gestational age of <32 weeks. 

All infants were treated at the discretion of the treating physicians. Of 921 infants enrolled 

in the MARC-35 longitudinal cohort, the current study investigated 575 infants who have 

high-quality nasal small RNA-seq data (Figure E1). The institutional review board at each 

participating hospital approved the study with written informed consent obtained from the 

parent or guardian.

Data Collection

Clinical data (study participants’ demographic characteristics, and family, environmental, 

and medical history, and details of the acute illness) were collected via structured interview 

and chart reviews using a standardized protocol (28, 29). After the index hospitalization for 

bronchiolitis, trained interviewers began interviewing parents/legal guardians by telephone 

at 6-month intervals in addition to medical record review by physicians. All data were 

reviewed at the Emergency Medicine Network Coordinating Center at Massachusetts 

General Hospital (Boston, MA, USA) [30]. Nasal swab specimens were collected within 

24 hours of hospitalization using a standardized protocol [31, 32]. The details of the data 

collection and measurement methods are described in the Supplementary Methods.

Nasal Small RNA-seq Profiling (for miRNA)—The details of RNA extraction, RNA-

seq, and quality control are described in Supplementary Methods. Briefly, after total RNA 

extraction, we performed small RNA-seq using the PerkinElmer NEXTFLEX® small RNA-

seq v3 kit with Unique Dual Indexes (PerkinElmer, Waltham, MA) and sequenced on an 

Illumina NovaSeq6000 sequencer using an S2 50bp PE Flowcell (Illumina, San Diego, CA). 

We estimated miRNA detection and abundance using sMETASeq [33]. Fastq files underwent 

quality control in cutadapt [34] and collapse into unique reads. We mapped trimmed reads 

against human miRNA sequences from miRBase V22 [35]. We filtered out raw read counts 

of <15 [25, 36]. Lastly, we normalized the read count by R DESeq2 package [37] using 

default settings.

Nasopharyngeal RNA-seq Profiling (for mRNA)—The details of RNA-seq, quality 

control, and transcriptome profiling are described in our previous studies [38–40] and 

Supplementary Methods. Briefly, after total RNA extraction, DNase treatment, and rRNA 

reduction, we performed RNA-seq with Illumina NovaSeq6000 (Illumina, San Diego, CA). 

All RNA-seq samples had high sequence coverage after quality control. The transcript 

abundances were estimated with Salmon [41] using the human genome (hg38) and the 

mapping-based mode. A total of 194 infants had both nasal miRNA and nasopharyngeal 

mRNA data.

Nasal Cytokine Measurement—The details of cytokine measurement and quality 

control are described in Supplementary Methods. We measured the levels of 10 cytokines 
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(interferon [IFN]-γ, interleukin [IL]-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, 

tumor necrosis factor [TNF]-α) in the nasal swab specimens of infants with severe 

bronchiolitis, using multiplex the Meso Scale Discovery (MSD) electrochemiluminescent 

V-Plex multiplex immunoassay (Meso Scale Diagnostics, Rockville, MD), on the MESO 

QuickPlex SQ 120 system (Meso Scale Diagnostics). The samples with cytokine level less 

than lower limit of detection were removed. A maximum of 503 infants had both nasal 

miRNA and nasal cytokine data.

Outcome

The outcome of interest was the development of asthma by age 6 years. The definition 

of asthma was based on a commonly-used epidemiologic definition of asthma [30, 42]—

physician diagnosis of asthma by age 6 years, plus either asthma medication use (e.g., 

albuterol inhaler, inhaled corticosteroids, montelukast) or asthma-related symptoms in the 

preceding year.

Statistical Analysis

The analytic workflow is summarized in Figure 1. First, to investigate the relationship of the 

miRNAs with the risk of developing asthma, we performed miRNA differential expression 

analysis using the negative binomial generalized linear model from DESeq2 R package 

[37]. Based on a priori-defined hypothesis, we also examined the effect modification by 

the respiratory syncytial virus (RSV), rhinovirus (RV), RV-A, and RV-C infection on the 

risk of developing asthma. In the differential expression analysis, we adjusted for potential 

confounders (i.e., age, sex, number of previous breathing problems, and IgE sensitization) 

based on a priori knowledge and clinical plausibility [30, 39, 43, 44]. We corrected multiple 

testing using the Benjamini-Hochberg false discovery rate (FDR) method [45]. We defined 

differentially expressed miRNA (DEmiRNA) as those miRNA significantly associated with 

asthma development at an FDR<0.10.

