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Abstract

Pain is a complex experience involving sensory, emotional, and cognitive aspects, and mul-

tiple networks manage its processing in the brain. Examining how pain transforms into a

behavioral response can shed light on the networks’ relationships and facilitate interventions

to treat chronic pain. However, studies using high spatial and temporal resolution methods

to investigate the neural encoding of pain and its psychophysical correlates have been lim-

ited. We recorded from intracranial stereo-EEG (sEEG) electrodes implanted in sixteen dif-

ferent brain regions of twenty patients who underwent psychophysical pain testing

consisting of a tonic thermal stimulus to the hand. Broadband high-frequency local field

potential amplitude (HFA; 70–150 Hz) was isolated to investigate the relationship between

the ongoing neural activity and the resulting psychophysical pain evaluations. Two different

generalized linear mixed-effects models (GLME) were employed to assess the neural repre-

sentations underlying binary and graded pain psychophysics. The first model examined the

relationship between HFA and whether the patient responded "yes" or "no" to whether the

trial was painful. The second model investigated the relationship between HFA and how

painful the stimulus was rated on a visual analog scale. GLMEs revealed that HFA in the

inferior temporal gyrus (ITG), superior frontal gyrus (SFG), and superior temporal gyrus

(STG) predicted painful responses at stimulus onset. An increase in HFA in the orbitofrontal

cortex (OFC), SFG, and striatum predicted pain responses at stimulus offset. Numerous

regions, including the anterior cingulate cortex, hippocampus, IFG, MTG, OFC, and stria-

tum, predicted the pain rating at stimulus onset. However, only the amygdala and fusiform

gyrus predicted increased pain ratings at stimulus offset. We characterized the spatiotem-

poral representations of binary and graded painful responses during tonic pain stimuli. Our

study provides evidence from intracranial recordings that the neural encoding of psycho-

physical pain changes over time during a tonic thermal stimulus, with different brain regions

being predictive of pain at the beginning and end of the stimulus.
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Introduction

Pain is a complex and multi-faceted experience encompassing sensory, emotional, and cogni-

tive aspects [1]. The ability to feel pain is a crucial defense mechanism managed by several pro-

cessing networks. Unlike other sensory modalities, pain does not appear to have a single

primary brain region responsible for initial processing, as shown by multiple studies [2–5].

When pain persists without an apparent cause, it becomes a chronic condition that can devas-

tate one’s quality of life. Pain arising without a noxious stimulus suggests a disruption in the

connection between the stimulus and psychophysical correlates. Understanding this interac-

tion could offer valuable information for managing chronic pain.

Much of what is known about pain processing has resulted from studies that induce pain in

healthy volunteers using brief, millisecond-long stimuli with infrared lasers [6–8]. Such work

has revealed that pain networks comprise regions such as the somatosensory, insular, and pre-

frontal cortices [9–13]. Noninvasive imaging studies inducing tonic pain with thermodes sug-

gest that ongoing pain activates similar brain regions as brief experimental stimuli [14–16].

However, it’s thought that experimental tonic pain also involves the medial prefrontal cortex

and related projections, such as the anterior cingulate cortex [17], nucleus accumbens [18],

hippocampus, periaqueductal gray, globus pallidus, and subthalamic nucleus [19–21]. The

involvement of these regions during experimental tonic pain may indicate a shift from sensory

to emotional and cognitive encoding-based processes [1]. The spatiotemporal dynamics of

these emotional and cognitive encoding-based processes are crucial in understanding how

pain is shaped.

We sought to understand the psychological aspects of painful experiences with high spatio-

temporal resolution recordings of neuronal population activity in human participants and sta-

tistical modeling of two types of psychophysical ratings. We hypothesized that regions

involved in somatosensation and perception would have increased gamma activity if the sub-

ject later evaluated that stimulus as painful. At the end of the stimulus, we hypothesized that

high gamma activity would dissipate from regions involved at the onset of the trial and instead

would develop in regions involved in cognitive-emotional processing. Our results revealed

that the inferior, middle, and superior temporal gyrus (ITG, MTG, STG) predicted binary and

numerical psychophysical correlates. Other regions, such as the cingulate cortex, orbitofrontal,

hippocampus, and amygdala, had HFA amplitudes associated with higher numerical ratings of

pain. We describe the utility of understanding how these regions interact and propose future

studies of interest.

