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Substitution of lysine 27 to methionine in histone H3 (H3K27M) defines
anaggressive subtype of diffuse glioma. Previous studies have shown

that a H3K27M-specific long peptide vaccine (H3K27M-vac) induces
mutation-specificimmune responses that control H3K27M" tumorsin
major histocompatibility complex-humanized mice. Here we describe a
first-in-human treatment with H3K27M-vac of eight adult patients with
progressive H3K27M" diffuse midline glioma on a compassionate use basis.
Five patients received H3K27M-vac combined with anti-PD-1 treatment
based on physician’s discretion. Repeat vaccinations with H3K27M-vac
were safe and induced CD4" T cell-dominated, mutation-specificimmune
responses in five of eight patients across multiple human leukocyte
antigen types. Median progression-free survival after vaccination was

6.2 months and median overall survival was 12.8 months. One patient

with a strong mutation-specific T cell response after H3K27M-vac showed
pseudoprogression followed by sustained complete remission for

>31 months. Our data demonstrate safety and immunogenicity of
H3K27M-vacin patients with progressive H3K27M" diffuse midline glioma.

H3K27M* diffuse midline gliomas (DMGs) are aggressive, incurable
primary central nervous system (CNS) tumors in children and young
adults'. They are characterized by a clonal and mutually exclusive sub-
stitution of lysine 27 to methionine (K27M) in canonical (H3.1/H3.2) or
noncanonical (H3.3) histone H3 (ref. 2) in anatomically distinct oligo-
dendrocyte precursor cells**. As these tumors mainly form in midline
CNSstructures, surgical treatment options remain limited*®. Response
to chemoradiation is poor and palliative radiotherapy remains the
only standard-of-care treatment with proven benefit®, resulting in a
median overall survival (OS) between 10 and 15 months after initial
diagnosis’. Immune checkpointinhibitors (ICls), such as PD-1blockade

are successfully used incombinatorialimmunotherapeutic approaches
in high-grade gliomas®; however, in DMG intratumoral heterogene-
ity’, low PD-L1 expression'’, low mutational burden" and the nature
of chemotherapy-induced mutations'" may explain why no survival
benefit has been observed using ICI monotherapy** so far, though sev-
eral clinical trials investigating the efficacy and safety of PD-1 block-
ade are ongoing (NCT02359565, NCT02793466, NCT03130959 and
NCT01952769).

New immunotherapeutic approaches with specificity for DMG
include disialoganglioside GD2-targeting chimeric antigen recep-
tor (CAR) T cell therapy®, the oncolytic virus DNX-2401 (ref. 16)
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Fig.1| Patient characteristics at baseline and individual disease trajectories.
a, Baseline characteristics of eight patients with progressive DMG H3K27M*
beforeinitiation of treatment with H3K27M-vac. Age specified in years, tumor
size measured as product of maximal orthogonal diameter on contrast-enhanced
T1-weighted MRI sequences (mm?); cumulative dose of intensity-modulated
radiotherapy measured in Gy; TMZ, temozolomide (75 mg m2body surface area

(BSA)) daily during radiotherapy; CCNU, lomustine (110 mg m2BSA d1, TMZ

mg m~2BSA d2-6, q42d for six cycles); oral dexamethasone intake inmg d".
Brainillustration taken from Adobe Stock Standard under License ID 222738500.
b, Swimmer plot depicting clinical course since initial diagnosis, vaccine
administration and time point of first H3K27M-specificimmune responses in
peripheral blood (n = 8 patients).

and peptide vaccination” ", A short H3.3K27M,,_;; peptide vaccine
induced H3.3K27M-reactive CD8" T cells in human leukocyte anti-
gen (HLA)-A*02:01" patients with newly diagnosed H3.3K27M* DMG".
Whether such HLA-A*02:01-restricted CD8" T cells recognize and kill
HLA-A*02:01" tumor cells expressing and processing endogenous
H3.3K27M remains controversial'”'’, We have previously shown that
a long H3K27M,,_,, peptide vaccine, H3K27M-vac, induced CD4"*
T cell-mediated immune responses in a major histocompatibility
complex (MHC)-humanized mouse tumor model™. Here, we present
afirst-in-human administration of H3K27M-vac to eight patients with
progressive H3K27M* DMG.

Results

Atotal of eight adult patients with progressive, histologically con-
firmed H3K27M* DMG after standard therapy options and not eligible
tobe enrolled inthe currently ongoing multicenter, phase I clinical
trial (NCT04808245) received H3K27M-vac on a compassionate use
basis. Four patients were female and four patients were male (Fig. 1a),
mean patient age was 28.0 + 5.3 years (mean + s.d.) and Karnofsky
performance index (KPI) was at least 70% for all patients. All patients
had unequivocal progressive disease (PD) as assessed by response
assessment in neuro-oncology (RANO) criteria before the start of
vaccinations. Tumors were located in the thalamus (n = 3), the pons
(n=2), the spinal cord (n=2) and the parietal lobe (n =1), with one
patient having multilocular disease in the cerebellum and the lumbar

spinal cord. Two patients had undergone complete resection, three
patients had partial resection and three patients had biopsies upon
initial radiographic diagnosis. At first dosing, two patients took
dexamethasone at a dose of 2 mg d* and one patient took 4 mg d™*
(Extended Data Table 1). All eight patients had previously received
radiotherapyin 30 fractions to a total dose ranging from 54 to 60 Gy
as well as chemotherapy with temozolomide. One patient (ID 7)
received lomustine q42d following first PD and continued this ther-
apy concomitant to vaccinations. Median tumor size as judged by
the product of maximal orthogonal tumor diameter at baseline was
407.8 +589.4 mm? (median +s.d.).

H3K27M-vac was well tolerated

Patients received subcutaneous injections of H3K27M-vac bi-weekly
for 6 weeks followed by monthly administration for 4 months and quar-
terly thereafter until PD (Fig. 1b, Fig. 2a and Supplementary Fig. 1).
Five patients (62.5%) received H3K27M-vac in combination with
anti-PD-1dependent on the treating physician’s discretion. Before
eachvaccination, adverse events (AEs) were assessed according to the
Common Terminology Criteria for Adverse Events (CTCAE) v.5.0. In
addition, the treatment schedule included monthly blood sampling for
immune monitoring for 6 months and every 3 months thereafter as well
asradiographic assessmentevery 3 months. Analysis of cerebrospinal
fluid (CSF) was performed if clinically indicated (Fig. 2a). The duration
of H3K27M-vac treatment ranged from 78 t0 1,295 d (median 158 d)
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Fig. 2| Treatment schedule, safety and immunogenicity of H3K27M-vac.
a, Treatment scheme for H3K27M-vac administration. b, Treatment-related
AEs occurringin the observation period graded by CTCAE v.5.0. Two injection
site reactions were related to H3K27M-vac and the remaining AEs were

either judged to be related to concomitant medication or disease.

. H3K27M-vac unrelated

GGT, gamma-glutamyltransferase; ALT, alanine aminotransferase; AST, aspartate
aminotransferase. ¢, T cellimmune responses as a function of time measured

by difference in mean spot-forming units (s.f.u.) in IFN-y ELISpot assay between

4 x10° peripheral blood mononuclear cells (PBMCs) stimulated with H3-mut and
H3-wt control peptide.

andthe duration of observationsince the start of H3K27M-vac admin-
istration ranged from 191to 1,414 d (median 391 d). Patients received
amedian of 8 + 4.9 (median + s.d.) vaccinations. One patient (ID 2)
discontinued treatment with H3K27M-vac after eight vaccinations,
butresumed treatment 20 months later. No regimen-limiting toxicity
was observed during the observation period. Two patients (25%) expe-
rienced CTCAE grade linjection site reactions that were attributed to
the treatment with H3K27M-vac (Fig. 2b). Eight other CTCAE grade 1
eventsinthe observation period were judged to be treatment related,
but unrelated to H3K27M-vac; higher grade treatment-related toxici-
ties have not occurred.