Second, we examined the relationship of DEmiRNAs with asthma-related clinical variables 

[30, 39, 43, 44], including RSV, RSV-A, RSV-B, RV, RV-A, RV-B, RV-C, parental history of 

asthma and eczema, number of previous breathing problems, infant history of corticosteroids 

use, eczema, IgE sensitization, blood eosinophil count, need for positive pressure ventilation 

(PPV), and intensive care use (PPV use and/or intensive care unit adimission). To provide 

biological insights into the identified nasal DEmiRNAs, we investigated DEmiRNAs across 

15 asthma-related tissue types (e.g., adipocyte, lung, lymph nodes, muscle, pancreas, skin) 

[46] using the publicly available human miRNA TissueAtlas data [47]. We also examined 

DEmiRNAs across six immune cell types [B cell, cytotoxic T (TC) cell, helper T (TH) cell, 

monocyte, natural killer (NK) cell, and neutrophil cell] using publicly available single-cell 

small RNA-seq data from 162 healthy subjects [48]. We normalized the miRNA data using 

the variance stabilizing transformation approach implemented in DESeq2 [37].

Third, we identified the mRNAs targeted by DEmiRNAs using DIANA-microT-CDS [49] 

and conducted a gene-set enrichment analysis to investigate the enrichment of these 

targeted mRNA in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways using DIANA miRPath v.3.0 [50]. We also performed the 
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correlation analysis based on upper airway miRNA and mRNA data (Supplementary 

Methods) given that the main biological function of miRNAs is to degrade the target 

mRNAs. We constructed network based on negatively correlated (Spearman correlation 

coefficient<−0.10) miRNA-mRNA pairs and prior knowledge of identified immune-related 

pathways [13, 20, 24, 51–54]. Finally, we investigated the association of DEmiRNA with 

ten cytokines using the negative binomial generalized linear model from DESeq2 R package 

[37].

RESULTS

Of the 921 infants with severe bronchiolitis enrolled into the MARC-35 longitudinal cohort, 

the current study focused on 575 infants who had high quality nasal miRNA data. The 

analytic and non-analytic cohorts did not differ in patient characteristics (P≥0.05; Table E2), 

except for RSV and RV-B infection. Among the analytic cohort, the median age was 3 (IQR, 

2-6) months, 41% were female, 47% were non-Hispanic White, 28% were Hispanic, and 

22% were non-Hispanic Black. Subsequently, 27% developed asthma by age 6 years (Tables 

1 and E3). In addition, 76% of infants with RSV infection (vs. 87% with no RSV infection) 

and 28% with RV infection (vs. 16% with no RV infection) developed asthma. For miRNA 

profiling, a total of 2,652 human mature miRNAs were identified. Among these, 1,070 

miRNAs had raw read counts of more than 15 reads and were included in the subsequent 

analysis (Figure 2A).

Nasal miRNAs of Infant Bronchiolitis were Associated with Risk of Developing Asthma

A total of 23 DEmiRNAs were significantly associated with asthma risk (FDR<0.10), with 

18 DEmiRNAs being upregulated and 5 DEmiRNAs being downregulated (Figure 2B). Of 

these, hsa-miR-29a-3p was the most significantly associated with the asthma risk (log2 

fold change [FC]=1.44, FDR=5.47×10−15). In the examination of effect modification by 

virus, 22 of these DEmiRNA had a significant interaction with RSV infection on asthma 

risk (FDRinteraction<0.05). In the stratified analysis within infants with RSV infection, 15 

miRNAs were associated with a significantly higher risk of developing asthma (FDR<0.05; 

Figure 2C). Additionally, hsa-miR-22-3p had a significant interaction with RV infection 

on asthma risk (FDRinteraction<0.05). Among infants with RV infection, hsa-miR-22-3p 

was associated with a significantly higher risk of developing asthma (log2FC=1.98, 

FDR=5.94×10−6; Figure 2D). However, we did not observe a significant association between 

miRNAs and asthma development in RV-A or RV-C strata (Figure E2).

