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A H3K27M-targeted vaccine in adults  
with diffuse midline glioma
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Tobias Kessler6,7, Abigail K. Suwala8,9, Philipp Eisele2, 
Michael O. Breckwoldt    1,3,10, Peter Vajkoczy11, Oliver M. Grauer    12, 
Ulrich Herrlinger13, Joerg-Christian Tonn14, Monika Denk15, Felix Sahm    8,9, 
Martin Bendszus10, Andreas von Deimling    8,9, Frank Winkler6,7, 
Wolfgang Wick    6,7, Michael Platten    1,2,3,4,5,16   & Katharina Sahm    1,2,3,16 

Substitution of lysine 27 to methionine in histone H3 (H3K27M) defines 
an aggressive subtype of diffuse glioma. Previous studies have shown 
that a H3K27M-specific long peptide vaccine (H3K27M-vac) induces 
mutation-specific immune responses that control H3K27M+ tumors in 
major histocompatibility complex-humanized mice. Here we describe a 
first-in-human treatment with H3K27M-vac of eight adult patients with 
progressive H3K27M+ diffuse midline glioma on a compassionate use basis. 
Five patients received H3K27M-vac combined with anti-PD-1 treatment 
based on physician’s discretion. Repeat vaccinations with H3K27M-vac 
were safe and induced CD4+ T cell-dominated, mutation-specific immune 
responses in five of eight patients across multiple human leukocyte  
antigen types. Median progression-free survival after vaccination was  
6.2 months and median overall survival was 12.8 months. One patient 
with a strong mutation-specific T cell response after H3K27M-vac showed 
pseudoprogression followed by sustained complete remission for  
>31 months. Our data demonstrate safety and immunogenicity of 
H3K27M-vac in patients with progressive H3K27M+ diffuse midline glioma.

H3K27M+ diffuse midline gliomas (DMGs) are aggressive, incurable 
primary central nervous system (CNS) tumors in children and young 
adults1. They are characterized by a clonal and mutually exclusive sub-
stitution of lysine 27 to methionine (K27M) in canonical (H3.1/H3.2) or 
noncanonical (H3.3) histone H3 (ref. 2) in anatomically distinct oligo-
dendrocyte precursor cells3,4. As these tumors mainly form in midline 
CNS structures, surgical treatment options remain limited5,6. Response 
to chemoradiation is poor and palliative radiotherapy remains the 
only standard-of-care treatment with proven benefit6, resulting in a 
median overall survival (OS) between 10 and 15 months after initial 
diagnosis7. Immune checkpoint inhibitors (ICIs), such as PD-1 blockade 

are successfully used in combinatorial immunotherapeutic approaches 
in high-grade gliomas8; however, in DMG intratumoral heterogene-
ity9, low PD-L1 expression10, low mutational burden11 and the nature 
of chemotherapy-induced mutations12,13 may explain why no survival 
benefit has been observed using ICI monotherapy14 so far, though sev-
eral clinical trials investigating the efficacy and safety of PD-1 block-
ade are ongoing (NCT02359565, NCT02793466, NCT03130959 and 
NCT01952769).

New immunotherapeutic approaches with specificity for DMG 
include disialoganglioside GD2-targeting chimeric antigen recep-
tor (CAR) T cell therapy15, the oncolytic virus DNX-2401 (ref. 16) 
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spinal cord. Two patients had undergone complete resection, three 
patients had partial resection and three patients had biopsies upon 
initial radiographic diagnosis. At first dosing, two patients took 
dexamethasone at a dose of 2 mg d−1 and one patient took 4 mg d−1 
(Extended Data Table 1). All eight patients had previously received 
radiotherapy in 30 fractions to a total dose ranging from 54 to 60 Gy 
as well as chemotherapy with temozolomide. One patient (ID 7)  
received lomustine q42d following first PD and continued this ther-
apy concomitant to vaccinations. Median tumor size as judged by 
the product of maximal orthogonal tumor diameter at baseline was 
407.8 ± 589.4 mm2 (median ± s.d.).