H3K27M-vac induced neoepitope-specificimmune responses

We observed H3K27M-vac-induced peripheral T cellimmune responses
defined by mutation-specific interferon (IFN)-y enzyme-linked immu-
nosorbent spot (ELISpot) responses detected in peripheral blood in five
of eight treated patients (62.5%; Fig. 2c). The median time to first detect-
able H3K27M-specificimmune response was two vaccinations (median,
interquartile range (IQR) 2-4), corresponding to 4 weeks (median,
IQR 4-10) since the start of treatment. In four out of five responding
patients, the specific ELISpot responses detected in peripheral blood
decreased over time (Extended Data Fig.1). In this eight-patient cohort,
there was no apparent association between H3K27M-specific peripheral
immuneresponse and age (P=0.60), sex (P=0.46),KPI (P=0.75), extent
of resection (P=0.94), tumor size (P = 0.08), time from histological
diagnosis to start of vaccination (P = 0.06), concomitant anti-PD-1
treatment (P = 0.57), dexamethasone intake at baseline (P=0.15) or
HLA allelotype (Extended Data Table 2 and Extended Data Fig. 2a-c).

Patients withimmune responses showed radiographic
improvement

Transient radiographic improvement defined as reduction of the
axial contrast-enhancing tumor areawas observed in six patients and
occurred shortly after first detection of H3K27M-specificimmune
responsesin all five patients withimmune response (Fig. 3a, Extended
DataFig.3a,band Supplementary Figs.2-9). Median progression-free

survival (PFS) after start of vaccination across all eight patients was
6.2 months and median OS was 12.8 months (Fig. 3b,c). One patient
treated with H3K27M-vac without concomitant anti-PD-1therapy (ID1)
showed radiographic pseudoprogression (PsPD) according toimmuno-
therapy response assessmentin neuro-oncology (iRANO) criteria within
6 weeks after first detection of mutation-specific peripheralimmune
response (Fig. 3a,d, Extended Data Fig. 3c and Supplementary Fig. 2).
Another patient with large contrast-enhancing tumor mass at baseline
and concomitantanti-PD-1therapy (ID 8) showed an early radiographic
progression followed by disease stabilization from week 22 onwardsin
linewith alatency of 18 weeks until first detection of a mutation-specific
peripheralimmune response (Fig. 3e and Supplementary Fig. 9).

H3K27M neoepitope colocalized with HLA class II-DR
Proximity ligation assay (PLA) of formalin-fixed paraffin-embedded
(FFPE) primary tumor tissue of seven patients for which tissue was avail-
able demonstrated that the H3K27M neoepitope colocalizes with HLA
classII-DR expressed by glial fibrillary acidic protein (GFAP)-expressing
tumor cells as well as single ionized calcium-binding adaptor molecule
1 (IBA1)-positive professional antigen-presenting cells (APCs) in all
seven patients (Fig. 4a-cand Extended DataFigs. 4a-cand 5c-h,j-o0),
suggesting presentation of the H3K27M neoepitope and restimula-
tion of H3K27M-specific tumor-infiltrating HLA-DR-restricted T cells.
Immunohistochemistry showed a clear interindividual heterogeneity
of MHC class II-DR expression ranging from 22% to 85% positive cells as
well as PLA signal intensity (295-2,100 spots per visual field) with the
two patients experiencing the most favorable outcome after detection
of aH3K27M-specific peripheralimmune response (ID1and ID 8) show-
ing top scores of 82% and 85% MHC class II-DR positive cells and 2,100
and 1,937 PLA spots per visual field, respectively (Fig. 4d,e, Extended
DataFigs.4hand 5a,b,i and Supplementary Fig. 10).

Mutation-specificimmune responses were CD4"

T cell-dominated

In vitro restimulation of peripheral CD4" and CD8" T cells with H3
mutant peptide (H3-mut) or wild-type peptide (H3-wt) revealed that
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Fig. 3| Clinical response to H3K27M-vac. a, Tumor size in mm?*as a function
oftime in months from start of vaccination. Size determined by product of

maximal orthogonal diameters on T1-weighted contrast-enhanced MRIimaging.

Dots indicate measurements that are considered measurable by iRANO criteria
(cerebral lesion with diameter >10 mm). b, ¢, PFS (b) and OS (c¢) since the start
of vaccination. d, T1-weighted with contrast enhancement (CE) MRI sequences
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of PsPD of patient ID 1at baseline, week 10 and week 34. White arrows indicate
tumor lesion with PsPD at week 10. e, T1-weighted with CE MRI series of patient
ID 8 with early progression between baseline and week 12 followed by disease

stabilization concurrent to first detectable H3K27M-specificimmune response in

peripheral blood in week 18.
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Fig. 4 |H3K27M neoepitope colocalizes with HLA class II-DR on tumor
cellsand myeloid cells. a-c, PLA of primary tumor tissue of patient ID 1 (top)
and ID 8 (bottom) with H3K27M and HLA-DR antibodies (red) in combination
with4’,6-diamidino-2-phenylindol (DAPI) nuclear staining (blue) alone (a),
co-staining with GFAP (green) (b) and co-staining with IBA1 (green) (c). AllPLAs
were repeated independently twice with similar results. Scale bar in white,

PLA HLA-DR DAPI IBAT

PLA HLA-DR DAPI IBA1

ID1 d
. 'D.8 D1
80 - R?=0.9497 .
x P=00002 B3 b
<T
-
T 60 ID7
(o) e
jo))
s
3
8 40 4
&
D4 16
20 A T T T T
500 1,000 1500 2,000
PLA spots per visual field
ID8 e ID8

PLA HLA-DR DAPI

30 pum;ingray, 10 pm. d, Pearson correlation of PLA spots per visual field with
immunohistochemistry score of HLA-DR expression across seven patients
with available FFPE tissue. A two-sided ¢t-test was used. e, Result of automated
segmentation following rolling ball background subtraction, filtering with
Gaussian blur and maxima detection. Scale bar in white, 30 pm.

Nature Medicine | Volume 29 | October 2023 | 2586-2592

2589


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-023-02555-6

ID1 b D4 H3- c D4 H3- f
s {0020 c Swt o0 c S mut Percentage TNF-o CD4*
) e ' Negative H3-mut - H3-wt
B Contro O B Positive T
Bl Ant-MHC1T & 1074
) < o1 1 10
Bl AntiMHCH B
L 10° 4
o T wset ([ NIRRT EETE
200 . -10° 4
8 *x
e Ex vivo ICS
2 1504 d CD8 H3-wt e CD8 H3-mut
- 10° 4 0.26 0.0 Jozs 0.092
2 100 | i Post-expansion
x
Ko g 10 ] Ics
S 50 <
@ Lo’ ] eepegegoeeror
0+ = Ry i ]
2 °of e 1 e R EEEEEEE
3 5 5 [ o (3] (] (5] L) Q (0] (5} (5
Weeks -10° 4 99.7 0.057 J99.0 o7 T 22222222232 =
-10° o 10° 10 10° -10° 0 10° 10 10° D1 D 4 D5 D6 D7 D8
IFN-y BV421 IFN-y BV421
h k l
g ID 1 week 18 ID 1 week 118
o 10° 4 1.5 TCR clonotype
2 10 1 6
2 2 7
& 10° 2 3 8
8 o1 S 1.0 - 4 9 @
5 = 5 10 @
_‘IO 4 )
bl (o}
. . o
I ID 8 week 0 ) e
10° 4 § 054
()
810"
(%]
>
@ 10° o
§ 0 1 1 ‘ ‘ ‘ : : TCR 3 CASSMYLTCTNTEAFE
O ot Blood Blood Blood Pr'imary CSF TCR 4 CASSGTGSYTE
H B PR A PUR A base- week4 week tissue week
1070 10" 107 10 <1070 10" 10" 10 line 10 34 TCR 6 CASSLGQANS L F

