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Abstract
Purpose  During lactation, bone turnover increases, reflecting the mobilization of Calcium from maternal skeletal stores and 
resulting in bone loss. However, mechanisms are not yet fully understood, and previous studies have been comparatively 
small. We aim to assess bone metabolism during lactation by comparing bone-metabolism-related-parameters between large 
cohorts of lactating and nonlactating women.
Methods  In a retrospective cohort study, we recruited 779 postpartum women and 742 healthy, nonpregnant, nonlactating 
controls. Postpartum women were examined 3 and 6 months after delivery and retrospectively assigned to either the exclu-
sively breastfeeding (exc-bf) group if they had exclusively breastfed or the nonexclusively breastfeeding (nonexc-bf) group 
if they had not exclusively breastfed up to the respective visit. Serum levels of PTH, Estradiol, total Calcium, Phosphate, 
and bone turnover markers (ßCTX, P1NP, Osteocalcin) were compared between the groups.
Results  Bone turnover markers were significantly increased in exc-bf and nonexc-bf women compared with the controls (all 
ps < .001). ßCTX was approximately twice as high in exc-bf women than in the controls. PTH levels were marginally higher 
in exc-bf (p < .001) and nonexc-bf women (p = .003) compared with the controls (6 months). Estradiol was suppressed in 
exc-bf women compared with the controls (p < .001, 3 months).
Conclusion  Exc-bf and even nonexc-bf states are characterized by an increase in bone formation and resorption markers. The 
PTH data distribution of exc-bf, nonexc-bf, and control groups in the underpart of the reference range suggest that lactational 
bone loss is relatively independent of PTH.
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What does this study add to the clinical work 

This retrospective study examines bone turnover 
during lactation and shows that both bone resorp-
tion and bone formation are increased in lactating 
women compared to healthy, nonlactating, nonpreg-
nant controls. To our knowledge, this is the largest 
published data that describes bone turnover in the 
comparison of breastfeeding and nonbreastfeeding 
women.

Introduction

Lactation represents a time of major challenges for the 
maternal organism. In order to supply the newborn, the lac-
tating mother secretes 300–400 mg of Calcium (Ca) into 
her breast milk every day [1]. A main source is the maternal 
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bone. Ca is resorbed transiently from the mother’s skeleton, 
resulting in bone loss that is restored after weaning [2]. 
Studies found that bone mass decreased by up to 10% in 
women who breastfed exclusively for 6 months (m) [3, 4]. 
A main physiological mediator that is attributed to lacta-
tional bone loss is Estradiol (E2) [5–7]. Lactation causes 
hypoestrogenemia by suppressing the hypothalamic–pitui-
tary–ovarian axis, thereby inhibiting reproductive function. 
Different studies have reported significantly lower E2 levels 
in breastfeeding (bf) compared with nonbf postpartum (pp) 
women and nonlactating, nonpregnant controls [8–14]. In 
this context, lactation-associated bone loss has been shown 
to be rather independent of calciotropic hormones, such as 
Parathyroid Hormone (PTH), which is either normal [15–17] 
or suppressed [11, 18, 19] in bf women. At the molecular 
level, bone turnover increases, as reflected by changes in 
bone turnover markers (BTM). Several studies have con-
sistently found increased levels of bone resorption markers 
in bf women compared with nonbf women or controls [13, 
15, 16, 19–23]. Whereas only a few authors have reported 
normal levels of bone formation markers [21], the majority 
of studies have shown significantly increased bone formation 
in bf women [13, 15, 16, 19, 20, 22, 23]. In a prospective 
cohort study examining bone turnover during lactation, bone 
resorption and bone formation, as measured with C-Telo-
peptide of Type 1 Collagen (ßCTX), Bone-specific Alkaline 
Phosphatase, Osteocalcin (OC), and Procollagen Type 1 N 
Terminal Propeptide (P1NP), were significantly increased 
in women who lactated for 6–8 weeks (wk) compared with 
bottle-feeding women and controls [13]. However, this study 
used only a small sample, a trend that applies to most other 
studies as well, many of which are also outdated. Further-
more, the underlying hormonal mechanisms regulating Ca 
homeostasis during lactation are not yet fully understood. 
Findings on concentrations in bf and nonbf women are 
somewhat contradictory, as reviewed by Kovacs et al. [2]. 
Therefore, we aim to examine bone metabolism in a large 
cohort of exclusively bf (exc-bf) and nonexclusively bf (non-
exc-bf) pp women as well as healthy, nonpregnant, nonlac-
tating controls using the most current BTM ßCTX, P1NP, 
and OC, as well as serum PTH, E2, total Ca, and Phosphate 
(P) to provide a representative update on bone metabolism 
during lactation.