Methods and materials

Patient selection

Patients undergoing routine intracranial monitoring with sEEG for localization of epileptic

foci were screened for inclusion in the study between 2020 and 2022. A total of 20 patients (12

female, 8 male) met the inclusion criteria and were included in the final data analysis. The

sample size was determined from an a priori power analysis with an assumed effect size

(f = 0.625), type I error probability (α = 0.05), and power threshold (0.80). The age range of the

patient population was 21–66 years (mean 38 ± 10 years), and all patients had a diagnosis of

drug-resistant epilepsy as determined by a multidisciplinary conference at our institution. All

patients underwent sEEG implantation for clinical purposes. Clinical data was used to deter-

mine likely seizure onset zones to help guide clinical treatment. Seven patients included in the

study had onset zones within the left hemisphere. Four were within the left hippocampal

region, one within the temporal pole, one in the orbitofrontal region, and one broadly in the
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mesial temporal structures. Four patients had onset zones within the right hemisphere, includ-

ing two patients with a mesial temporal onset, one within the central median nucleus of the

thalamus/pars opercularis area, and one within the right insula. Six patients had either broad

ictal onset, multifocal epileptic zones, or bitemporal lobe epileptogenicity. The onset zone was

inconclusive for three patients. Several steps were taken to avoid gathering data with epilepti-

form activity. Patients were not asked to participate if they had a clinical seizure or seizure-res-

cue medication, such as a benzodiazepine, within several hours. Additional signal processing

steps were taken to avoid including data with potential seizure-like activity and are outlined in

the preprocessing section.

Participation in the research study described was obtained through informed written con-

sent under a protocol approved (IRB_00122256) by the University of Utah Institutional

Review Board. To be eligible for the study, participants must have been 18 years of age or

older, able to give informed consent, without any nerve damage in their arms or hands, able to

communicate during the task, and not have any serious medical conditions such as bleeding

disorders or cancer. Patients were excluded if their seizures interfered with data collection.

Psychophysical pain task

Our research group recently developed and fabricated a thermoelectric device compatible with

intracranial electrodes. The device and integrated software have been validated as a psycho-

physical pain task in healthy human subjects [22]. The task consists of four main events

(Fig 1A), which occur in a single trial: 1) The participant places their hand on the device for 10

seconds, 2) the participant removes their hand from the device, 3) the participant responds to

whether the trial was perceived as painful, and 4) the participant rates the perceived pain and

heat intensity on a scale of 0–10. Each of these events is time-locked to the ongoing intracranial

recording. The start and end of each trial are time-locked using a capacitive touch sensor

under the device’s surface. The patient used their dominant hand unless an intravenous access

site was on that hand.

The thermoelectric device also includes built-in software that implements a psychophysical

algorithm to estimate pain thresholds (QUEST Psychtoolbox, [23]). The algorithm incorpo-

rates the participant’s responses after each trial. This enables adaptation to the most likely pain

threshold temperature. Participants completed at least 20 trials to allow adequate sampling for

signal processing. The full description of the psychophysical pain task and its capability is

reported elsewhere [22].

Electrode localization

The study utilized electrodes designed for sEEG. The locations of the electrodes were identified

using each patient’s structural magnetic resonance imaging coregistered with postoperative

high-resolution computed tomography using the LeGUI software package (https://github.

com/Rolston-Lab/LeGUI) [24]. The Brainnetome atlas was used within LeGUI to label the

anatomical region based on the electrode locations (http://atlas.brainnetome.org) [25]. The

electrode labels were then converted to regional gyri by only keeping the first part of the alpha-

numerical atlas label. The distinction between the right and left hemispheres was also removed.

For example, the Brainnetome label "Amyg_L_2_1" was collapsed to "Amyg." Electrode loca-

tions were not included if they were within white matter or if at least three unique patients did

not have electrodes in the same region.

Sixteen total areas were represented by 3 to 20 unique patients (Fig 1B). The number of

patients and the average number of electrodes representing each brain area is shown in

Table 1. The electrodes sampling the 16 brain regions were visualized in Montreal Neurological
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Fig 1. Psychophysical task paradigm and intracranial recording locations. (A) Pain stimuli of varying intensity were applied to the

hand’s palmar surface in patients with intracranial electrodes. The intensity of the stimulus was adjusted in each trial. One trial

constituted having the hand on the stimulus for 10 seconds (top left). The patient removed their hand from the device (top right). After

removing their hand, the patient responded to the question, "Was that painful?" on the touchscreen monitor (bottom left). After

answering "yes" or "no," the patient filled out how painful, hot, or cold the stimulus felt on a scale of 0–10 (bottom right). After

submitting their answers, the stimulus was adjusted, and the sequence was repeated. (B) A wide array of neural structures were sampled.