FoxP3 PE
I H3K27M reactive

FoxP3 PE
Il H3K27M non-reactive

Fig. 5| H3K27M-specificimmune responses are CD4+T cell-mediated.

a, Suppression of H3K27M-specific IFN-y-ELISpot response by anti-MHC class
ITantibody (anti-MHCII) (n = 2 biologically independent experiments (BIEs)),
but not by anti-MHC class I antibody (anti-MHC) (n = 3 BIE) compared to
baseline (n =3 BIE) 18 (P=0.002; P=0.008, top to bottom) and 22 (P=0.001;
P=0.006, from top to bottom) weeks since start of H3K27M-vac treatment

in patient ID 1. Two-sided t-test, not adjusted for multiple comparisons. Dots
mark individual data points, bar plots show the mean and error bars indicate
the s.d. **signifies P < 0.01, *** signifies P< 0.001. b-e, Flow cytometry-based
intracellular IFN-y and tumor necrosis factor (TNF)-a detection in H3K27M-
peptide expanded PBMCs restimulated with H3-wt (b,d) or H3-mut (c,e),
gated on CD4" (b,c) and CD8" (d,e) T cell subsets. f, Difference in percentage
of TNF-a-expressing cells among all CD4" T cells between T cells stimulated
with H3-mut and H3-wt either directly (ex vivo intracellular cytokine staining

(ICS)) or following expansion of T cells with H3K27M peptide (post-expansion
ICS). Samples were analyzed fromID1,ID 4,ID 5,1D 6,ID 7 and ID 8 at the weeks
indicated. ELISpot responses in the first column are displayed as in Fig. 1d.
g-j, H3K27M-reactive, TNF-a* CD4" T cells (orange) among all CD4" T cells
(gray) did not comprise CD25'FoxP3" regulatory T cells. Depicted are ex vivo
ICS data from patient ID 1 week 18 (g) and week 118 (h) as well as patient ID 8
week O (i) and week 18 (j). k, Clonotype proportion of the ten most abundant
H3K27M-vac expanded CD4" T cells among all sequenced T cells in primary
tissue, CSF and peripheral blood across different time points of patient ID 1.

1, Motif plot of sequence similarities of the CDR3f region of top ten TCRs

ink after removal of recurring CAS sequence in all ten TCRs. Overlap of CDR3f3
of TCR3, TCR4 and TCRé6 detected in CSF with motifis indicated by color

and underline.

H3K27M-specificimmuneresponses are CD4* T cell-mediated and can
be suppressed by MHC class II-, but not MHC class I-blocking antibod-
ies (Fig. 5a-e). Intracellular cytokine staining of peptide-stimulated
PBMCs confirmed presence of H3K27M-specific CD4* T cell responses
with no evidence of H3K27M-vac-induced CD25'FoxP3* regula-
tory T cells across multiple patients and time points (Fig. 5f-j and
Supplementary Figs. 11-14). After PsPD, three out of the top ten
vaccine-induced, H3K27M-expanded CD4" T cell receptor (TCR)
clonotypes from peripheral blood showing sequence similarities
of the CDR3p region were detectable in the CSF of patientID 1, who
subsequently went into sustained complete remission for >31 months
(Fig. 5k,1).

Discussion

This first-in-human treatment with H3K27M-vac provides evidence
of safety and immunogenicity against the clonal driver mutation
H3K27M in patients with recurring H3K27M* DMG. While this small
cohortof patients withadvanced-stage DMG, individual concomitant
anti-PD-1treatment and limited availability of biomaterials, includ-
ing post-treatment tumor tissue limits robust conclusions on overall
efficacy, the median OS of 12.8 months following a H3K27M-specific
immune response and the fact that one patient exhibited sustained
complete remission for >31 months are encouraging. Three general
conclusions for neoepitope-targeting peptide vaccines for the treat-
ment of diffuse gliomas can be drawn from these results.
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First, the use of long peptides, such as the 27-mer H3K27M-vac, is
safeirrespective of concomitantanti-PD-1therapy andsuitable toinduce
mutation-specific CD4" T cell responses in patients with H3K27M* DMG.
The induction of CD4" T cell-dominated immune responses by long
mutation-specific peptide vaccines is similar to that observed in 28 of
30 patientsinafirst-in-human phase I trial of the long peptide vaccine
IDH1-vac in patients with newly diagnosed astrocytomas®>*. Notably,
CD4" T cell phenotyping following H3K27M-vac revealed no evidence
ofinduction ofimmunosuppressive regulatory T cells. While the immu-
nogenicity of the short peptide vaccine H3.3K27M, ;s is restricted to
HLA-A*02" patients”, we provide evidence of presentation of H3K27M
neoepitope on MHC class Ilontumor cellsand on APCs across multiple
HLA types (Fig.4). Whilekilling activity of H3K27M-specific CD8" T cells
against HLA-A*02" tumor cells with endogenous H3.3K27M expression
remains controversial” "’ we have recently demonstrated that CD4"
Tcellinteraction with peptide MHC class Il in glioma-infiltrating myeloid
cellsis critical for the fitness of glioma-infiltrating CDS* T cells®. Further
analysesinalarger clinical trial cohort will assess the suitability of MHC
class Il expression and neoepitope presentation in DMG as predictive
markers for response to H3K27M-vac.

Second, both H3K27M-vac and IDH1-vac target clonal driver muta-
tionsin proteinsthatare expressedin all cells of primary and recurrent
tumors and are functionally relevant for tumor growth®*, Lack of clon-
ality, in contrast, may explain why a peptide vaccine against EGFRVIII
and EGFRvllI-targeting CART cells have failed to yield clinical benefits
inglioblastomas® . Inthe cohort presented here, we observedinitial
tumor regression in six of eight patients with clinical stabilization for
more than 6 months in four patients. Lack of post-treatment biop-
sies precluded the analysis of possible immune evasion, for instance
through lack of presentation.

Third, H3K27M-vac-induced T cell clones were detected in both
peripheral blood and CSF and expanded concurrently to radiographic
tumor regression. Although a conclusive assessment of the diversity
of H3K27M-expanded TCRs is not possible with only a few clonotypes
from a single patient, motif analysis showed sequence similarities of
the CDR3[ region. H3K27M-vac induced immune responses against
H3K27M across different patient HLA class I types with alatency of up
to 18 weeks irrespective of concomitant immune checkpoint block-
ade. Although sustained mutation-specificimmune responses were
detected in 80% of responding patients in our cohort, the strength of
H3K27M-vac-induced peripheralimmune responses tended to decrease
over timeand in one patient (ID 5) apreviously existing ELISpot response
was no longer detectable immediately before tumor progression. As a
consequence, administration of H3K27M-vac to patients with newly
diagnosed H3K27M" DMG concomitant to standard-of-care first-line
therapy could maximize its therapeutic benefit by allowing more time
for CD4" T cell-mediated antitumor immunity to become effective. An
active multicenter, phase I clinical trial for adult patients with newly
diagnosed H3K27M"DMG integrates H3K27M-vacin combination with
atezolizumab into standard-of-care radiotherapy (NCT04808245).