Methods

Study design and population

The data originated from the large “LIFE Child” study, 
which was initiated in 2011 in Leipzig, Germany. It is part 
of the “Leipzig Research Centre for Civilization Diseases 
(LIFE)” and is aimed at monitoring children’s development, 

growth, and healthiness while considering various life-
style factors. To do so, children are recruited as early as 
the 24th week of gestation up to the age of 20 with annual 
follow-ups to allow for both cross-sectional and longitu-
dinal approaches. The children’s parents are recruited as 
well. Details have been described previously [24, 25]. For 
the current retrospective cohort study, data were collected 
from 04/2011 to 03/2020. A total of 812 women between 
the ages of 21 and 44 years old who had delivered recently 
were examined throughout the pp period (lactation cohort). 
Assessments of serum bone-metabolism-related-parameters 
(bmrp) (ßCTX, P1NP, OC, total Ca, P, PTH, E2) were per-
formed at 3, 6, and 12 m pp. As controls, we included 947 
nonpregnant, nonlactating control subjects between the ages 
of 20 and 45 years (control cohort) from the LIFE Adult 
study, which is also part of the “Leipzig Research Centre 
for Civilization Diseases (LIFE).” Due to the small number 
of bf women at the 12 m examination (n = 7), data from this 
visit were not analyzed. Women who participated only at 
12 m were excluded (Fig. 1). Participants with chronic dis-
eases (e.g., diagnoses of chronic renal and hepatic diseases, 
hyperthyroidism, diabetes mellitus, osteoporosis, neoplastic 
diseases, or other endocrinological and metabolic disorders) 
or medication affecting bone metabolism (e.g., glucocorti-
coids, heparin, warfarin, immunosuppressants, except stable 
doses of thyroid hormone) were also excluded as shown in 
Fig. 1. After visual inspection, we decided to eliminate any 
participants who did not fit the distribution of Ca and PTH 
values (n = 7). The cut-off values were defined as mean ± 3.5 
standard deviations for the Ca and PTH values. The final 
sample included 779 women in the lactation cohort, with 
116 participating with several pregnancies. A total of 742 
women in the control cohort were included after the exclu-
sion criteria were applied (Fig. 1).

Anthropometric measurements

Anthropometric measurements were performed by profes-
sional health care staff using standardized procedures. For 
the lactation cohort, we used the prepregnancy weight from 
their maternity log. Body mass index (BMI) was determined 
by weight (kilograms) divided by height (meters) squared. 
Participants also completed questionnaires about their medi-
cal history, lifestyle habits, and demographic characteristics.

Breastfeeding status

At each visit (3 m and 6 m), pp women were interviewed 
about their infant feeding practice. They were assigned 
either to the exc-bf group if they had exclusively breastfed at 
the respective time of examination or to the nonexc-bf group 
if they had not exclusively breastfed anymore or had stopped 
breastfeeding completely at that time. For both visits, exc-bf 
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women and nonexc-bf women were compared with each 
other and with the nonpregnant, nonlactating control group. 
The numbers of women who participated from the lactation 
cohort were 618 at 3 m and 590 at 6 m (Table 1). Controls 
were set as the reference for the comparisons exc-bf versus 
controls and nonexc-bf versus controls. Nonexc-bf women 
were used as the reference group for the comparison exc-bf 
versus nonexc-bf.

Laboratory measurements

Venous blood samples were collected in the morning (7:30 
a.m. to 10:00 a.m.) under fasting conditions. Serum param-
eters were measured at the Institute of Laboratory Medicine, 
Clinical Chemistry, and Molecular Diagnostics of the Uni-
versity of Leipzig, using the following methods for routine 
patient diagnostics: Serum samples P1NP, ßCTX, OC, and 
intact PTH were measured with electrochemiluminescence 
assays (ECLIA; Elecsys, Cobas 801, Roche Diagnostics, 
Mannheim, Germany). The mean interassay coefficient of 
variation for these four parameters was between 1.95 and 

13.10% from 4 QC cycles across the representative 4 months 
(82–164 runs). Details can be found in Geserick et al. [26]. 
Total serum Ca and P were assessed with a Roche Cobas 
C701 analyzer (Roche Diagnostics GmbH, Mannheim, Ger-
many). E2 was quantified by liquid chromatography-tandem 
mass spectrometry (LC–MS/MS). A detailed description of 
the method can be found in Gaudl et al. [27]. Reference lev-
els were chosen according to the manufacturer and refer to 
nonpregnant, nonlactating women. We used reference levels 
for E2 from Bae et al. [28].