Electrode locations for all 20 patients are shown according to the coordinates in MNI space. We analyzed electrodes within a known

gray matter location of the Brainnetome Atlas. The electrode location also had at least three unique patients representing it within the

GLME models. Electrode locations were colored according to the region of interest. While this figure shows electrode locations as right

and left, we did not distinguish lateralization within the analysis.

https://doi.org/10.1371/journal.pone.0292808.g001
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Institute (MNI) space using NeuroMArVL (https://github.com/mangstad/neuromarvl, where

cortical reconstruction and volumetric segmentation of the MNI space were performed with

the FreeSurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/) [26].

Data collection and preprocessing

Neurophysiological data were recorded using a 128-channel data acquisition system (Neuro-

Port, Blackrock Microsystems, Salt Lake City, UT). Recorded data were bandpass filtered

online at 0.3–250 Hz and sampled at 1 kHz. Reference channels were chosen for each patient

consisting of a single intracranial depth electrode contact located in the white matter without

artifact or epileptiform activity. The reference electrode was selected after electrode location

labeling. An intracranial reference in white matter was chosen based on the improved signal

quality over a scalp or skin reference.

Intracranial recordings were referenced using the common median, which is more robust

to large amplitude transient events than the common average reference [27]. Data were seg-

mented into epochs of -1000 to 1000 ms to facilitate analysis relative to specific trial events.

These events included: 1) initiation of stimulus delivery upon participant’s hand placement on

the device and 2) removal of the participant’s hand from the device. After removing their hand

from the device, participants responded via a desktop touchscreen to whether the stimulus was

painful. Participants subsequently provided a numerical rating of perceived pain intensity on a

scale of 0–10 (visual analog scale, VAS), which was not time-locked to the intracranial record-

ings. Both pain evaluation metrics were utilized as response variables in mixed-effects

modeling.

Epochs with 60-Hz noise>100 μV2/Hz, transients>300 μV/ms, variance <1 μV2 and volt-

ages equal to the amplifier saturation voltage (±6553 μV) were identified as artifacts and

removed. Epileptiform discharges/noise spikes were identified as outliers if the epoch con-

tained a value that was more than three median absolute deviations from the median.

Table 1. Brain regions sampled across twenty patients.

region of interest unique patients unique electrode contacts mean electrodes per patient ± standard deviation

Amy, amygdala 11 44 4.0 ± 2.3

CG, cingulate cortex 20 51 2.6 ± 1.7

FuG, fusiform gyrus 9 16 1.8 ± 0.8

Hipp, hippocampus 18 115 6.4 ± 4.3

IFG, inferior frontal gyrus (ventrolateral prefrontal cortext) 17 94 5.5 ± 3.5

INS, insular cortex 12 30 2.5 ± 2.1

ITG, inferior temporal gyrus 6 19 3.2 ± 1.6

MFG, middle frontal gyrus (dorsolateral prefrontal cortex) 17 116 6.8 ± 3.8

MTG, middle temporal gyrus 19 140 7.4 ± 3.7

OFC, orbitofrontal cortex 18 190 10.6 ± 8.1

PrG, precentral gyrus 3 15 5.0 ± 1.0

SFG, superior frontal gyrus 13 32 2.5 ± 1.6

STG, superior temporal gyrus 11 36 3.3 ± 3.8

Str, striatum 10 41 4.1 ± 2.4

Tha, thalamus 5 19 3.8 ± 1.1

pSTS, posterior superior temporal sulcus 3 9 3.0 ± 2.6

The unique Brainnetome regions that were sampled, along with the number of unique patients that had electrodes in these regions is shown. The total number of unique

contacts in these regions is also described.

https://doi.org/10.1371/journal.pone.0292808.t001
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Channels were also visually inspected for artifacts after this automated analysis. While it is pos-

sible that data from a seizure onset zone or brain region with epileptiform activity was

included, it is very unlikely as the electrode contact recording this activity would have likely

been excluded included in our analysis. Trials containing such activity were removed per the

method described and if there were not enough trials with non-epileptiform activity for a rep-

resentative electrode, then it was removed from the analysis. Signals were downsampled to 500

Hz for subsequent analyses.

sEEG recordings allow evaluation of local neural activation through changes in amplitude

within the broadband high-gamma frequency range (HFA; 70–150 Hz) in the recorded local

field potential (LFP) [28–30]. HFA is highly correlated with both blood-oxygen-level-depen-

dent fMRI and population firing rates. It is useful for bridging the gap between human neuro-

imaging results and findings from nonhuman primate electrophysiology studies [31]. HFA

was isolated through bandpass filtering the LFP between 70–150 Hz using a 4th-order zero-

phase Butterworth filter. The absolute value of the Hilbert transform was applied to isolate the

amplitude of the HFA component. The signal was smoothed using a moving average filter

with a 300 ms fixed window. The epochs for each channel were normalized against baseline

activity, using the mean and standard deviation from -3 to -2 s relative to the trial event onset.