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability areavailable at https://doi.org/10.1038/s41591-023-02555-6.
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Methods

Patient selection and treatment schedule

Patients received H3K27M-vac between August 2017 and Novem-
ber 2022 at the University Hospitals of Heidelberg and Mannheim.
Treatment was approved by the institutional review board and ethics
committee. All patients provided written signed informed consent
accordingto CARE guidelines and in compliance with the Declaration
of Helsinki principles. Patients received no compensation for partici-
pation in this compassionate use program. Only adult patients of all
sexes and genders with unequivocal disease progression of histologi-
cally confirmed H3K27M"DMG were offered to receive treatment with
H3K27M-vac. Sex was determined based on self-report. Concomitant
anti-PD-1therapy was allowed depending on the treating physician’s
discretion. As anti-PD-1 therapy is not approved for the treatment of
DMG in Germany, the exact anti-PD-1 drug was dependent on avail-
ability. K27M substitution was determined by immunohistochemistry,
hence allowing no differentiation between mutations in H3F3A and
HIST2H1B/C. Exclusion criteriaincluded concomitant treatment with
dexamethasone (or equivalent) >4 mg d™, Karnofsky performance
index (KPI) <70 and age <18 years. All patients had received radio-
therapy in combination with chemotherapy with TMZ before the start
of therapy. Radiation doses and the number of chemotherapy cycles
at a dose of 200 mg m™ are specified for each patient in Extended
Data Table 1. Treatment consisted of vaccinations with H3K27M-vac
inweeksO0,2,4,6,10,14,18 and 22, but was stopped in case of PD. After
week 22, patients with stable disease were offered to continue vacci-
nations every three months until PD. MRI assessment was conducted
every 12 + 2 weeks. Patients were assessed for AEs by CTCAE v.5.0 on
every visit for vaccination and every 12 weeks thereafter. According
to good clinical practice, an AE was defined as any untoward medical
occurrence during treatment with H3K27M-vac irrespective of causal
relationship. AEs were judged to be treatment-related if the relationship
totreatment was ‘possible’, ‘probable’ or ‘definite’. Disease progression
and events which are unequivocally related to disease progression
regardless of their outcome were not considered AEs. One brief partial
seizure and one brief generalized seizure were not associated with
disease progression, but were judged to be disease related in analogy
to most clinical trials in neuro-oncology. All remaining AEs that were
considered disease related occurred less than a week before MRI that
showed PD. Regimen-limiting toxicity was defined as an occurrence of
any treatment-related AE >grade 2 during the treatment phase.

H3K27M-vac treatment

H3K27M-vac consists of 300 pg H3K27M 27-mer peptide (p14-40,
KAPRKQLATKAARMSAPSTGGVKKPHR) synthesized by the good
manufacturing practice (GMP) facility of the University of Tiibingen,
Germany and was emulsified in Montanide (ISA50) by the GMP facility
at the University Hospitals of Heidelberg and Mannheim, Germany at
most 24 h before application as described elsewhere*. H3K27M-vac
was injected subcutaneously into the abdominal skin or thigh using
20-gauge needles or 21-gauge needles. The place for the subsequent
injections were as close as possible to the previousinjection site for all
vaccinations. Ideally, the same draining lymph node was targeted for
allthe vaccinations. In cases of unacceptable local site reactions to the
vaccination or imiquimod, the injection sites were changed but were
still as close as possible to the original injection site. In such a case,
subsequent vaccinations were applied to this newly chosen vaccination
site (Extended Data Fig.1a). At15 min afterinjection topical imiquimod
(5%, Aldara; one sachet) was applied to an area of 5 x 5 cm around the
site of injection of the vaccine and sealed with 5 x 5 cm of opsite flexifix
(Smith&Nephew, product no. 7478029). Patients were instructed to
leave Aldara on the skin for approximately 8 h and to wash the area
where Aldarawas applied with mild soap and water afterwards. At24 h
after vaccination patients applied another sachet of Aldaraand washed
the area approximately 8 h afterwards as described above. Labour LS

s.e.&Co.in Germany performed quality controls for content, sterility
and absence of endotoxin for each emulsion.

Disease assessment

Clinical status was assessed during patient visits by a clinical
neuro-oncologist. MRI assessment, including diagnosis of PsPD,
applied the iRANO criteria on standardized MRIs that were obtained
at least every 3 months. As in the NOA16 study?’, PsPD was defined as
anincrease in the size of the tumor on T2-FLAIR MRI sequences and/
or the new appearance or enlargement of contrast-enhancing lesions
followed by stabilization or regression on follow-up MRI. Tumor sizes
for Fig. 3a were determined by the product of maximal orthogonal
diameters on T1-weighted contrast-enhanced MRI imaging and cer-
ebral lesions were classified into measurable and non-measurable
lesions based on iRANO criteria (cerebral lesion with both maximal
orthogonal diameters >10 mm were classified as measurable).

PBMCisolation

Heparinized blood from patients was diluted with phosphate-buffered
saline (PBS) followed by density-gradient centrifugation (800 g with-
out brake at room temperature) in Leucosep tubes (Greiner Bio-One)
that contained Biocoll Separation Solution (Biochrom). Isolated
PBMCs were subsequently frozen in 50% freezing medium A (60%
X-Vivo20, 40% fetal calf serum (FCS)) and 50% medium B (80% FCS
and 20% dimethylsulfoxide) and stored in liquid nitrogen at 140 °C
until analysis.

IFN-y ELISpot assays of PBMCs

After hydrophilization with 35% ethanol, ELISpot HTS plates with
white-bottom (Millipore, Merck, MSIPS4W10) were coated overnight
at4 °Cwith anti-humanIFN-y (1-D1K, Mabtech, 3420-3-250) and blocked
with X-Vivo20 (Lonza) containing 1% BSA. PBMCs were thawed, rested
in X-Vivo20 medium for 16 h, plated at 3 or 4 x 10° cells per well asindi-
cated and stimulated with 100 pl peptide solutionata concentration of
20 pg ml™. Mutant H3K27M (p14-40, KAPRKQLATKAARMSAPSTGGVK-
KPHR), wild-type H3 (p14-40, KAPRKQLATKAARKSAPSTGGVKKPHR)
or MOG (p35-55, MEVGWYRPPFSRVVHLYRNGK) at equal concentra-
tions were used for stimulation. Aqua ad iniectabilia (Braun) with
10% dimethylsulfoxide (vehicle) at equal volume to peptide solution
were used as negative controls and 1 pg staphylococcal enterotoxin B
(Sigma-Aldrich) per well as well as 0.05 pg CMV with 0.05 pg AdV per
wellwere used as positive controls. In selected experiments, 10 pg ml™*
MHC I (W6-32) or 90 pg ml™ MHC II (Tii39) blocking antibodies were
added to peptide-stimulated wells. After 40 h of incubation, bioti-
nylated anti-human IFN-y antibodies (7-B6-1, Mabtech, 3420-6-250),
streptavidin-ALP (Mabtech, 3310-10-1000) and ALP color development
buffer (Bio-Rad, 170-6432) were used for detection of IFN-y-producing
cells. AnImmunoSpot Analyzer (ImmunoSpot/CTL Europe) was used
for quantification of spot counts. Measurements were performed in
triplicate with rare exceptions where duplicates had tobe used due to
low cellnumbers. T cell responses were defined as a significantly higher
number of s.f.u. after stimulation with K27M-mutant H3 compared to
wild-type H3, as assessed by a two-sided t-test with a false discovery
rate of 5% as determined by a two-stage step-up method of Benjamini
Krieger and Yekutieli,imposed for each patient individually.