H3K27M-vac was well tolerated
Patients received subcutaneous injections of H3K27M-vac bi-weekly 
for 6 weeks followed by monthly administration for 4 months and quar-
terly thereafter until PD (Fig. 1b, Fig. 2a and Supplementary Fig. 1).  
Five patients (62.5%) received H3K27M-vac in combination with 
anti-PD-1 dependent on the treating physician’s discretion. Before 
each vaccination, adverse events (AEs) were assessed according to the 
Common Terminology Criteria for Adverse Events (CTCAE) v.5.0. In 
addition, the treatment schedule included monthly blood sampling for 
immune monitoring for 6 months and every 3 months thereafter as well 
as radiographic assessment every 3 months. Analysis of cerebrospinal 
fluid (CSF) was performed if clinically indicated (Fig. 2a). The duration 
of H3K27M-vac treatment ranged from 78 to 1,295 d (median 158 d) 

and peptide vaccination17–19. A short H3.3K27M26–35 peptide vaccine 
induced H3.3K27M-reactive CD8+ T cells in human leukocyte anti-
gen (HLA)-A*02:01+ patients with newly diagnosed H3.3K27M+ DMG17. 
Whether such HLA-A*02:01-restricted CD8+ T cells recognize and kill 
HLA-A*02:01+ tumor cells expressing and processing endogenous 
H3.3K27M remains controversial17,19. We have previously shown that 
a long H3K27M14–40 peptide vaccine, H3K27M-vac, induced CD4+ 
T cell-mediated immune responses in a major histocompatibility 
complex (MHC)-humanized mouse tumor model18. Here, we present 
a first-in-human administration of H3K27M-vac to eight patients with 
progressive H3K27M+ DMG.

Results
A total of eight adult patients with progressive, histologically con-
firmed H3K27M+ DMG after standard therapy options and not eligible 
to be enrolled in the currently ongoing multicenter, phase I clinical 
trial (NCT04808245) received H3K27M-vac on a compassionate use 
basis. Four patients were female and four patients were male (Fig. 1a),  
mean patient age was 28.0 ± 5.3 years (mean ± s.d.) and Karnofsky 
performance index (KPI) was at least 70% for all patients. All patients 
had unequivocal progressive disease (PD) as assessed by response 
assessment in neuro-oncology (RANO) criteria before the start of 
vaccinations. Tumors were located in the thalamus (n = 3), the pons 
(n = 2), the spinal cord (n = 2) and the parietal lobe (n = 1), with one 
patient having multilocular disease in the cerebellum and the lumbar 
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Fig. 1 | Patient characteristics at baseline and individual disease trajectories. 
a, Baseline characteristics of eight patients with progressive DMG H3K27M+ 
before initiation of treatment with H3K27M-vac. Age specified in years, tumor 
size measured as product of maximal orthogonal diameter on contrast-enhanced 
T1-weighted MRI sequences (mm2); cumulative dose of intensity-modulated 
radiotherapy measured in Gy; TMZ, temozolomide (75 mg m−2 body surface area 

(BSA)) daily during radiotherapy; CCNU, lomustine (110 mg m−2 BSA d1, TMZ 
mg m−2 BSA d2–6, q42d for six cycles); oral dexamethasone intake in mg d−1. 
Brain illustration taken from Adobe Stock Standard under License ID 222738500. 
b, Swimmer plot depicting clinical course since initial diagnosis, vaccine 
administration and time point of first H3K27M-specific immune responses in 
peripheral blood (n = 8 patients).
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and the duration of observation since the start of H3K27M-vac admin-
istration ranged from 191 to 1,414 d (median 391 d). Patients received 
a median of 8 ± 4.9 (median ± s.d.) vaccinations. One patient (ID 2) 
discontinued treatment with H3K27M-vac after eight vaccinations, 
but resumed treatment 20 months later. No regimen-limiting toxicity 
was observed during the observation period. Two patients (25%) expe-
rienced CTCAE grade 1 injection site reactions that were attributed to 
the treatment with H3K27M-vac (Fig. 2b). Eight other CTCAE grade 1 
events in the observation period were judged to be treatment related, 
but unrelated to H3K27M-vac; higher grade treatment-related toxici-
ties have not occurred.

H3K27M-vac induced neoepitope-specific immune responses
We observed H3K27M-vac-induced peripheral T cell immune responses 
defined by mutation-specific interferon (IFN)-γ enzyme-linked immu-
nosorbent spot (ELISpot) responses detected in peripheral blood in five 
of eight treated patients (62.5%; Fig. 2c). The median time to first detect-
able H3K27M-specific immune response was two vaccinations (median, 
interquartile range (IQR) 2–4), corresponding to 4 weeks (median, 
IQR 4–10) since the start of treatment. In four out of five responding 
patients, the specific ELISpot responses detected in peripheral blood 
decreased over time (Extended Data Fig. 1). In this eight-patient cohort, 
there was no apparent association between H3K27M-specific peripheral 
immune response and age (P = 0.60), sex (P = 0.46), KPI (P = 0.75), extent 
of resection (P = 0.94), tumor size (P = 0.08), time from histological 
diagnosis to start of vaccination (P = 0.06), concomitant anti-PD-1 
treatment (P = 0.57), dexamethasone intake at baseline (P = 0.15) or 
HLA allelotype (Extended Data Table 2 and Extended Data Fig. 2a–c).