The time-locked epochs were z-scored using the mean and standard deviation to represent the

relevant event being modeled.

Experimental design and statistical analyses

To investigate the relationship between HFA and painful experience, we used sliding-window

generalized linear mixed-effects (GLME) models. Trials from all patients were separated by

brain region (see Electrodes for brain region labeling). We focused our analyses on the first

and last seconds when the hand was exposed to the stimulus. We also evaluated the second

after the hand was removed, right before they registered their binary choice. We chose a time

window of 500 ms with a 250 ms overlapping sliding window to capture the likely physiologi-

cal HFA of painful stimuli [4].

Two different types of GLME models were employed. The first model examined the rela-

tionship between HFA and whether the patient responded "yes" or "no" to whether the trial

was painful (binary response). The fixed effect in this model was the mean HFA amplitude in

one of the 16 brain regions during the 500 ms window, while the random effects were trial

temperature and patient identity. A binomial distribution was used because the response vari-

able was binary. The Wilkinson notation for this model was:

y � Aþ ðAjBÞ þ ðAjCÞ ð1Þ

In Eq (1), A represents the HFA amplitude for the particular brain region, B was the trial

temperature on the thermoelectric device, and C was the patient identity. A random intercept

and slope model was specified to account for variation in the fixed effect across subjects and

temperature.

The second model evaluated the relationship between HFA and the numerical pain rating

on a scale from 0 to 10. As in the first model, the fixed effect was the mean HFA amplitude in

one of the 16 brain regions during a 500 ms window. As previously mentioned, the random

effects were trial temperature and patient identity. This response variable was a numerical pain

value between 0 and 10.

Statistical significance for each model was determined by a permutation test, where the

model was re-evaluated 1,000 times with patients’ responses randomly permuted. The 95%

range of the pseudo-t-statistics was used to determine the bounds of t-statistics associated with
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randomness. The true model was considered significant if the real t-statistic did not fall within

these bounds. For the significantly predictive windows, an observed probability, P, was deter-

mined by adding the number of pseudo-t-statistics greater than the real t-statistic, multiplying

by two to account for the two-sided distribution, and then dividing by the 1000 total observa-

tions. The smallest possible P-value was�0.002. Heatmaps of the real t-statistics were gener-

ated for each brain region and time window to visualize the models that significantly predicted

the response variable.

Evaluating model accuracy and predictions

We evaluated the accuracy of statistical models to predict the relationship between high-fre-

quency activity (HFA) and pain response. The accuracy of the models was evaluated by com-

paring the real and predicted (fitted conditional) responses for each GLME. The error

percentage was calculated as the absolute difference between the real and predicted responses

that were most likely not painful, divided by the total number of trials and multiplied by 100.

A lower error percentage indicates a more accurate model. We made scatterplots of the fitted

conditional VAS responses versus the real VAS responses for the brain regions to visualize the

model’s accuracy.

Lastly, we evaluated the fixed-effects coefficients for all GLME models that predicted either

the binary or VAS pain response for at least a one-time window. The coefficients were evalu-

ated to understand how the response variable would change given a change in the mean z-

scored HFA by one unit.

Code accessibility

Code used for preprocessing and analyses is available upon request.

Results

We utilized intracranial recordings to analyze changes in HFA associated with thermal pain

perception across a distributed brain network. GLME models examined the relationship

between HFA changes and self-reported pain. Results showed significant changes in HFA

amplitude in multiple brain regions, including the prefrontal cortex, lateral temporal cortex,

and others, during the time windows surrounding the four trial events of the task.

Relationship between broadband gamma and the binary pain response

We first evaluated the mean HFA amplitude during the first second the subjects’ hand was on

the device (Fig 2C, "first second"). We found that the mean HFA amplitude in the ITG, supe-

rior frontal gyrus (SFG), and STG was significantly higher when subjects responded that the

stimulus was painful (response = "yes"). An example of how the z-scored mean HFA for the

"yes" responses was different from the "no" responses is shown in Fig 2A. In this instance, the

mean HFA amplitude in the STG for the "yes" responses had a similar shape to the "no"

responses. However, the "yes" maximum amplitude was greater than the "no" responses at the

onset of the stimulus.