Flow cytometry

T cell cytokine secretion was measured using flow cytometry-based ICS
exvivoand aftera2-weekin vitro restimulation. Briefly, PBMCs from a
pre- or post-vaccination time point were thawed, rested overnight at
2-10 x 10° cells mI™ in cytokine-free X-Vivo20 (Lonza, BEO4-380Q) and
on the next day restimulated either immediately (ex vivo ICS, 1 x 10°
PBMCs per setup) or after in vitro expansion (0.4 x 10° cells). PBMCs
were stimulated for 6 h with H3K27M-mut or H3K27M-wt peptide at
20 pg ml™. Unstimulated cells and PMA/ionomycin (0.05 pg ml™and
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1 pg mi™)-stimulated cells served as positive and negative controls,
respectively. After 1 h of incubation, protein transport inhibitor bre-
feldin A (GolgiPlug, BD, 555029) was added to each well at a1:1,000
dilution. At the end of restimulation, cells were collected, incubated
with alive-dead discriminator (Fixable Viability Dye APC-R700 in PBS,
Invitrogen, 564997) and stained with extracellular backbone antibod-
ies (CD3-Fitc, clone HIT3a, BD, 561802), CD4-BV605 (clone SK3, BD,
565998), CD8-PerCP-Cy5.5 (clone RPA-T8, Invitrogen, 45-0088-42)
and either CD45RA-APC-H7 (clone 5H9, BD, 561212), CCR7-BV711
(clone 150503, BD, 566602), PD-1-PE (clone EH12.1, BD, 560795) or
CD25-BV60S5 (clone 2A3, BD, 562660) and HLA-DR-APC-H7 (clone
G46-6, BD, 561358) in FACS buffer (PBS + 2% FCS, Biochrom). Subse-
quently, intracellular staining was performed with IFN-y-BV421 (clone,
4S.B3,BD, 564791) and TNF-a-APC (clone, Mabll, BioLegend, 502912)
and FoxP3-PE (clone 259/C7, BD, 560046) antibodies using Cytofix/
Cytopermreagents (BD Biosciences) according to the manufacturer’s
instructions. Staining of expanded cells was limited to backbone
antibodies and intracellular staining of IFN-y and TNF-a. Staining was
carried outat 4 °C protected fromlight. All antibodies used have been
titrated to achieve optimal signal to noise rations. Cells were acquired
onaBDFACS Lyric and analyzed using FlowJo analysis software v.10.8.1
(Extended Data Fig. 5).

Proximity ligation assay

Baseline paraffin-embedded glioma tissue was used for PLA as
described in Bunse et al.?® H3 wild-type glioblastoma tissue from
the archives of neuropathology were obtained with approval by the
institutional review boards (Ethikkommission) to serve as negative
control for PLA staining. Nonlinear adjustment (gamma changes)
was used for visualization. Immunofluorescence co-staining was
performed using mouse monoclonal anti-human GFAP (1:2,000 dilu-
tion, Cell Signaling Technology, 3670), rabbit polyclonal anti-human
IBA1(1:100 dilution, Wako, 019-19741), and secondary antibodies used
were donkey anti-mouse Alexa Fluor 488 and donkey anti-rabbit Alexa
Fluor 488 (all 1:300 dilution, Molecular Probes, Invitrogen, A-21202
and A-21206). For segmentation of PLA spots and nuclei an in-house
developed macro for the ImageJ platform was used. Background was
subtracted using the rolling ball background subtraction, Gaussian
blur was used for filtering and foci as well as nuclei were segmented
using the Find Maxima tool.

Next-generation HLA typing

The QIAamp DNA Blood Mini kit (QIAGEN) was used to isolate genomic
DNA from PBMCs of patients. A total of 100 pl DNA solution with a
concentration of at least 20 ng pl™ was submitted at room temperature
for high-resolution HLA typing to DKMS, Germany. Briefly, at DKMS,
long-range PCRs were performed, amplicons were fragmented and
used for next-generation sequencing onanIllumina MiSeqdevice. The
full HLA class I gene and exons 2-5 of HLA class Il genes were analyzed
using the NGSengine (GenDx) software. Depending on the resolution,
typing results were delivered either as G-code or MAC/NMDP-code.

MHC Ilimmunohistochemistry

Immunohistochemical analysis was carried out on 3-um thick FFPE tis-
sue sections affixed onto StarFrost Advanced Adhesive slides (Engelbre-
cht), followed by drying at 80 °C for 15 min. Immunohistochemistry was
conducted using aBenchMark Ultraimmunostainer (Ventana Medical
Systems). The slides were pretreated with Cell Conditioning Solution
CC1 (Ventana Medical Systems) for 32 min at room temperature. The
primary antibody (MHCII,1:100 dilution, clone CR3/43, DAKO, Agilent)
wasincubated at 37 °Cfor 32 minand then the Ventana standard signal
amplification and UltraWash steps were performed. Counter-staining
was carried out with hematoxylin for 4 min, followed by bluing reagent
for4 min. The visualization of theimmunostaining was achieved using
the UltraView Universal DAB Detection kit (Ventana Medical Systems).

Scanning of the stained slides was accomplished using the Aperio AT2
Scanner (Aperio Technologies). QuPath (v.0.2.3) software was utilized
for image analysis, which involved determining the total number of
tumor cells within selected regions based on nuclear hematoxylin stain-
ing, as well as quantifying the total number of MHC II-positive cells in
eachimage. The primary read out was determined by calculating the
percentage of MHC II-positive cells/nuclei from each image.

Peptide-based T cell expansion assay

PBMCs were expanded under exposure to mutant H3K27M (p14-40)
peptide to enrich peptide-reactive T cell clones. Briefly, cells were
thawed, transferred into X-Vivo20 (Lonza, BE0O4-380Q) medium sup-
plemented with 2% AB serum (Sigma, H4522) and rested overnight as
described above. On day 1, cell suspensions were adjusted to 1 x10°
cells mI™ and half of the available volume was plated at 500 pl per well
intoa24-well plate. Allremaining cells were plated at the same density
in a second 24-well plate. Individual wells were pulsed with either (1)
4 pg mIH3-mut (p14-40), (2) 4 pg mI™ H3-wt (p14-40) or (3) no peptide
to control for unspecific expansion. Both plates were placedina37 °C
CO, incubator. After 4 h, non-adherent cells of the plate that was not
pulsed with peptide were plated ontop of peptide-pulsed cells at afinal
concentration of 1 x 10 cells ml™ and per well.

Cultures were supplemented with cytokine-containing mediumon
day4,7,9 and 11 by replacing half of the medium per well (final cytokine
concentrations per well were 50 IU mI™ interleukin (IL)-2 (Novartis),
25ng mI? IL-7 (Miltenyi, 130-095-367) and 25 ng mlI™ IL-15 (Miltenyi,
130-095-760)). On day 13-15, cells were transferred into cytokine-free
medium and on the following day, peptide-specific expansion of T cells
was verified by IFN-y ELISpot or ICS. IFN-y ELISpot assays were per-
formed as described previously®. Briefly, cells were plated at a den-
sity of 5 x10* cells per well and restimulated with 10 pg ml™ mutant
H3K27M (p14-40) peptide, 10 pg ml™ wild-type H3 (p14-40) peptide,
leftunstimulated as anegative control or exposed to PMA/ionomycin
(0.02 pg ml™and 1 pg ml™) as a positive control. The assay was stopped
after 44 h and spots were quantified using an ImmunoSpot Analyzer
(Cellular Technology).

TCRp deep sequencing

Genomic DNA from tissue, blood or CSF of patient ID 1 was isolated
using the DNeasy Blood and Tissue kit (QIAGEN, 69504). Libraries
for TCR B-chain deep sequencing were prepared using the hsTCRB
kit V4b (Adaptive Biotechnologies) according to the manufacturer’s
protocol and sequenced on an Illumina MiSeq device. Sequencing
was performed by the Genomics & Proteomics Core Facility (German
Cancer Research Center). Data were processed (demultiplexing, trim-
ming, gene mapping) using the immunoSEQ platform from Adaptive
Biotechnologies. Motif analysis was carried out using the XSTREME
Tool” after removing the recurring CAS sequence fromall top ten TCRs
from TCRp deep sequencing. Shuffled input sequences were used as
control sequences.