DEmiRNAs were Associated with Asthma-related Clinical Features, Tissue Types, and Cell 
Types

The DEmiRNAs were also associated with major asthma-related clinical features. For 

example, at the aggregated miRNA level, the DEmiRNAs and non-DEmiRNAs had a 

difference in the magnitude of association with RSV, RV-A, and RV-B (only 5 children) 

infection, infant history of eczema and corticosteroids use, serum total IgE level, PPV 

use, and intensive care use (Figure 3A). At the individual miRNA level, 18 DEmiRNAs 

were significantly associated with these clinical features (FDR<0.05). For example, hsa-

miR-29a-3p was positively associated with infant history of eczema and corticosteroid use, 
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and hsa-let-7b-5p was negatively associated with serum total IgE level (Figure 3B). In 

the miRNA tissue expression analysis, the DEmiRNAs had differential expression in lung, 

spleen, and bone marrow (all FDR<0.001) (Figure 4A). In the examination of the miRNA 

expression in immune cell types, the expression levels of DEmiRNAs were significantly 

higher in all immune cells (e.g., TH cells, neutrophils) than the non-DEmiRNAs (all 

FDR<0.001) (Figure 4B). Most of the DEmiRNAs were presented commonly in these 

immune cells (Figure 4C).

Identification of Biological Pathways and Network for Risk of Asthma Development

In the gene-set enrichment analysis by using the GO biological process gene set, 108 

pathways were differentially enriched (FDR<0.05; Table E4), including asthma-related 

pathways—e.g., Fc-epsilon receptor (FcɛR), toll-like receptor (TLR), and mitogen-activated 

protein kinase (MAPK) signaling pathways (Figure 5A). Additionally, in the analysis by 

using the KEGG gene set, 41 pathways were differentially enriched (FDR<0.05; Table E5), 

including phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) and MAPK signaling 

pathways (Figure 5B). The network analysis showed that negatively correlated miRNA-

mRNA pairs mapped to the identified immune-related pathways, such as hsa-miR-324-3p/

IL13 for FcɛR signaling, hsa-miR-29a-3p/STAT2 for PI3K-Akt signaling, and hsa-let-7b-5p/

PTPN22 for TLR signaling (Figure 5C). Finally, the DEmiRNAs were significantly 

associated with cytokines, such as hsa-miR-29a-3p/IFN-γ (log2FC=−1.05, FDR<0.05), and 

hsa-miR-324-3p/IL-13 (log2FC=−1.68, FDR<0.05) (Figure 5D).

DISCUSSION

By applying a small RNA-seq technique to a multicenter prospective cohort of infants 

with severe bronchiolitis, we identified nasal miRNAs, their potential contextual functions, 

and their longitudinal relationship with incident asthma. More specifically, we found 23 

miRNAs significantly associated with the risk of developing asthma—e.g., hsa-miR-22-3p 

with a higher risk of asthma in infants with RSV or RV infection. Furthermore, we also 

observed that these DEmiRNAs were associated with asthma-related clinical features, such 

as infant history of eczema and serum total IgE level. Moreover, by using the integrated 

miRNA and mRNA data, we found that infants who subsequently developed asthma had 

differentially-enriched pathways—e.g., TLR, PI3K-Akt and FcɛR signaling pathways. To 

the best of our knowledge, this is the first study that has demonstrated the potential role for 

nasal miRNAs in infants with severe bronchiolitis in the pathobiology of developing asthma.

Results in Context

Concordant with our findings, prior studies have suggested that miRNAs are implicated in 

asthma pathobiology [13, 15–26]. For example, studies have reported that several miRNAs 

(e.g., hsa-miR-125b) are associated with adult prevalent asthma and its inflammatory 

features (e.g., the quantity of eosinophils and neutrophils in blood) [13, 17, 19, 24]. 