Subjects held their hand in place on the surface of the thermoelectric device for 10 seconds

before removing it. We assessed which brain regions predicted the binary response at the end

of the stimulus compared to the start by looking at the average HFA amplitude when subjects

took their hand off the device (Fig 2C, "last second"). The results showed that increased HFA

in the orbitofrontal cortex (OFC) predicted "yes" responses after hand removal from the

device. The SFG and the striatum also predicted this response at different time windows. An
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Fig 2. Relationship between HFA and the psychophysical evaluation of pain. (A) The mean "yes" and "no" z-scored

mean HFA during the first second of the trial within the superior temporal gyrus showed differential activity. The

predictive time window from the heatmap is shaded in grey. (B) At the end of the trial, there is still a time window

where the HFA is predictive of the proportion of "yes" responses. However, the signal is different in shape and

amplitude than at the onset of the stimulus. (C) Heatmap coloring represents the real t-statistics for each brain region
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increase in HFA in the STG predicted "no" responses. While the HFA associated with "yes"

responses was mostly higher in amplitude than "no" responses, it should be noted that visualiz-

ing the z-scored mean HFA across time, as in Fig 2A and 2B, does not account for interaction

variables, such as temperature and patient identification.

We calculated an error metric for each brain region to evaluate the accuracy of each model’s

prediction. The metric was the difference between the actual response and the response pre-

dicted by the model, with a lower error indicating a more accurate model. We only reported

the accuracy for the predictive time windows from the analysis in Fig 2C. The model of the

SFG was the most accurate at the start of the stimulus (Fig 3A). The STG had a slightly higher

error. The STG was less accurate during the first 0 to 500 ms than the ITG. The STG was the

least accurate of all models during the first second of the stimulus. The striatum was the least

accurate when subjects removed their hand from the device but slightly less accurate than the

STG. Over time, the accuracy of the STG improved, but the error of the striatum increased.

The lowest error was found in the SFG, while the highest was in the striatum.

Lastly, we evaluated the relationship between the HFA and the binary response variables by

looking at the estimated coefficient of the HFA models. This coefficient represented how

much the response ("yes" or "no") variable changed when the HFA changed by one unit

(Fig 4A). The ITG had the largest coefficient in the first 500 ms of the stimulus, with a value of

0.12, which means that one unit increase in the HFA would result in a 12% increase in the pro-

portion of "yes" responses. The SFG had the next biggest coefficient, and the superior temporal

gyrus had the smallest coefficient.

In the last second of the stimulus, the model coefficient for the SFG remained stable. How-

ever, the coefficient peaked right when the hand was taken off the device. The STG coefficient

was negative throughout the trial. In contrast, it was slightly positive during the first second of

the stimulus. The coefficient for the striatum was highest at the end of the stimulus and

remained slightly higher than the SFG coefficient. During the final time window, the OFC had

the largest model coefficient. At the trial onset, the highest overall coefficient for the mixed-

and the overlapping sliding window for the binary response. Each row in the heatmap represents one of the sixteen

brain regions analyzed. Each column represents one of the overlapping 500 ms windows that were analyzed. We

outlined the region with a black box if the real t-statistic was significant (see Statistical Analysis). The dotted vertical

lines represent the onset and end of the trial. The SFG was predictive at the onset of the trial when the hand was

initially on the device (-250:250 ms, P = 0.006). The STG was also significant at the beginning of the stimulus until 750

ms (-250:-250 ms, P = 0.006; 0–500 ms, P = 0.02; 250–750 ms, P = 0.004). The ITG was significant from 0:500 ms

(P = 0.034). When the hand was taken off, HFA increased in the OFC 500 to 1000 ms after hand removal from the

device (P = 0.034). The SFG (0:500 ms, P = 0.004) and the striatum (-250:500 ms, P = 0.028; 0:500 ms, P = 0.016) also

predicted this response but at different time windows. An increase in HFA in the STG predicted "no" responses

(-250:250 ms, P = 0.04; 0:500 ms, P = 0.02; 500:1000 ms, P = 0.05). (D) The lower and upper third of the VAS ratings

for all trials in the MTG were determined. The VAS values in the lower third were classified as "low VAS." The VAS

ratings between one-third and two-thirds were classified as "moderate VAS." All ratings greater than the upper third

were considered "high VAS." The corresponding z-scored mean HFA for the three VAS categories demonstrates the

HFA resulting in specific VAS responses. The high VAS scores have the largest HFA amplitude. (E) Similar to Fig 2D,

but for the IFG. The mean HFA for all three groups seems relatively similar until 250 ms, where the HFA associated

with the moderate VAS remains bigger, but the high VAS and low VAS values taper off. (F) Heatmap coloring

represents the GLME model results for determining whether HFA predicted the VAS response. Several unique regions

in the first second of the stimulus included the cingulate gyrus (0:500 ms, P = 0.044; 500:1000 ms, P = 0.03),

hippocampus (-250:250 ms, P = 0.048; 0:500 ms, P = 0.0240), IFG (500:1000 ms, P = 0.032), MTG (-250:250 ms,