Statistical analysis

All statistical analyses were carried out in Rv.3.6.1 and used a sig-
nificance level of 5%. Association of patient characteristics with
H3K27M-specific immune responses were assessed by Fisher’s exact
test. The R software packages used to calculate statistics and to
illustrate the data were grid_3.6.1, stats_3.6.1, graphics_3.6.1, grDe-
vices_3.6.1, utils_3.6.1, datasets_3.6.1, methods_3.6.1, base 3.6.1,
reshape2_1.4.3, survival_3.2-13, survminer_0.4.9, ggpubr_0.2.5,
magrittr_2.0.3, ggplot2_3.3.2, swimplot_1.2.0, circlize_0.4.9, RColor-
Brewer _1.1-2, ComplexHeatmap_2.5.1and openxlIsx_4.1.4.

Reporting summary
Furtherinformation onresearchdesignisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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Data availability

The primary data that support the findings of this study are not openly
available due to patient privacy. Access can be granted by contacting
K.S. (k.sahm@dkfz.de) and requires a data-access agreement; requests
will be replied to within 4 weeks. All primary data are stored on the
controlled access repository of the University Hospital Mannheim.
Referenced datasets were not used in the study. Source data are pro-
vided with this paper.
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Extended Data Fig. 4 | H3K27M neoepitope co-localization with HLA class
1I-DR on tumor cells and myeloid cells in patientsID 2,ID 3,ID 4, ID 6 and

ID 7. a-c, Proximity ligation assay (PLA) of primary tumor tissue of patientID 2,
ID 3,ID 4, 1D6 and ID7 from top to bottom with H3K27M and HLA-DR antibodies
(red) in combination with 4/,6-Diamidino-2-phenylindol (DAPI) nuclear staining
(blue) alone (a), co-staining with glial fibrillary acidic protein (GFAP) (green) (b)

and co-staining with ionized calcium-binding adapter molecule 1 (IBA1) (green) (c).

Scale barinwhite =30 pum; in gray =10 um. e, f, Automated segmentation of PLA
spots (e) and nuclei (f) following rolling ball background subtraction, filtering
withgaussian blur and maxima detection of visual field in a. Scale bar in gray =

10 um.f, g, PLA asin aand co-staining as in b of H3-wildtype glioblastoma. Scale
barinwhite =30 pm. h, Pearson correlation of PLA spots per cell with IHC score of
HLA-DR expression across 7 patients with available FFPE tissue. Two-sided t-Test
was used.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-023-02555-6

a
ID 1 PLA segmentation

PLA HLA-DR DAPI

—

ID 1 blue channel

<
o
o
<
a
o
Q
<
|
T
<
—
o

=

ID 8 green channel

PLA HLA-DR DAPI GFAP

g

ID 1 nucl. segmentation

PLA HLA-DR DAPI GFAP

PLA HLA-DR DAPI

ID 1 green channel

PLA HLA-DR DAPI IBA1

<
o
=
<
a
o«
Q
<
-
I
<
—
o

ID 8 red channel

o
<
o
O]
o
<<
o
[any
o
<
-
I
<
—
a

PLA HLA-DR DAPI IBA1

ID 1 red channel

ID 1 blue channel

PLA HLA-DR DAPI GFAP
PLA HLA-DR DAPI GFAP

ID 1 red channel ID 8 nucl. segmentation i ID 8 blue channel

PLA HLA-DR DAPI GFAP

PLA HLA-DR DAPI

ID 8 blue channel ID 8 green channel ID 8 red channel

z z
o as}
o o
< <
o o
o [any
q o
< <
- -
T I
< <
- -
o o

Extended Data Fig. 5| PLA segmentation and single channels of PLA images c-h, j-o0, Single channels of PLA with co-stainings as indicated on the left for

of patientID1andID 8. a,b,i, Automated segmentation of PLA spots (a)

ID1and ID 8 fromimagesin Fig. 4a-c.Scale barin gray =10 pum.). All PLAs were

and nuclei (b, i) of ID1and ID 8 following rolling ball background subtraction, repeated independently two times with similar results.
filtering with gaussian blur and maxima detection. Scale bar in white =30 pm.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-023-02555-6

Extended Data Table 1| Quantitative patient characteristics

Patient ID ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 mean standard deviation
Age at start of vaccination 28.9 34.6 18.3 23.7 25.7 29.9 33.7 29.1 28.0 5.8
Dexamethasone dose at start of vaccination in mg/d 0 0 2 2 0 4 0 0 1.0 1.5
Product of maximal orthogonal tumor diameters at start (61 28 49 61 1621 271 615 1083 474 594
of vaccination mm?

Total # of vaccinations received 20 12 6 9 10 5 6 7 9.4 4.9
# of vaccinations to specific immune response in weeks (2 na 2 na 7 na 2 6 3.8 2.5
Time to H3 K27M-vac specific immune response in 4 na 4 na 22 na 4 18 10.4 8.9
weeks

Total dose of radiation in Gy prior to start of vaccination |59.2 60.0 60.0 60.0 54.0 54.0 60.0 60.0 58.2 2.9
Dose of radiation in Gy per fraction of radiation prior to |3.2 2.0 2.0 2.0 1.8 1.8 2.0 2.0 2.1 0.5
start of vaccination

Total dose of re-radiation after start of vaccination n.a. 2x 36 Gy |n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Chemotherapy with TMZ (75 mg/m?BSA daily) yes yes yes yes yes yes yes Yes n.a. n.a.
concomitant to radiation

Number of chemotherapy cycles with TMZ (200mg/m? |0 6 4 0 0 2 6 6 3 2.8
BSA) prior to start of vaccination

# of chemotherapy cycles with CCNU (110mg/m2BSA) [0 0 0 0 0 0 1 0 0.13 0.35
prior to start of vaccination

# of concomitant chemotherapy cycles with CCNU 0 0 0 0 0 0 3 0 0.38 1.06
(110mg/m2BSA)

# of cycles of concomitant therapy with pembrolizumab |0 48 0 0 0 0 0 7 6.88 16.8
(2mg/kg bw g21d)

# cycles of concomitant therapy with nivolumab (360mg (0 0 0 0 6 5 0 0 14 2.56
q21d)

# cycles of concomitant therapy with avelumab ( 0 0 0 3 0 0 0 0 0.375 1.06
10mg/kg bw g21d)
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Extended Data Table 2 | HLA types of patients, p-values from fisher exact test of association of HLA type and
H3K27M-specificimmune response

ID HLA- |HLA- [HLA- |HLA- [HLA-C_1 HLA-C_2 HLA-DRB1_1 [HLA- DQA1_2 HLA- HLA-DPB1_1 [HLA-

A1 |A2 |B_1 |B.2 DRB1_2 DQB1_1 DPB1_2
ID1 0301 (31:01 (07:02 |15:17 |07:01 07:BRXNC (1302 15:01 06:BKNTN  |06:BYMTB (02:01 04:BYMSJ
ID2 0201 (02:01 (13:02 |18:01 |06:02 07:01 0401 07:DFRJ 02:BJHMF  (03:BKHVH [04:BFCSW 19:BHHE
ID3 29:02 |30:01 (13:02 |44:03 |06:02 16:01 07:BMSUC  [11:01 05:BZCGW [02:CGRKB (04:BYMRK 04:CEMZV
ID 4 0301 (29:01 |07:05 [27:05 |02:CVHVF |15:05 01:CWDSV [10:DEDFB |01:CAVSX |05:CAVTD |04:DBPFU 04:DBPFU
ID5 0301 (11:01 [41:01 |52:01 |12:02 17:01 04:BDXPM  [15:BFBXD |03:DMFHY |04:CETHX |04:DMAFX 04:DMAFX
ID6 02:02 (03:01 (35:01 |41:01 |04:01 17:01 0402 04:05 02:BMSTT  [(03:BMRBV [11:AWXGR |236:01
ID7 0101 (24:02 (38:01 |51:01 |12:03 16:02 15:01 15:01 06:BSBZX 06:BSBZX  |04:BYMSJ 04:BYMSJ
ID8 0301 (03:01 |07:02 |44:05 |02:.CVHVF |07:DCGFH ([11:04 15:ADHVT (05:BZCGW [03:DBPFR [02:CWTWR |04:DBPFU
p-value |0.88 0.59 0.98 0.60 0.86 1.00 0.60

G-codes are listed if typization exactly matched one G-code. For cases with shorter allele-strings (that is less allelels than G-code) or for cases with longer allele-strings (that is more possible
results) NMDP-code is listed. Two.sided t-Test statistics was used.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Microsoft Excel Version 16.16.14 was used for patient data collection
Data analysis Analysis was performed with R version 3.6.1.