Similarly, the literature has also shown that asthma-related miRNAs are involved in 

immune-related pathways, such as PI3K-Akt [13], MAPK [15, 52, 53], TLRs [20, 24], 

and TH17 [24]. For example, a recent single-center study of 62 adults with asthma reported 

that—by applying a microarray approach to sputum specimens—a miRNA network was 
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associated with increased neutrophilic airway inflammation in prevalent asthma, and the 

miRNAs are enriched for TLR signaling pathway [24]. Additionally, in a single-center case-

control study of 35 adults with severe asthma, Rupani et al. have reported that—by applying 

a PCR approach to bronchoalveolar lavage samples—upregulation of three miRNAs reduces 

TLR7 expression, which drives impaired innate immune responses to RV [20]. While these 

studies have collectively suggested the role of the miRNAs in prevalent asthma, to date, no 

study has evaluated the nasal miRNA in infants—let alone in those with severe bronchiolitis

—and their contribution to asthma risk. The current study—with a small RNA-seq approach 

applied to a large multicenter cohort—builds on previous reports and extends them by 

identifying the pathobiological role of nasal miRNAs in the development of asthma.

Potential Mechanisms

There are several potential mechanisms linking bronchiolitis—by miRNA post-

transcriptional regulation—to the subsequent development of asthma. First, the literature 

has indicated that miRNAs, as mediators between respiratory virus infections and asthma, 

modulate airway inflammatory processes [11, 55]. Infants with RV bronchiolitis are 

more likely to develop asthma as compared to infants with RSV bronchiolitis [56]. 

Growing evidence has shown that both RSV and RV infections are important triggers for 

perturbations in miRNA expression, which are actively involved in innate immune response, 

such as TLRs and NFκB signaling pathways [57–59]. The host innate immune response is 

the first line of defense against all pathogens (e.g., virus). Thornburg et al. have shown that 

RSV manipulates host cell gene expression through the regulation of miRNA (e.g., hsa-let-7 

families) expression related to the TLRs, NF-κB, or interferon (IFN) signaling pathways in 

human bronchial epithelial cells and monocyte-derived dendritic cells [60]. In addition, in 

RSV-induced airways inflammation, a population of IFN-γ secreting TC cells potentially 

attenuates pathogenic TH2 host response to the RSV G-protein [59]. Of note, our cytokine 

analysis idenfied that hsa-miR-29a-3p is negatively associated with IFN-γ. This result is 

consistent with a recent study showing that miRNA-29a-3p upregulation due to pulmonary 

microbial infection suppresses the immune response by inhibiting IFN-γ expression in 

T cells, and associated with a higher risk of active and latent pulmonary tuberculosis 

[61]. Furthermore, studies have reported that miR-22-3p is involved in regulation of asthma-

related immune mechanisms (e.g., IFN-γ, NACHT, LRR, and PYD domains-containing 

protein 3) in both human [15] and mouse [62].

Second, prior research has also showed that miRNAs are involved in the PI3K-Akt signaling 

pathway, which plays a role in cell proliferation and airway remodelling [63]. For example, 

Alexandrova et al., by profiling the miRNA expression in bronchial smooth muscle cells 

from 8 adults with asthma, found that these patients had specific miRNA signatures 

(e.g., hsa-miR-29a-3p) and that the targeted transcripts were involved in the PI3K-Akt 

signaling pathway, which plays a role in the airway smooth muscle (ASM) cell growth and 

proliferation [13]. Consistently, the current study has identified hsa-miR-29a-3p as the top 

DEmiRNA and had high expression in multiple immune cell types (e.g., TH cells). A recent 

study has also found a crosstalk between TH cells and ASM in pediatric obesity-related 

asthma [64]. Furthermore, an in vivo study using an ovalbumin (OVA)-induced mouse 

model of allergic asthma has found that mmu-miR-221 modulated airway remodelling via 
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PI3K-Akt signaling pathway [65]. Indeed, PI3K is required for growth factor-induced cell 

migration [66], and activation of PI3K can stimulate DNA synthesis and growth, which all 

promote airway remodelling [67].

Third, while the research has suggested the roles of miRNAs in airway inflammation and 

remodelling, the role of miRNAs in IgE-mediated asthma remains unclear. IgE-mediated 

asthma is characterized by the presence of allergen-specific IgE antibodies, which bind 

to high-affinity FcɛR [68]. Multiple studies have reported that RSV and RV infection 

can activate the FcɛR signaling pathway [69, 70], which can trigger allergic airway 

inflammation [71]. In the current study, among immune-related pathways, we identified 

FcɛR signaling pathway most significantly associated with the risk of asthma development.