P = 0.006; 0:500 ms, P�0.002), OFC (-250:250 ms, P = 0.044), and striatum (0:500 ms, P = 0.028). The SFG (-250:250

ms, P = 0.02; 500:1000 ms, P = 0.016) and the STG (-250:250 ms, P�0.002; 0:500 ms, P�0.002) were predictive in both

models. Two areas demonstrated a relationship at the beginning and right after the stimulus—the IFG (250:750 ms,

P = 0.008; 500:100 ms, P = 0.006) and the STG 500:1000 ms (P = 0.022). The amygdala was involved in the time

window of -250:250 ms (P = 0.024), and the fusiform gyrus was involved in three-time windows (-750:-250 ms,

P = 0.024; -500:0 ms, P = 0.014; -250:250 ms, P�0.002).

https://doi.org/10.1371/journal.pone.0292808.g002
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effect model with the binary response variable was from the striatum. The second highest was

from the SFG from 0:500 ms relative to the end of the stimulus.

Relationship between broadband gamma and the numerical rating of pain

We used mixed-effects models to study the relationship between the z-scored mean high-fre-

quency activity (HFA) amplitude and the numerical pain ratings the subjects gave in response

to the stimulus. The models were similar to the one used to evaluate the relationship between

HFA and the binary pain response. However, in this case, the response variable was the

numerical pain score participants assigned to each trial. During the first second of the stimu-

lus, when each participant’s hand was on the device, we found that several brain areas had a

significant relationship between HFA amplitude and the subjects’ pain rating (Fig 2F). The t-

statistic was positive for all the predictive regions, meaning that the z-scored mean HFA ampli-

tudes were associated with increased pain ratings on the VAS.

Several regions uniquely predicted VAS response in the first second of the stimulus, includ-

ing the cingulate gyrus, hippocampus, inferior frontal gyrus (IFG), MTG (Fig 2D), OFC, and

striatum. The SFG and the STG were also predictive in the first second of the stimulus. Two

cortical areas demonstrated a relationship between the mean HFA amplitude and pain ratings

at the beginning and right after the stimulus—the IFG (Fig 2E) and the STG. However, many

Fig 3. Assessing goodness-of-fit and fitted conditional responses of predictive GLME models. (A) The absolute difference between the real and fitted

conditional responses gave another metric for evaluating how well the model represented the binary responses. The SFG had the lowest error at the onset of the

stimulus and the end of the stimulus. (B) The fitted conditional responses versus the real VAS responses for the MTG during the 0:500 ms window show a

proportional relationship. Not many real VAS responses were greater than five. (C) The fitted conditional responses versus the real VAS responses for the IFG

during the 250:750 ms window show a proportional relationship.

https://doi.org/10.1371/journal.pone.0292808.g003
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Fig 4. Model coefficient estimates predict change in psychophysical pain evaluation given HFA. (A) The estimates for each time window and predictive

brain region are shown. The square markers represent the time window that was predictive from the heatmaps in Fig 2C. The STG had the smallest coefficient

of 0.02, which means that a small increase in the HFA would lead to a 2% increase in the proportion of "yes" responses. The SFG had a slightly larger coefficient

of 0.04 at the beginning of the trial (-250:250 ms). The coefficient for the STG increased slightly to 0.03. The largest coefficient was observed in the ITG from

0:500 ms (0.12). At the end of the stimulus, the SFG coefficient peaked right when the hand was taken off the device (0.19, 0:500 ms). The STG coefficient was

negative throughout the trial, although slightly positive during the first second of the stimulus. The coefficient for the striatum was highest when the hand was

removed from the device (0.31). It remained slightly higher than the coefficient for the SFG during this time. The OFC had the largest model coefficient at 0.16

during the final time window. The highest overall coefficient for the mixed-effect model with the binary response variable was from the striatum at -250:250 ms

relative to the end of the stimulus (0.31). The second highest was from the SFG from 0:500 ms relative to the end of the stimulus (0.19). (B) Model coefficients

when VAS was the response variable were relatively similar between 0 and 0.1 during the onset. However, the striatum coefficient was much larger. During the

first second of the stimulus, the biggest to smallest model coefficients were striatum (0.25), SFG (0.15), hippocampus (0.087), MTG (0.061), OFC (0.054), STG

(0.052), IFG (0.04), and the cingulate gyrus (0.035). The hippocampus, STG, MTG, and cingulate gyrus had increased coefficients in the first second. The

coefficient for the SFG decreased over time. Although many regions had low coefficients (0.1), none were negative, which means increased HFA is linked to
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of the same brain regions were not involved when the stimulus ended. The amygdala was

uniquely involved in the relationship between HFA and pain rating. Similarly, the fusiform

gyrus was involved in three-time windows.