Patients with immune responses showed radiographic 
improvement
Transient radiographic improvement defined as reduction of the 
axial contrast-enhancing tumor area was observed in six patients and 
occurred shortly after first detection of H3K27M-specific immune 
responses in all five patients with immune response (Fig. 3a, Extended 
Data Fig. 3a,b and Supplementary Figs. 2–9). Median progression-free 

survival (PFS) after start of vaccination across all eight patients was  
6.2 months and median OS was 12.8 months (Fig. 3b,c). One patient 
treated with H3K27M-vac without concomitant anti-PD-1 therapy (ID 1) 
showed radiographic pseudoprogression (PsPD) according to immuno-
therapy response assessment in neuro-oncology (iRANO) criteria within 
6 weeks after first detection of mutation-specific peripheral immune 
response (Fig. 3a,d, Extended Data Fig. 3c and Supplementary Fig. 2). 
Another patient with large contrast-enhancing tumor mass at baseline 
and concomitant anti-PD-1 therapy (ID 8) showed an early radiographic 
progression followed by disease stabilization from week 22 onwards in 
line with a latency of 18 weeks until first detection of a mutation-specific 
peripheral immune response (Fig. 3e and Supplementary Fig. 9).

H3K27M neoepitope colocalized with HLA class II-DR
Proximity ligation assay (PLA) of formalin-fixed paraffin-embedded 
(FFPE) primary tumor tissue of seven patients for which tissue was avail-
able demonstrated that the H3K27M neoepitope colocalizes with HLA 
class II-DR expressed by glial fibrillary acidic protein (GFAP)-expressing 
tumor cells as well as single ionized calcium-binding adaptor molecule 
1 (IBA1)-positive professional antigen-presenting cells (APCs) in all 
seven patients (Fig. 4a–c and Extended Data Figs. 4a–c and 5c–h,j–o), 
suggesting presentation of the H3K27M neoepitope and restimula-
tion of H3K27M-specific tumor-infiltrating HLA-DR-restricted T cells. 
Immunohistochemistry showed a clear interindividual heterogeneity 
of MHC class II-DR expression ranging from 22% to 85% positive cells as 
well as PLA signal intensity (295–2,100 spots per visual field) with the 
two patients experiencing the most favorable outcome after detection 
of a H3K27M-specific peripheral immune response (ID 1 and ID 8) show-
ing top scores of 82% and 85% MHC class II-DR positive cells and 2,100 
and 1,937 PLA spots per visual field, respectively (Fig. 4d,e, Extended 
Data Figs. 4h and 5a,b,i and Supplementary Fig. 10).

Mutation-specific immune responses were CD4+ 
T cell-dominated
In vitro restimulation of peripheral CD4+ and CD8+ T cells with H3 
mutant peptide (H3-mut) or wild-type peptide (H3-wt) revealed that 
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Fig. 2 | Treatment schedule, safety and immunogenicity of H3K27M-vac.  
a, Treatment scheme for H3K27M-vac administration. b, Treatment-related  
AEs occurring in the observation period graded by CTCAE v.5.0. Two injection 
site reactions were related to H3K27M-vac and the remaining AEs were  
either judged to be related to concomitant medication or disease.  

GGT, gamma-glutamyltransferase; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase. c, T cell immune responses as a function of time measured 
by difference in mean spot-forming units (s.f.u.) in IFN-γ ELISpot assay between 
4 × 105 peripheral blood mononuclear cells (PBMCs) stimulated with H3-mut and 
H3-wt control peptide.
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H3K27M-specific immune responses are CD4+ T cell-mediated and can 
be suppressed by MHC class II-, but not MHC class I-blocking antibod-
ies (Fig. 5a–e). Intracellular cytokine staining of peptide-stimulated 
PBMCs confirmed presence of H3K27M-specific CD4+ T cell responses 
with no evidence of H3K27M-vac-induced CD25+FoxP3+ regula-
tory T cells across multiple patients and time points (Fig. 5f–j and 
Supplementary Figs. 11–14). After PsPD, three out of the top ten 
vaccine-induced, H3K27M-expanded CD4+ T cell receptor (TCR) 
clonotypes from peripheral blood showing sequence similarities 
of the CDR3β region were detectable in the CSF of patient ID 1, who 
subsequently went into sustained complete remission for >31 months 
(Fig. 5k,l).