Notwithstanding the complexity of these mechanisms, we believe that the identification of 

the longitudinal relationship between nasal miRNAs in infancy and childhood asthma is 

important. Of note, evidence has suggested the role of miRNAs in disease prevention, such 

as cancer [72]. Thus, our findings, in conjunction with the existent literature, should advance 

research into the development of miRNA-specific strategies for asthma prevention.

Limitations

Our study has several potential limitations. First, bronchiolitis involves inflammation of the 

lower airways, in addition to the upper airways. Although the current study used the miRNA 

data from nasal specimens, research has shown that upper airway specimens offer a reliable 

representation of inflammatory profiles in the lower airways [73]. Additionally, the use of 

upper airway specimens is practical because lower airway sampling (e.g., bronchoscopy) 

would be invasive in young infants. Second, the nasal specimens were obtained at a single 

time point. While longitudinal molecular data would also be informative, the study objective 

was to investigate the role of miRNA at the time of bronchiolitis in asthma development. 

Third, nasal specimens during respiratory infection might have been contaminated with 

blood immune cells. Accordingly, the miRNA profiles may have partially reflected those 

of these cells. Accordingly, it is likely that the miRNAs partially reflect the infiltration 

of blood immune cells. Fourth, our study does not have data on specific RSV genotype 

variants, while research has suggested different RSV genotype variants may be related 

with altered functions and/or immunogenicity, potentially leading to an impact on disease 

severity [74]. Fifth, it is possible that asthma diagnosis (by age 6 years) may have been 

misclassified and that some children are going to develop asthma at a later age. To address 

these points, the cohort is currently being followed up to age 9 years. Sixth, the current 

study does not have mechanistic experiments to validate the identified miRNA functions. 

Yet, our independent nasal cytokine data has partially validated the miRNA functions, which 

are consistent with the literature. This study derives well-calibrated hypotheses that facilitate 

future experiments. Seventh, our data are limited to investigating the effect modification 

of respiratory infection at infancy on miRNA and asthma development. It is possible that 

prenatal risk factors (e.g., vertical transmission) [75] may have affected the relationship 

between miRNA and asthma development. Eighth, we have used miRNA data of publicly 

available tissue and blood immune cells data from subjects without asthma to investigate 

the expression of nasal miRNAs from the current study. Although these results elucidate the 
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role of miRNAs in tissue and cell-specific manner, the interpretation of these results requires 

careful interpretation. Lastly, despite the study sample consisting of racially/ethnically- and 

geographically-diverse infants, our inferences must be cautiously generalized beyond infants 

with severe bronchiolitis. Nonetheless, our data remain directly relevant for the 110,000 

infants hospitalized yearly in the U.S [2].

Conclusions

In conclusion, by applying small RNA-seq approach to a multicenter cohort of infants with 

severe bronchiolitis, we found a complex interplay between nasal miRNA, virus, asthma risk 

factors, and their longitudinal relationship with asthma development. For example, RSV or 

RV infection modifies the effect of miRNAs on asthma development. Additionally, the data 

suggest that these miRNAs play key roles in mechanisms relating to asthma, such as innate 

immunity, airway remodelling, and IgE regulation. For clinicians, our findings provide an 

evidence base for the early identification of high-risk infants during a critical period of 

airway development—early infancy. For researchers, these observations should facilitate 1) 

further understanding of the interplay between virus and host, and their contribution to 

asthma; 2) further investigations into the development of miRNA-targeted strategies for 

asthma prevention [11] in infants with severe bronchiolitis—a population with substantial 

morbidity burden.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Take home message:

In infants with severe bronchiolitis, we found a complex interplay of nasal miRNA with 

virus, asthma risk factors, and their longitudinal relationship with asthma development, 

facilitating development of miRNA-targeted strategies for asthma prevention.
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Figure 1. Study design and analytic workflow
The analytical cohort consists of 575 infants hospitalized for bronchiolitis (severe 

bronchiolitis) in a multicenter prospective cohort study—the 35th Multicenter Airway 