We tested the accuracy of our model by looking at the predicted and actual pain ratings on

a scatter plot. As the pain stimulus was mild, most pain ratings were between 0 and 4, as

shown in Fig 3B and 3C. When the real pain rating was around one, the predicted response

was around one. However, when the actual pain rating was two, the predicted response seemed

lower than two. This relationship suggests that the model may be under-predicting the pain

score, but it could also be due to the limited number of higher real pain ratings.

To see how the HFA amplitude affects future predictions of pain, we looked at the model

coefficients for each predictive region (Fig 4B). During the first second of the stimulus, the

biggest to smallest model coefficients were the striatum, SFG, hippocampus, MTG, OFC, STG,

IFG, and the cingulate gyrus. The hippocampus, STG, MTG, and cingulate gyrus had

increased coefficients in the first second. The coefficient for the SFG decreased over time.

Although many regions had low coefficients, none were negative, which means increased HFA

was always linked to increased VAS ratings.

We compared the models for the different brain regions for the period right after the hand

was removed from the device. The fusiform gyrus had the largest coefficient, with the peak

occurring at the end of the stimulus. The IFG was the next largest, followed by the amygdala

and the STG. The peak model coefficient for the IFG was observed at 250 to 750 ms after the

end of the stimulus.

Discussion

Mapping neural activity associated with ongoing pain with high spatial and temporal resolu-

tion is especially valuable and currently limited. Prior studies have used laser-based or ther-

mode stimuli paired with noninvasive imaging or electroencephalography (EEG).

Noninvasive imaging has provided valuable network-level information on whole-brain activ-

ity. However, it is limited in its temporal resolution. EEG can measure brain activity with a bet-

ter temporal resolution but has limited spatial resolution of deep cerebral structures. Our

approach involved acquiring recordings using intracranial stereo-EEG (sEEG) during a psy-

chophysical pain testing paradigm to evaluate temporal changes in numerous regions involved

in detecting, processing, and responding to painful stimuli [22]. We used advanced statistical

modeling to understand what regions underwent neuronal activations at the beginning of the

stimulus, how those regions changed at the end, and how these neuronal activations were

related to how the pain was reported.

Traditional models propose that a stimulus produces a percept and triggers a behavioral

response [32]. However, recent research indicates that this linear sequence may not apply to

pain perception. May et al. argue that behavioral responses influence the perception of painful

stimuli [33]. This suggests that the cognitive and emotional aspects of pain processing are not

separate from sensory perception but are integrated to create the subjective experience of pain.

Schulz et al. have demonstrated that the subjective intensity of pain differs significantly from

objective stimulus intensity and brief pain stimuli [21]. Chronic pain is a subjective experience

that persists for extended periods. Therefore, in this study, we focused on the neural activity

associated with the subjective experience of persistent pain.

increased pain ratings. The fusiform gyrus had the largest coefficient of 0.21, with the peak occurring at the end of the stimulus. The IFG had a coefficient of

0.11, followed by the amygdala with 0.095 and the STG with 0.043. The peak model coefficient for the IFG was observed at 250 to 750 ms after the end of the

stimulus.

https://doi.org/10.1371/journal.pone.0292808.g004
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Although there is limited research on temporal lobe abnormalities in chronic pain, it is

believed that these areas are responsible for assigning emotional value to short-term memories

associated with painful experiences [34]. Specifically, the STG plays a role in pain processing

by monitoring the discrepancy between pain expectation and perception, anticipation, and

expression [35–37]. In an fMRI study, Schwedt et al. [38] demonstrated that migraine patients

may exhibit atypical connectivity between the MTG and a range of subcortical and cortical

areas. Patients with chronic musculoskeletal pain disorders are similarly affected. For example,

pain duration and intensity in patients with chronic musculoskeletal pain disorders correlate

with decreased gray matter volume in the STG and MTG [39, 40]. Interestingly, recent evi-

dence has shown that the STG plays a causal role in forming biased pain memories, as virtual

lesions using transcranial magnetic stimulation reduced biased pain unpleasantness [41]. The

MTG and STG regions might contribute to the emotional response of a painful stimulus, lead-

ing to dysfunction in patients with chronic pain over time. To better understand where the

pain changes are occurring within the MTG and STG, future analyses should use high resolu-

tion methods like sEEG. This is especially important since the STG is typically associated with

speech and hearing, so a more precise approach can provide greater spatial specificity.