Statistical analysis

Descriptive statistics were given as the mean and standard 
deviation for continuous variables and counts for categorical 
variables, stratified by bf status. Bmrp levels were compared 
between groups at each visit using simple linear regression 
(univariate analyses). Subsequently, we evaluated the asso-
ciation between bmrp levels and bf status using linear mixed 
effect model. These associations were corrected for age and 
BMI. The subject was added as random intercept to account for 

Fig. 1   Selection of participants 
from the lactation and control 
cohorts. Flowchart showing the 
exclusion of individuals

Table 1   Anthropometric and breastfeeding characteristics of the lactation and control cohorts

Descriptives are presented as counts for categorical variables and as means (SD) for continuous variables (age, BMI). The lactation cohort was 
set as the statistical reference. The means of the controls were significantly different from those of the lactation cohort: ***p < .001. exc-bf exclu-
sive breastfeeding, nonexc-bf nonexclusive breastfeeding, BMI body mass index, SD standard deviation, m months

Lactation cohort Control cohort

N (data) Age in years
(mean ± SD)

BMI in kg/m2

(mean ± SD)
N (data) Age in years

(mean ± SD)
BMI in kg/m2

(mean ± SD)

779 (N total) 31.9 (4.27) 22.7 (3.44) 742 39.2 (6.52) *** 24.4 (4.56) ***
Visit Subgroup

Exc-bf Nonexc-bf
3 m 570 48
6 m 360 230
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multiple measurements per woman. All effect sizes are given 
as group differences (ß). The number of cases we included 
varied slightly between models because of missing values 
in the parameters (Suppl. Table 1) [29]. Means and standard 
deviations for the respective parameter, cohort and visit are 
presented in Supplemental Table 2 [29]. Statistical analyses 
were conducted with R, version 4.0.5. Ggplot2 was used to 
create figures. The significance level was set to α = 0.05.

Results

Study population

Anthropometric and breastfeeding characteristics are pre-
sented in Table 1. The final sample consisted of 1,521 par-
ticipants divided into a lactation cohort (n = 779) and con-
trols (n = 742). The majority of the lactation cohort were 
still breastfeeding exclusively at 3 m pp (92.2%, n = 570). 
The proportion of exclusively breastfeeding participants 
decreased to 61.0% (n = 360) at 6 m. Mean age and BMI 
were significantly lower in the lactation cohort compared 
with controls (p < .001, Table 1). At 6 m pp, controls had a 
mean BMI (± SD) of 24.4 (4.56) kg/m2. BMI values were 
above 25 kg/m2 in 34.0% and above 30 kg/m2 in 10.3% of the 
control group. For the lactation cohort, exc-bf women had a 
mean BMI (± SD) of 22.4 (3.15) kg/m2 whereas nonexc-bf 
women had a mean BMI (± SD) of 22.8 kg/m2 (3.47) at 6 m. 
BMI values were above 25 kg/m2 in 13.7% (exc-bf) or 19.4% 
(nonexc-bf) and above 30 kg/m2 in 3.7% (exc-bf) or 5.7% 
(nonexc-bf) of the lactation cohort. Regarding BMI, there 
was no significant difference between exc-bf and nonexc-
bf women at 6 m (β = 0.3, p= .652), while both groups had 
significantly lower BMI levels compared with the controls 
(β = − 1.7 [exc-bf vs. controls], β = − 1.5 [nonexc-bf vs. con-
trols], both ps < 0.001).

Bone‑metabolism‑related parameters 
and breastfeeding status

Results from univariate and multivariate analyses are pre-
sented in Table 2. In general, BTM levels were significantly 
higher in exc-bf and nonexc-bf women compared with the 
controls. Results were similar at 3 m and 6 m. ßCTX reached 
distinctly higher levels in exc-bf women (β = 419, p < .001 at 
6 m) than in the controls in the univariate analyses. Levels 
in exc-bf mothers were about twice as high as those of the 
controls (Fig. 2a). There were also distinctly higher levels 
in the nonexc-bf mothers (β = 350, p < .001 at 6 m) than in 
the controls. Furthermore, the difference between nonexc-
bf and exc-bf mothers was statistically significant. ßCTX 
levels were significantly higher in the exc-bf group by about 