Discussion
This first-in-human treatment with H3K27M-vac provides evidence 
of safety and immunogenicity against the clonal driver mutation 
H3K27M in patients with recurring H3K27M+ DMG. While this small 
cohort of patients with advanced-stage DMG, individual concomitant 
anti-PD-1 treatment and limited availability of biomaterials, includ-
ing post-treatment tumor tissue limits robust conclusions on overall 
efficacy, the median OS of 12.8 months following a H3K27M-specific 
immune response and the fact that one patient exhibited sustained 
complete remission for >31 months are encouraging. Three general 
conclusions for neoepitope-targeting peptide vaccines for the treat-
ment of diffuse gliomas can be drawn from these results.
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First, the use of long peptides, such as the 27-mer H3K27M-vac, is 
safe irrespective of concomitant anti-PD-1 therapy and suitable to induce 
mutation-specific CD4+ T cell responses in patients with H3K27M+ DMG. 
The induction of CD4+ T cell-dominated immune responses by long 
mutation-specific peptide vaccines is similar to that observed in 28 of 
30 patients in a first-in-human phase I trial of the long peptide vaccine 
IDH1-vac in patients with newly diagnosed astrocytomas20,21. Notably, 
CD4+ T cell phenotyping following H3K27M-vac revealed no evidence 
of induction of immunosuppressive regulatory T cells. While the immu-
nogenicity of the short peptide vaccine H3.3K27M26-35 is restricted to 
HLA-A*02+ patients17, we provide evidence of presentation of H3K27M 
neoepitope on MHC class II on tumor cells and on APCs across multiple 
HLA types (Fig. 4). While killing activity of H3K27M-specific CD8+ T cells 
against HLA-A*02+ tumor cells with endogenous H3.3K27M expression 
remains controversial17–19 we have recently demonstrated that CD4+ 
T cell interaction with peptide MHC class II in glioma-infiltrating myeloid 
cells is critical for the fitness of glioma-infiltrating CD8+ T cells22. Further 
analyses in a larger clinical trial cohort will assess the suitability of MHC 
class II expression and neoepitope presentation in DMG as predictive 
markers for response to H3K27M-vac.

Second, both H3K27M-vac and IDH1-vac target clonal driver muta-
tions in proteins that are expressed in all cells of primary and recurrent 
tumors and are functionally relevant for tumor growth2,23. Lack of clon-
ality, in contrast, may explain why a peptide vaccine against EGFRvIII 
and EGFRvIII-targeting CAR T cells have failed to yield clinical benefits 
in glioblastomas24–27. In the cohort presented here, we observed initial 
tumor regression in six of eight patients with clinical stabilization for 
more than 6 months in four patients. Lack of post-treatment biop-
sies precluded the analysis of possible immune evasion, for instance 
through lack of presentation.

Third, H3K27M-vac-induced T cell clones were detected in both 
peripheral blood and CSF and expanded concurrently to radiographic 
tumor regression. Although a conclusive assessment of the diversity 
of H3K27M-expanded TCRs is not possible with only a few clonotypes 
from a single patient, motif analysis showed sequence similarities of 
the CDR3β region. H3K27M-vac induced immune responses against 
H3K27M across different patient HLA class II types with a latency of up 
to 18 weeks irrespective of concomitant immune checkpoint block-
ade. Although sustained mutation-specific immune responses were 
detected in 80% of responding patients in our cohort, the strength of 
H3K27M-vac-induced peripheral immune responses tended to decrease 
over time and in one patient (ID 5) a previously existing ELISpot response 
was no longer detectable immediately before tumor progression. As a 
consequence, administration of H3K27M-vac to patients with newly 
diagnosed H3K27M+ DMG concomitant to standard-of-care first-line 
therapy could maximize its therapeutic benefit by allowing more time 
for CD4+ T cell-mediated antitumor immunity to become effective. An 
active multicenter, phase I clinical trial for adult patients with newly 
diagnosed H3K27M+ DMG integrates H3K27M-vac in combination with 
atezolizumab into standard-of-care radiotherapy (NCT04808245).