In our study, HFA at the onset of the stimulus in the ITG, SFG, and STG were significantly

higher when participants responded that the stimulus was painful (“yes”). All three GLME

models for these regions had a relatively low error. Since temporal gyrus components were

predictive in both response types, we hypothesize that the temporal gyrus may represent more

experiential aspects of pain.

At the end of the trial, increased STG HFA was associated with an increase in “no”

responses, opposite to the trial start. We suggest that this change may reflect behavioral learn-

ing of the tonic stimulus or indicate a decrease in the neural processing demand, completion

of the task, or the disengagement of attention from the task [42, 43]. Alternatively, it could also

indicate inhibition or suppression of the brain region’s activity by other regions in the brain.

All the coefficients for the predictive VAS models were positive, meaning that increased HFA

was always linked to increased VAS ratings. An increase in HFA in more than one brain region

near the same time suggests synchronized neural activity between these regions. The synchro-

nized activity may indicate that these regions are involved in the same cognitive task or com-

municating. It would be valuable to study the connectivity of ongoing pain to understand the

relationship between these neural features.

Other prefrontal cortical regions predicted both responses at the beginning and end of the

stimuli. Prior groups have established the involvement of prefrontal cortices (e.g., IFG, MFG,

SFG) in pain’s affective and cognitive dimensions [4, 5, 19, 44]. Recent studies also suggest that

the medial prefrontal cortex encodes the subjective perception of ongoing pain and that

gamma oscillations in this region encode subjection pain perception [21, 45]. Time-frequency

analyses in patients with chronic back pain revealed that ongoing pain intensity is reflected in

prefrontal gamma oscillations [46]. A recent study using EEG and a tonic pain stimulus in

healthy patients observed a widespread increase of gamma power correlated with subjective

pain intensity [47]. Another study supported this finding, which found that gamma oscilla-

tions selectively encoded the subjective perception of tonic pain in the medial prefrontal cortex

[21]. It is currently unclear whether the narrowband gamma activity occurs in the same

regions or if the gamma responses are a true reflection of the neuronal populations in the

medial PFC.

We show that the SFG and IFG encoded subjective perception at the beginning and end of

the tonic stimulus. The prefrontal cortex receives ascending, nociceptive input and controls

top-down pain [20, 48, 49]. Based on these regions exhibiting HFA at the start and end of the

stimuli associated with the psychophysical correlates, we may have also seen this phenomenon.
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However, causal evidence of this mechanism in humans experiencing tonic pain is still

needed.

More brain regions exhibited HFA activity parametrically related to the VAS response. At

the beginning of the trial, HFA in the cingulate gyrus, hippocampus, orbitofrontal cortex, and

striatum showed significant relationships with increased VAS ratings. By the end of the trial,

HFA in the fusiform gyrus and amygdala were also associated with increased VAS ratings.

While all these regions have previously shown involvement in pain processing, no one has

shown a parametric relationship between behavioral responses and HFA during ongoing pain

in these brain regions using intracranial electrodes. These findings suggest that the perception

and psychophysical pain correlates depend on how patients are asked to evaluate it. The differ-

ent brain regions involved in the VAS predictions highlight the importance of recognizing that

brain dynamics can shift by changing just one aspect of the stimulus-perception-behavior

relationship.

In this study, we utilized sEEG to study the spatiotemporal dynamics of tonic pain process-

ing. While sEEG has great spatial and temporal benefits, several limitations exist. Electrode

placement was determined based on the clinical hypothesis about the seizure onset zone, and

there are innate differences in the sampled locations between patients. We combined electrode

laterality and broadened specific electrode labels to obtain adequate statistical power for

group-level analyses. Future analyses may use our findings to study the described regions with

higher resolution. We also did our best to limit experimentation with patients receiving pain

medication within 4 hours, despite pain medication being commonly indicated for patients

with sEEG. Additionally, pain sensitivity may differ from one patient to another (at baseline

and after surgical electrode placement), and sEEG is associated with lower pain medication

use than other intracranial recording techniques [50]. To account for this, we used a maxi-

mum-likelihood adaptive procedure within the psychophysical testing paradigm to optimize

the stimulus intensity for each patient. We also accounted for potential differences in stimulus

intensity perception in our GLME models by including temperature as a random effect related

to the HFA slope.

Our study sheds light on the spatiotemporal dynamics of neural activity associated with

psychophysical pain evaluation. Our findings indicate that depending on the psychometric

variable in question, different brain regions may be involved in processing pain. These regions

may exhibit distinct patterns of activity based on the reference frame (beginning or end of the

stimulus). Additional research examining the temporal dynamics during the evolution of pain

will enhance our comprehension of how the relationship between these regions changes as

pain becomes a conscious perception.
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