R packages:
base packages:
grid_3.6.1
stats_3.6.1
graphics_3.6.1
grDevices_3.6.1
utils_3.6.1
datasets_3.6.1
methods_3.6.1
base_3.6.1

additional packages:
reshape2_1.4.3
survival_3.2-13
survminer_0.4.9
ggpubr_0.2.5
magrittr_2.0.3
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ggplot2_3.3.2
swimplot_1.2.0
circlize_0.4.9
RColorBrewer_1.1-2
ComplexHeatmap_2.5.1
openxlsx_4.1.4

Flow Jo version 10.8.1

Imagel] version 1.53

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The data that support the findings of this study are not openly available due to patient privacy and are available from the corresponding author upon reasonable
request. They are stored on the controlled access repository of the University Hospital Mannheim.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Both sex and gender were registered based on self reporting and all among our 8 patients there were no differences in
reported sex and gender. We analyzed whether immunogenicity of H3 K27M-vac was associated with sex or gender, but did
neither expect nor find an association.

Population characteristics Covariate-relevant population characteristics are stated in Figure 1a, Extended Data Table 1 and 2 :
Age at start of vaccination (safety and immunogenicity might depend on patient age)
Sex (safety and immunogenicity might depend on patient sex)
HLA Type (safety and immunogenicity might depend on patient HLA type)
tumor diameter at start of vaccination as judged by product of maximal orthogonal tumor diameter on T1 weighted MRI with
contrast enhancement (safety and immunogenicity might depend on tumor diameter)
tumor localization (safety and immunogenicity might depend tumor localization)
time of initial diagnosis (PFS and OS might depend tumor localization)
Karnofsky Performance Index (PFS and OS might depend tumor localization)
Oral dexamethasone intake at start of therapy (safety and immunogenicity might depend dexamethasone intake at start of
therapy)
Extend of resection at initial diagnosis (PFS and OS might depend tumor localization)
Dose and fractionation scheme of prior radiation (PFS and OS might depend dose and fractionation scheme of prior radiation)
Dose and type of prior chemotherapy (PFS and OS might depend dose and type of prior chemotherapy)
co-morbidities (PFS and OS might depend on co-morbidities)

Recruitment Patients were recruited by referral from clinical neurooncologists. All patients eligible for treatment as determined by the
treatment plan were extensively informed about the possibility of treatment with H3K27M-vac and potential therapeutic
alternatives. Only patients who provided written informed consent after sufficient time for reflection were treated with
H3K27M-vac. We therefore cannot exclude self-selection bias which might be responsible for the favorable overall survival of
the entire patient cohort together with the required Karnofski performance score of above 60%. It seems unlikely that self
selection had a meaningful influence on safety and immunogenicity.

Ethics oversight Institutional review board (Ethikkommission) University Hospitals Mannheim, Heidelberg University.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We limited the sample size to eight adult patients with recurrent, histologically confirmed H3K27M+ DMG after standard therapy options and
not eligible to be enrolled in the currently ongoing multicenter, phase 1 clinical trial (NCT04808245), because therapy was given on a
compassionate use basis and not as part of a clinical trial.

The compassionate use program was limited to a small number of patients and eight adult patients were judged to be sufficient to
preliminarily assess safety and immunogenicity of H3K27Mvac in patients with progressive DMG.

Data exclusions  No data were excluded from the study.

Replication To ensure reproducibility of our findings we carefully layed out a treatment plan, determined and reported patient characteristics that might
be relevant to the effects studied. Furthermore, we described all experimental procedures in detail and will be happy to refine reporting if
reviewers have questions or suggestions for improvement. All experiments were performed once unless otherwise reported. PLA was
performed independently twice as indicated in legends of Figure 4 and Extended Figure 5. The attempt of replication was successful.

Randomization  Since all patients received H3K27M-vac randomization did not apply. We extensively determined and reported patient characteristics and
tested for several potential covariates such as
age (p=0.60), sex (p=0.46), KPS (p=0.75), extent of resection (p=0.94), tumor size (p=0.21), time from histological diagnosis to start of
vaccination (p=0.06), concomitant anti-PD1 treatment (p=0.47), dexamethasone intake at baseline (p=0.15) or HLA allelotype. Nontheless it
should be noted that due to the limited number of patients absence of association does not exclude covariates.

Blinding This was an open label treatment with both patients and treating physcicians being aware of the treatment with H3K27M-vac. Efficacy

assessment was explicitly not part of the analysis and would require a blinded randomized controlled clinical trial. We report the experiences
with a limited number of patients threated on a compassionate use basis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |:| Flow cytometry
|:| Palaeontology and archaeology |:| MRI-based neuroimaging

|:| Animals and other organisms
Clinical data

[] pual use research of concern

XOXXNX[ s

Antibodies

Antibodies used Elispot: anti-human IFN (1-D1K, Mabtech, 3420-3-250), anti-human IFN (7-B6-1, Mabtech, 3420-6-250);
Flow Cytometry: CD3-Fitc (HIT3a, BD, 561802), CD4-BV605 (clone SK3, BD, 565998), CD8-PerCP-Cy5.5 (clone RPA-T8, Invitrogen,
45-0088-42), CD45RA-APC-H7 (clone 5H9, BD, 561212), CCR7-BV711 (clone 150503, BD, 566602), PD1-PE (clone EH12.1, BD,
560795), CD25-BV605 (clone 2A3, BD, 562660), HLA-DR-APC-H7 (clone G46-6, BD, 561358), IFNy-BV421 (clone, 4S.B3, BD, 564791),
TNFa-APC (clone, Mab11, Biolegend, 502912) , FoxP3-PE (clone 259/C7, BD, 560046).
PLA: mouse monoclonal anti-human GFAP (1:2000, Cell signal, 3670), rabbit polyclonal anti-human IBA-1 (1:100, Wako, 019-19741),
donkey anti-mouse Alexa Fluor 488 (1:300, Molecular Probes, Invitrogen, A-21202) and donkey anti-rabbit Alexa Fluor 488 (1:300,
Molecular Probes, Invitrogen, A-21206)

Validation all antibodies are ROA reagents. Flow cytometry antibodies were titrated for optimal signal to noise rations.
Validation of FACS Antibodies:
CD3-Fitc (HIT3a, BD, 561802):
Barclay NA, Brown MH, Birkeland ML, et al, ed. The Leukocyte Antigen FactsBook. San Diego, CA: Academic Press; 1997. (Biology)
Beverley PC, Callard RE. Distinctive functional characteristics of human "T" lymphocytes defined by E rosetting or a monoclonal anti-T
cell antibody. Immunol. 1981; 11(4):329-334. (Biology)
Knapp W, Dorken B, Rieber EP, et al, ed. Leucocyte Typing IV. New York: Oxford University Press; 1989:1-1208. (Biology)
Lanier LL, Allison JP, Phillips JH. Correlation of cell surface antigen expression on human thymocytes by multi-color flow cytometric
analysis: implications for differentiation. J Immunol. 1986; 137(8):2501-2507. (Biology)
McMichael AJ, Beverly PCL, Gilks W, et al, ed. Leukocyte Typing Ill: White Cell Differentiation Antigens. New York: Oxford University
Press; 1987. (Biology) Schlossman SF, Boumsell L, Gilks W, et al, ed. Leukocyte Typing V: White Cell Differentiation Antigens. New
York: Oxford University Press; 1995. (Clone-specific)
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CD4-BV605 (clone SK3, BD, 565998):

Bernard A, Boumsell L, Hill C. Joint report of the first international workshop on human leucocyte differentiation antigens by the
investigators of the participating laboratories. In: Bernard A, Boumsell L, Dausset J, Milstein C, Schlossman SF, ed. Leucocyte Typing.
New York, NY: Springer-Verlag; 1984:9-108.