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
Patient selection and treatment schedule
Patients received H3K27M-vac between August 2017 and Novem-
ber 2022 at the University Hospitals of Heidelberg and Mannheim. 
Treatment was approved by the institutional review board and ethics 
committee. All patients provided written signed informed consent 
according to CARE guidelines and in compliance with the Declaration 
of Helsinki principles. Patients received no compensation for partici-
pation in this compassionate use program. Only adult patients of all 
sexes and genders with unequivocal disease progression of histologi-
cally confirmed H3K27M+ DMG were offered to receive treatment with 
H3K27M-vac. Sex was determined based on self-report. Concomitant 
anti-PD-1 therapy was allowed depending on the treating physician’s 
discretion. As anti-PD-1 therapy is not approved for the treatment of 
DMG in Germany, the exact anti-PD-1 drug was dependent on avail-
ability. K27M substitution was determined by immunohistochemistry, 
hence allowing no differentiation between mutations in H3F3A and 
HIST2H1B/C. Exclusion criteria included concomitant treatment with 
dexamethasone (or equivalent) >4 mg d−1, Karnofsky performance 
index (KPI) < 70 and age <18 years. All patients had received radio-
therapy in combination with chemotherapy with TMZ before the start 
of therapy. Radiation doses and the number of chemotherapy cycles 
at a dose of 200 mg m−2 are specified for each patient in Extended 
Data Table 1. Treatment consisted of vaccinations with H3K27M-vac 
in weeks 0, 2, 4, 6, 10, 14, 18 and 22, but was stopped in case of PD. After 
week 22, patients with stable disease were offered to continue vacci-
nations every three months until PD. MRI assessment was conducted 
every 12 ± 2 weeks. Patients were assessed for AEs by CTCAE v.5.0 on 
every visit for vaccination and every 12 weeks thereafter. According 
to good clinical practice, an AE was defined as any untoward medical 
occurrence during treatment with H3K27M-vac irrespective of causal 
relationship. AEs were judged to be treatment-related if the relationship 
to treatment was ‘possible’, ‘probable’ or ‘definite’. Disease progression 
and events which are unequivocally related to disease progression 
regardless of their outcome were not considered AEs. One brief partial 
seizure and one brief generalized seizure were not associated with 
disease progression, but were judged to be disease related in analogy 
to most clinical trials in neuro-oncology. All remaining AEs that were 
considered disease related occurred less than a week before MRI that 
showed PD. Regimen-limiting toxicity was defined as an occurrence of 
any treatment-related AE >grade 2 during the treatment phase.

H3K27M-vac treatment
H3K27M-vac consists of 300 μg H3K27M 27-mer peptide (p14-40, 
KAPRKQLATKAARMSAPSTGGVKKPHR) synthesized by the good 
manufacturing practice (GMP) facility of the University of Tübingen, 
Germany and was emulsified in Montanide (ISA50) by the GMP facility 
at the University Hospitals of Heidelberg and Mannheim, Germany at 
most 24 h before application as described elsewhere20. H3K27M-vac 
was injected subcutaneously into the abdominal skin or thigh using 
20-gauge needles or 21-gauge needles. The place for the subsequent 
injections were as close as possible to the previous injection site for all 
vaccinations. Ideally, the same draining lymph node was targeted for 
all the vaccinations. In cases of unacceptable local site reactions to the 
vaccination or imiquimod, the injection sites were changed but were 
still as close as possible to the original injection site. In such a case, 
subsequent vaccinations were applied to this newly chosen vaccination 
site (Extended Data Fig. 1a). At 15 min after injection topical imiquimod 
(5%, Aldara; one sachet) was applied to an area of 5 × 5 cm around the 
site of injection of the vaccine and sealed with 5 × 5 cm of opsite flexifix 
(Smith&Nephew, product no. 7478029). Patients were instructed to 
leave Aldara on the skin for approximately 8 h and to wash the area 
where Aldara was applied with mild soap and water afterwards. At 24 h 
after vaccination patients applied another sachet of Aldara and washed 
the area approximately 8 h afterwards as described above. Labour LS 

s.e. & Co. in Germany performed quality controls for content, sterility 
and absence of endotoxin for each emulsion.

Disease assessment
Clinical status was assessed during patient visits by a clinical 
neuro-oncologist. MRI assessment, including diagnosis of PsPD, 
applied the iRANO criteria on standardized MRIs that were obtained 
at least every 3 months. As in the NOA16 study20, PsPD was defined as 
an increase in the size of the tumor on T2-FLAIR MRI sequences and/
or the new appearance or enlargement of contrast-enhancing lesions 
followed by stabilization or regression on follow-up MRI. Tumor sizes 
for Fig. 3a were determined by the product of maximal orthogonal 
diameters on T1-weighted contrast-enhanced MRI imaging and cer-
ebral lesions were classified into measurable and non-measurable 
lesions based on iRANO criteria (cerebral lesion with both maximal 
orthogonal diameters >10 mm were classified as measurable).

PBMC isolation
Heparinized blood from patients was diluted with phosphate-buffered 
saline (PBS) followed by density-gradient centrifugation (800 g with-
out brake at room temperature) in Leucosep tubes (Greiner Bio-One) 
that contained Biocoll Separation Solution (Biochrom). Isolated 
PBMCs were subsequently frozen in 50% freezing medium A (60% 
X-Vivo20, 40% fetal calf serum (FCS)) and 50% medium B (80% FCS 
and 20% dimethylsulfoxide) and stored in liquid nitrogen at −140 °C 
until analysis.