Research Collaboration (MARC-35). Fastq files underwent quality control and collapse 

into unique reads. The trimmed reads were mapped against human miRNA sequences from 

miRBase V22. A total of 2652 human mature miRNAs were detected. Raw read counts of 

<15 were filtered out, leading to 1070 high-quality miRNAs for downstream analysis. In 

Aim 1, the association of 1070 miRNAs with the risk of developing asthma was examined. 
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Effect modification by respiratory syncytial virus (RSV) and rhinovirus (RV) infection on 

the miRNA-asthma relationship was also investigated. A total of 23 differentially expressed 

miRNAs (DEmiRNAs) were identified. In Aim 2, the association of DEmiRNAs with 

asthma-related clinical variables was determined. The between-tissue and -immune cell 

types expression of the DEmiRNAs were also examined. In Aim 3, the mRNAs targeted 

by DEmiRNAs were identified using DIANA-microT-CDS and the association of biological 

pathways with the asthma risk was examined by performing the pathway analyses. The 

DEmiRNA-mRNA target network was constructed based on negatively correlated pairs.
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Figure 2. Association of nasal airway miRNAs in infants with bronchiolitis with risk of 
developing asthma .
A. The plot included 1070 miRNAs after quality control and showed the genome-wide 

distribution of the number of miRNAs in each chromosome. B. The plot shows the 

association of the 23 DEmiRNAs in the nasal airways with asthma risk. The between-group 

differences in the expression level were tested by DESeq2 with the negative binomial 

generalized linear model adjusted for potential confounders, including age, sex, number of 

previous breathing problems, and IgE sensitization. C. The plot shows the RSV infection-

stratified analysis for the association of the 23 DEmiRNAs with the risk of developing 

asthma. The DESeq2 models adjusted for potential confounders, including age, sex, number 

of previous breathing problems, and IgE sensitization. D. The plot shows the RV infection-
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stratified analysis for the association of the 23 DEmiRNAs with the risk of developing 

asthma. The DESeq2 models adjusted for potential confounders, including age, sex, number 

of previous breathing problems, and IgE sensitization. Abbreviations: FDR, false discovery 

rate; RSV, respiratory syncytial virus; RV, rhinovirus.
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Figure 3. Association of nasal airway DEmiRNAs in infants with bronchiolitis with asthma-
related clinical variables.
A. Association between the DEmiRNAs or non-DEmiRNAs and that of 16 asthma-related 

clinical variables in infants with severe bronchiolitis. The red web denotes the average effect 

estimates of the aggregated DEmiRNAs for the 16 clinical variables. The green web denotes 

the average effect estimates of the aggregated non-DEmiRNAs for the 16 clinical variables. 

B. The relationship of the 23 DEmiRNAs with the 16 asthma-related clinical variables was 

examined by the DESeq2 negative binomial generalized linear model adjusting for age and 

sex. The blue-to-red gradient in the heatmap denotes the magnitude and direction of the 

associations. The size of the dot denotes the magnitude of the associations. Abbreviations: 

FDR, false discovery rate; IgE, immunoglobulin E; PPV, positive pressure ventilation; 

RSV, respiratory syncytial virus; RSV-A, respiratory syncytial virus A; RSV-B, respiratory 

syncytial virus B; RV, rhinovirus; RV-A, rhinovirus A; RV-B, rhinovirus B; RV-C, rhinovirus 

C.
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Figure 4. Expression of nasal airway DEmiRNAs in infants with bronchiolitis with tissue and 
immune cell types.
A. Average normalized expression level of the aggregated DEmiRNAs or non-DEmiRNAs 

in 15 asthma-related tissues. The between-group differences in the expression level were 

tested by the Wilcoxon rank-sum test. The between-group differences for all tissues 

were significant (FDR<0.001). B. Average normalized expression level of the aggregated 

DEmiRNAs or non-DEmiRNAs in six blood immune cell types, including B cell, cytotoxic 

T cell, helper T cell, monocyte, natural killer cell, and neutrophil cell. The between-group 
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differences in the expression level were tested by the Wilcoxon rank-sum test. The between-

group differences for all cell types were significant (FDR<0.001). C. Normalized expression 

level of the 17 DEmiRNAs in six blood immune cell types. A asterisk denotes the presence 

of the miRNAs in the cell types. Only the miRNAs which were detected (expression value 