Engleman EG, Benike CJ, Glickman E, Evans RL. Antibodies to membrane structures that distinguish suppressor/cytotoxic and helper T
lymphocyte subpopulations block the mixed leukocyte reaction in man. J Exp Med. 1981; 154(1):193-198. (Clone-specific: Functional
assay, Inhibition).

Evans RL, Wall DW, Platsoucas CD, et al. Thymus-dependent membrane antigens in man: inhibition of cell-mediated lympholysis by
monoclonal antibodies to TH2 antigen. Proc Natl Acad Sci U S A. 1981; 78(1):544-548. (Immunogen: Flow cytometry, Inhibition).
Reichert T, DeBruyere M, Deneys V, et al. Lymphocyte subset reference ranges in adult Caucasians. Clin Immunol Immunopathol.
1991; 60(2):190-208. (Biology).

Sattentau QJ, Dalgleish AG, Weiss RA, Beverley PC. Epitopes of the CD4 antigen and HIV infection. Science. 1986;
234(4780):1120-1123. (Biology).

Wood GS, Warner NL, Warnke RA. Anti—Leu-3/T4 antibodies react with cells of monocyte/macrophage and Langerhans lineage. J
Immunol. 1983; 131(1):212-216. (Biology).

CD8-PerCP-Cy5.5 (clone RPA-TS, Invitrogen, 45-0088-42):
Vardam-Kaur T, Pathangey LB, McCormick DJ, Bergsagel PL, Cohen PA, Gendler SJ. Multipeptide stimulated PBMCs generate TEM/
TCM for adoptive cell therapy in multiple myeloma. Oncotarget. 2021 Sep 28;12(20):2051-2067.

CD45RA-APC-H7 (clone 5H9, BD, 561212):

Barclay NA, Brown MH, Birkeland ML, et al, ed. The Leukocyte Antigen FactsBook. San Diego, CA: Academic Press; 1997.

Johnson P, Maiti A, Ng DHW. CD45: A family of leukocyte-specific cell surface glycoproteins. In: Herzenberg LA, Weir DM, Herzenberg
LA, Blackwell C, ed. Weir's Handbook of Experimental Immunology, Vol 2. Cambridge: Blackwell Science; 1997:62.1-62.16.

Knapp W. W. Knapp .. et al., ed. Leucocyte typing IV : white cell differentiation antigens. Oxford New York: Oxford University Press;
1989:1-1182.

Picker LJ, Treer JR, Ferguson-Darnell B, Collins PA, Buck D, Terstappen LW. Control of lymphocyte recirculation in man. |. Differential
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Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration

Study protocol

Data collection

Outcomes

Flow Cytometry

Since the patient were treated on a compassionate use basis and not as part of a clinical trial, it was not registered on
ClinicalTrials.org.

We provided a treatment protocol that outlines the treatment plan for patients treated with H3K27M on a compassionate use basis.

Patients received H3K27M-vac between August 2017 and February 2023 at the University Hospitals of Heidelberg and Mannheim.
Both medical centers are tertiary care centers with certified cancer centers by the German Cancer Society.

Safety of H3K27M-vac treatment was assessed during patient visits by a specialized neurooncologist by Common Terminology
Criteria for Adverse Events (CTCAE) version 4.0. Immunogenicity was assesd by ELISpot as extensively specified in the methods
section of the manuscript. MRl assessment including response assessment was done by neuroradiologists according to iRANO criteria
as specified in the methods section of the manuscript.

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|X| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|X| All plots are contour plots with outliers or pseudocolor plots.

|X| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

blood was collected in Li-Heparin tubes and processed within 6 hours of venipuncture by ficoll-density gradient
centrifugation. Isolated PBMC were cryopreserved in freezing medium containing 10% DMSO and stored in a liquid nitrogen
gas phase tank. Upon thawing, PBMC were rested overnight prior to any functional analysis.

Instrument BD FACS Lyric
Software BD FACSuite was used for aquisition, FlowJo V10 was used for analysis.
Cell population abundance cells were analyzed post in vitro expansion and containd predominantly T cells . Viability was >93 % in all cases.

Approximatedly 66% of CD3+ T cells were CD4+. Background in unstimulated cells was below 0.04% of CD4+ and total
cytokine secreting cells were > 68%. No cytokine secretion was observed in stimulated CD8+ T cells, but both CD4 and CD8 T
cells produced IFN and TNF in response to control stimulation (PMA/ionomycine)
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Gating strategy Hierarchical gating: Exclusions of Debris (FSC-A vs SSC-A)/Exclusion of doublets (FSC-A vs FSC-W), Exclusion of dead-cells (SSC-
A vs dead-cell-stain)/Definition of T cells (SSC-A vs CD3-Fitc+)/Definition of T cell subsets (CD8-PerpCP-Cy5.5 vs CD4 BV605)/
Identification of cytokine secreting cells (IFNgamma-BV421 vs TNFalpha-APC), gates were set using unstimulated control

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Resting state
Design specifications single measurement block

Behavioral performance measures  n/a, since no behavioral performance measures were performed
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Acquisition

Imaging type(s) structural

Field strength 3 Tesla

Sequence & imaging parameters 3D fluid-attenuated inversion recovery FLAIR (echo time (TE) = 398 ms, repetition time (TR) = 5000 ms, inversion time
(T1) = 1800 ms, field-of-view (FOV) = 240 mm, spatial resolution = 0.5 x 0.5 x 0.9 mm)
Contrast-enhanced 3D magnetization-prepared rapid acquisition gradient-echo (MPRAGE; TE = 2.49 ms, TR = 1900 ms,
Tl =900 ms, FOV = 240 mm, spatial resolution = 0.9 x 0.9 x 0.9 mm)

Area of acquisition whole brain

Diffusion MRI [ ] used X Not used

Preprocessing

Preprocessing software n/a, since images were acquired in clinical routine setting. No preprocessing was performed. Images are merely shown for
visualization.

Normalization n/a, since no normalization was performed.

Normalization template n/a, since no normalization was performed.

Noise and artifact removal n/a, since no noise and artifact removal was performed.

Volume censoring n/a, since no volume censoring was performed.

Statistical modeling & inference

Model type and settings n/a, since no statistical modeling and inference was performed.

Effect(s) tested n/a, since no statistical modeling and inference was performed.
Specify type of analysis: Whole brain [ ] ROI-based [ ] Both

Statistic type for inference n/a, , since no statistical modeling and inference was performed.
(See Eklund et al. 2016)

Correction n/a,, since no statistical modeling and inference was performed.

Models & analysis

n/a | Involved in the study
IZ |:| Functional and/or effective connectivity

IZ |:| Graph analysis

IZ |:| Multivariate modeling or predictive analysis
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