IFN-γ ELISpot assays of PBMCs
After hydrophilization with 35% ethanol, ELISpot HTS plates with 
white-bottom (Millipore, Merck, MSIPS4W10) were coated overnight 
at 4 °C with anti-human IFN-γ (1-D1K, Mabtech, 3420-3-250) and blocked 
with X-Vivo20 (Lonza) containing 1% BSA. PBMCs were thawed, rested 
in X-Vivo20 medium for 16 h, plated at 3 or 4 × 105 cells per well as indi-
cated and stimulated with 100 μl peptide solution at a concentration of 
20 µg ml−1. Mutant H3K27M (p14-40, KAPRKQLATKAARMSAPSTGGVK-
KPHR), wild-type H3 (p14-40, KAPRKQLATKAARKSAPSTGGVKKPHR) 
or MOG (p35–55, MEVGWYRPPFSRVVHLYRNGK) at equal concentra-
tions were used for stimulation. Aqua ad iniectabilia (Braun) with 
10% dimethylsulfoxide (vehicle) at equal volume to peptide solution 
were used as negative controls and 1 μg staphylococcal enterotoxin B 
(Sigma-Aldrich) per well as well as 0.05 μg CMV with 0.05 μg AdV per 
well were used as positive controls. In selected experiments, 10 µg ml−1 
MHC I (W6-32) or 90 µg ml−1 MHC II (Tü39) blocking antibodies were 
added to peptide-stimulated wells. After 40 h of incubation, bioti-
nylated anti-human IFN-γ antibodies (7-B6-1, Mabtech, 3420-6-250), 
streptavidin-ALP (Mabtech, 3310-10-1000) and ALP color development 
buffer (Bio-Rad, 170-6432) were used for detection of IFN-γ-producing 
cells. An ImmunoSpot Analyzer (ImmunoSpot/CTL Europe) was used 
for quantification of spot counts. Measurements were performed in 
triplicate with rare exceptions where duplicates had to be used due to 
low cell numbers. T cell responses were defined as a significantly higher 
number of s.f.u. after stimulation with K27M-mutant H3 compared to 
wild-type H3, as assessed by a two-sided t-test with a false discovery 
rate of 5% as determined by a two-stage step-up method of Benjamini 
Krieger and Yekutieli, imposed for each patient individually.

Flow cytometry
T cell cytokine secretion was measured using flow cytometry-based ICS 
ex vivo and after a 2-week in vitro restimulation. Briefly, PBMCs from a 
pre- or post-vaccination time point were thawed, rested overnight at 
2–10 × 106 cells ml−1 in cytokine-free X-Vivo20 (Lonza, BE04-380Q) and 
on the next day restimulated either immediately (ex vivo ICS, 1 × 106 
PBMCs per setup) or after in vitro expansion (0.4 × 106 cells). PBMCs 
were stimulated for 6 h with H3K27M-mut or H3K27M-wt peptide at 
20 µg ml−1. Unstimulated cells and PMA/ionomycin (0.05 µg ml−1 and 
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1 µg ml−1)-stimulated cells served as positive and negative controls, 
respectively. After 1 h of incubation, protein transport inhibitor bre-
feldin A (GolgiPlug, BD, 555029) was added to each well at a 1:1,000 
dilution. At the end of restimulation, cells were collected, incubated 
with a live-dead discriminator (Fixable Viability Dye APC-R700 in PBS, 
Invitrogen, 564997) and stained with extracellular backbone antibod-
ies (CD3-Fitc, clone HIT3a, BD, 561802), CD4-BV605 (clone SK3, BD, 
565998), CD8-PerCP-Cy5.5 (clone RPA-T8, Invitrogen, 45-0088-42)  
and either CD45RA-APC-H7 (clone 5H9, BD, 561212), CCR7-BV711 
(clone 150503, BD, 566602), PD-1-PE (clone EH12.1, BD, 560795) or 
CD25-BV605 (clone 2A3, BD, 562660) and HLA-DR-APC-H7 (clone 
G46-6, BD, 561358) in FACS buffer (PBS + 2% FCS, Biochrom). Subse-
quently, intracellular staining was performed with IFN-γ-BV421 (clone, 
4S.B3, BD, 564791) and TNF-α-APC (clone, Mab11, BioLegend, 502912) 
and FoxP3-PE (clone 259/C7, BD, 560046) antibodies using Cytofix/
Cytoperm reagents (BD Biosciences) according to the manufacturer’s 
instructions. Staining of expanded cells was limited to backbone 
antibodies and intracellular staining of IFN-γ and TNF-α. Staining was 
carried out at 4 °C protected from light. All antibodies used have been 
titrated to achieve optimal signal to noise rations. Cells were acquired 
on a BD FACS Lyric and analyzed using FlowJo analysis software v.10.8.1 
(Extended Data Fig. 5).