> 5) in at least 85% of the samples in at least one of the blood cell type were considered as 

being present. Abbreviation: NK, natural killer.
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Figure 5. Nasal airway DEmiRNAs pathways and risk of developing asthma
A. Functional enrichment analysis using GO biological process gene sets We identified 108 

differentially-enriched pathways (FDR<0.05) associated with the asthma risk. Of these, we 

selected immune-related pathways to visualize the plot. B. Functional enrichment analysis 

using KEGG gene sets We identified 41 differentially-enriched pathways (FDR<0.05) 

associated with the asthma risk. Of these, we selected non cancer-related pathways to 

visualize the plot. C. DEmiRNA-mRNA target network A rectangle denotes miRNA, a 

circle denotes mRNA target. mRNA targets that are mapped within major immune-related 

pathways are highlighted in various colors. In this network, we only included mRNA targets 
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that are negatively correlated (Spearman correlation coefficient<−0.1) with DEmiRNAs 

and have immune-related functions based on prior knowledge. D. Association of the 23 

DEmiRNAs with the ten nasal cytokines. The blue-to-red gradient in the heatmap denotes 

the magnitude and direction of the associations. Abbreviations: FDR, false discovery 

rate; IFN, Interferon; IL, interleukin; MAPK, Mitogen-activated protein kinase; PI3K-Akt, 

phosphatidylinositol 3‑kinase-protein kinase B; TLR, Toll-like receptor; TNF, Tumor 

necrosis factor.
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Table 1.

Baseline characteristics and clinical course of 575 infants hospitalized for bronchiolitis

Characteristics Overall (n=575)

Demographics

Age (month), median (IQR) 3 (2–6)

Female sex 234 (41)

Race/ethnicity

   Non-Hispanic White 268 (47)

   Non-Hispanic Black 126 (22)

   Hispanic 162 (28)

   Other or unknown 19 (3)

Prematurity (32–36.9 weeks) 96 (17)

Birth weight (kg), median (IQR) 3.29 (2.90–3.60)

Mode of birth (cesarean delivery) 194 (34)

Previous breathing problems before the index hospitalization*

   0 469 (82)

   1 87 (15)

   2 19 (3)

Previous ICU admission 7 (1)

History of eczema 85 (15)

Lifetime antibiotic use 170 (30)

Ever attended daycare 143 (25)

Cigarette smoke exposure at home 87 (15)

Maternal smoking during pregnancy 87 (15)

Parental history of asthma 186 (32)

Parental history of eczema 110 (19)

Clinical presentation

Weight at presentation (kg), median (IQR) 6.07 (4.70–7.60)

Respiratory rate at presentation (per minute), median (IQR) 48 (40–60)

Oxygen saturation at presentation

   <90% 49 (9)

   90–93% 87 (16)

   ≥94% 427 (76)

Blood eosinophilia (≥4%) 52 (10)

IgE sensitization (%) 125 (22)

Length of hospitalization (day), median (IQR) 2 (1–3)

Corticosteroid use during hospitalization 71 (12)

Respiratory virus

RSV infection 485 (84)

   RSV-A 351 (61)

   RSV-B 137 (24)

RV infection 110 (19)
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Characteristics Overall (n=575)

   RV-A 50 (9)

   RV-B 5 (1)

   RV-C 53 (9)

Chronic clinical outcome

   Childhood asthma† 156 (27)

Abbreviations: ICU, intensive care unit; IgE, immunoglobulin E; IQR, interquartile range; RSV, respiratory syncytial virus; RV, rhinovirus.

Data are no. (%) of infants unless otherwise indicated. Percentages may not equal 100, because of rounding and missingness.

*
Defined as an infant having a cough that wakes him or her at night or causes emesis, or when the child has wheezing or shortness of breath 

without cough.

†
Asthma was defined as physician-diagnosis of asthma by age 6 years, plus either asthma medication use (e.g., albuterol inhaler, inhaled 

corticosteroids, montelukast) or asthma-related symptoms in the preceding year.
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