Proximity ligation assay
Baseline paraffin-embedded glioma tissue was used for PLA as 
described in Bunse et al.28 H3 wild-type glioblastoma tissue from 
the archives of neuropathology were obtained with approval by the 
institutional review boards (Ethikkommission) to serve as negative 
control for PLA staining. Nonlinear adjustment (gamma changes) 
was used for visualization. Immunofluorescence co-staining was 
performed using mouse monoclonal anti-human GFAP (1:2,000 dilu-
tion, Cell Signaling Technology, 3670), rabbit polyclonal anti-human 
IBA1 (1:100 dilution, Wako, 019-19741), and secondary antibodies used 
were donkey anti-mouse Alexa Fluor 488 and donkey anti-rabbit Alexa 
Fluor 488 (all 1:300 dilution, Molecular Probes, Invitrogen, A-21202 
and A-21206). For segmentation of PLA spots and nuclei an in-house 
developed macro for the ImageJ platform was used. Background was 
subtracted using the rolling ball background subtraction, Gaussian 
blur was used for filtering and foci as well as nuclei were segmented 
using the Find Maxima tool.

Next-generation HLA typing
The QIAamp DNA Blood Mini kit (QIAGEN) was used to isolate genomic 
DNA from PBMCs of patients. A total of 100 µl DNA solution with a 
concentration of at least 20 ng µl−1 was submitted at room temperature 
for high-resolution HLA typing to DKMS, Germany. Briefly, at DKMS, 
long-range PCRs were performed, amplicons were fragmented and 
used for next-generation sequencing on an Illumina MiSeq device. The 
full HLA class I gene and exons 2–5 of HLA class II genes were analyzed 
using the NGSengine (GenDx) software. Depending on the resolution, 
typing results were delivered either as G-code or MAC/NMDP-code.

MHC II immunohistochemistry
Immunohistochemical analysis was carried out on 3-µm thick FFPE tis-
sue sections affixed onto StarFrost Advanced Adhesive slides (Engelbre-
cht), followed by drying at 80 °C for 15 min. Immunohistochemistry was 
conducted using a BenchMark Ultra immunostainer (Ventana Medical 
Systems). The slides were pretreated with Cell Conditioning Solution 
CC1 (Ventana Medical Systems) for 32 min at room temperature. The 
primary antibody (MHC II, 1:100 dilution, clone CR3/43, DAKO, Agilent) 
was incubated at 37 °C for 32 min and then the Ventana standard signal 
amplification and UltraWash steps were performed. Counter-staining 
was carried out with hematoxylin for 4 min, followed by bluing reagent 
for 4 min. The visualization of the immunostaining was achieved using 
the UltraView Universal DAB Detection kit (Ventana Medical Systems). 

Scanning of the stained slides was accomplished using the Aperio AT2 
Scanner (Aperio Technologies). QuPath (v.0.2.3) software was utilized 
for image analysis, which involved determining the total number of 
tumor cells within selected regions based on nuclear hematoxylin stain-
ing, as well as quantifying the total number of MHC II-positive cells in 
each image. The primary read out was determined by calculating the 
percentage of MHC II-positive cells/nuclei from each image.

Peptide-based T cell expansion assay
PBMCs were expanded under exposure to mutant H3K27M (p14-40) 
peptide to enrich peptide-reactive T cell clones. Briefly, cells were 
thawed, transferred into X-Vivo20 (Lonza, BE04-380Q) medium sup-
plemented with 2% AB serum (Sigma, H4522) and rested overnight as 
described above. On day 1, cell suspensions were adjusted to 1 × 106 
cells ml−1 and half of the available volume was plated at 500 µl per well 
into a 24-well plate. All remaining cells were plated at the same density 
in a second 24-well plate. Individual wells were pulsed with either (1) 
4 µg ml−1 H3-mut (p14-40), (2) 4 µg ml−1 H3-wt (p14-40) or (3) no peptide 
to control for unspecific expansion. Both plates were placed in a 37 °C 
CO2 incubator. After 4 h, non-adherent cells of the plate that was not 
pulsed with peptide were plated on top of peptide-pulsed cells at a final 
concentration of 1 × 106 cells ml−1 and per well.

Cultures were supplemented with cytokine-containing medium on 
day 4, 7, 9 and 11 by replacing half of the medium per well (final cytokine 
concentrations per well were 50 IU ml−1 interleukin (IL)-2 (Novartis), 
25 ng ml−1 IL-7 (Miltenyi, 130-095-367) and 25 ng ml−1 IL-15 (Miltenyi, 
130-095-760)). On day 13–15, cells were transferred into cytokine-free 
medium and on the following day, peptide-specific expansion of T cells 
was verified by IFN-γ ELISpot or ICS. IFN-γ ELISpot assays were per-
formed as described previously20. Briefly, cells were plated at a den-
sity of 5 × 104 cells per well and restimulated with 10 µg ml−1 mutant 
H3K27M (p14-40) peptide, 10 µg ml−1 wild-type H3 (p14-40) peptide, 
left unstimulated as a negative control or exposed to PMA/ionomycin 
(0.02 µg ml−1 and 1 µg ml−1) as a positive control. The assay was stopped 
after 44 h and spots were quantified using an ImmunoSpot Analyzer 
(Cellular Technology).

TCRβ deep sequencing
Genomic DNA from tissue, blood or CSF of patient ID 1 was isolated 
using the DNeasy Blood and Tissue kit (QIAGEN, 69504). Libraries 
for TCR β-chain deep sequencing were prepared using the hsTCRB 
kit V4b (Adaptive Biotechnologies) according to the manufacturer’s 
protocol and sequenced on an Illumina MiSeq device. Sequencing 
was performed by the Genomics & Proteomics Core Facility (German 
Cancer Research Center). Data were processed (demultiplexing, trim-
ming, gene mapping) using the immunoSEQ platform from Adaptive 
Biotechnologies. Motif analysis was carried out using the XSTREME 
Tool29 after removing the recurring CAS sequence from all top ten TCRs 
from TCRβ deep sequencing. Shuffled input sequences were used as 
control sequences.

Statistical analysis
All statistical analyses were carried out in R v.3.6.1 and used a sig-
nificance level of 5%. Association of patient characteristics with 
H3K27M-specific immune responses were assessed by Fisher’s exact 
test. The R software packages used to calculate statistics and to 
illustrate the data were grid_3.6.1, stats_3.6.1, graphics_3.6.1, grDe-
vices_3.6.1, utils_3.6.1, datasets_3.6.1, methods_3.6.1, base_3.6.1, 
reshape2_1.4.3, survival_3.2-13, survminer_0.4.9, ggpubr_0.2.5, 
magrittr_2.0.3, ggplot2_3.3.2, swimplot_1.2.0, circlize_0.4.9, RColor-
Brewer_1.1-2, ComplexHeatmap_2.5.1 and openxlsx_4.1.4.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
The primary data that support the findings of this study are not openly 
available due to patient privacy. Access can be granted by contacting 
K.S. (k.sahm@dkfz.de) and requires a data-access agreement; requests 
will be replied to within 4 weeks. All primary data are stored on the 
controlled access repository of the University Hospital Mannheim. 
Referenced datasets were not used in the study. Source data are pro-
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Extended Data Fig. 4 | H3K27M neoepitope co-localization with HLA class  
II-DR on tumor cells and myeloid cells in patients ID 2, ID 3, ID 4, ID 6 and  
ID 7. a–c, Proximity ligation assay (PLA) of primary tumor tissue of patient ID 2, 
ID 3, ID 4, ID6 and ID7 from top to bottom with H3K27M and HLA-DR antibodies 
(red) in combination with 4’,6-Diamidino-2-phenylindol (DAPI) nuclear staining 
(blue) alone (a), co-staining with glial fibrillary acidic protein (GFAP) (green) (b) 
and co-staining with ionized calcium-binding adapter molecule 1 (IBA1) (green) (c).  

Scale bar in white = 30 μm; in gray = 10 μm. e, f, Automated segmentation of PLA 
spots (e) and nuclei (f) following rolling ball background subtraction, filtering 
with gaussian blur and maxima detection of visual field in a. Scale bar in gray = 
10 μm. f, g, PLA as in a and co-staining as in b of H3-wildtype glioblastoma. Scale 
bar in white = 30 μm. h, Pearson correlation of PLA spots per cell with IHC score of 
HLA-DR expression across 7 patients with available FFPE tissue. Two-sided t-Test 
was used.
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repeated independently two times with similar results.
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Extended Data Table 1 | Quantitative patient characteristics
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Extended Data Table 2 | HLA types of patients, p-values from fisher exact test of association of HLA type and 
H3K27M-specific immune response

G-codes are listed if typization exactly matched one G-code. For cases with shorter allele-strings (that is less allelels than G-code) or for cases with longer allele-strings (that is more possible 
results) NMDP-code is listed. Two.sided t-Test statistics was used.
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