70 pg/ml (β = 69, p < .001 at 6 m) compared with nonexc-bf 
mothers. Effects persisted after we corrected for age and 
BMI (Table 2), except for the difference between nonexc-bf 
and exc-bf mothers at 3 m, where statistical significance was 
no longer achieved (β = 36, p= .308). For P1NP, levels in bf 
subjects were significantly higher by about 60 ng/ml when 
compared with the controls at 6 m in the univariate analyses 
(β = 60 [exc-bf vs. controls], β = 61 [nonexc-bf vs. controls] 
at 6 m, both ps < 0.001).

Results were comparable at the 3 m examination. We 
found similar patterns for OC. Effects persisted after we 
corrected for age and BMI (Fig. 2b, c). We did not detect 
a difference between exc-bf and nonexc-bf mothers in the 
univariate or multivariate analyses for either P1NP or OC 
(see Table 2).

For PTH, we did not find significant differences between 
the groups at 3 m in the univariate analyses, whereas the 
levels were marginally lower in exc-bf mothers compared 
with nonexc-bf mothers after we adjusted for age and 
BMI (β = − 0.5, p= .049). For the multivariate analyses, 
nonexc-bf mothers also showed significantly higher levels 
than the controls (β = 0.6, p= .030) At 6 m, PTH reached 
approximately 0.3 pmol/L higher levels in exc-bf mothers 
(β = 0.3, p= .005) compared with nonexc-bf mothers and 
approximately 0.5 pmol/L higher levels when compared with 
the controls (β = 0.5, p < .001) in the univariate analyses. 
Nonexc-bf mothers showed marginally but not significantly 
higher levels than the controls (β = 0.1, p= .211). However, 
this effect became statistically significant after we corrected 
for the other predictors in the multivariate models (β = 0.4, 
p= .003). Moreover, the difference between exc-bf moth-
ers and controls was also slightly larger after we corrected 
for age and BMI (β = 0.6, p < .001), whereas the difference 
between nonexc-bf and exc-bf women was no longer statisti-
cally significant (β = 0.2, p= .175; Fig. 3a).

For E2, exc-bf women had significantly lower levels com-
pared with the controls in the univariate analyses (β = − 124, 
p < .001 at 3 m, β = − 82, p= .012 at 6 m). After adjusting 
for age and BMI, this effect remained significant only at 3 m 
(β = − 150, p < .001; Fig. 3b). The E2 levels of nonexc-bf 
women were also lower when compared with the controls; 
however, this effect was only significant at 6 m in the uni-
variate analyses (β = − 95, p= .010). We did not find a sig-
nificant difference between nonexc-bf and exc-bf mothers.

Total serum Ca and P were significantly higher in exc-bf 
and nonexc-bf mothers than in the controls at 3 m and 6 m in 
the univariate analyses. Effects persisted after we corrected 
for age and BMI except for the difference between nonexc-
bf women and the controls at 3 m for total serum Ca levels 
(Table 2). There were no differences between exc-bf and 
nonexc-bf mothers in the univariate or multivariate models 
(Suppl. Figures 1 a and b) [29].
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Table 2   Results from univariate and multivariate regression models at the 3 m and 6 m examinations

BMI and age were controlled for in the multivariate analyses. Comparisons were between exclusively breastfeeding (exc-bf) women, nonexclu-
sively bf (nonexc-bf) women, and nonpregnant, nonlactating controls. BMI body mass index, m months

Model Visit (m) Comparisons Univariate Multivariate

estimate p-value estimate p-value

PTH (pmol/l) 3  Exc-bf–nonexc-bf β = − 0.4; 95% CI [− 0.8, 0] p = .053 β = − 0.5; 95% CI [− 1, 0] p = .049
Exc-bf–controls β = − 0.1; 95% CI [− 0.3, 0] p = .074 β = 0; 95% CI [− 0.2, 0.3] p = .647
Nonexc-bf–controls β = 0.3; 95% CI [− 0.1, 0.7] p = .202 β = 0.6; 95% CI [0.1, 1.1] p = .030

6 Exc-bf–nonexc-bf β = 0.3; 95% CI [0.1, 0.6] p = .005 β = 0.2; 95% CI [− 0.1, 0.5] p = .175
Exc-bf–controls β = 0.5; 95% CI [0.3, 0.7] p < .001 β = 0.6; 95% CI [0.4, 0.9] p < .001
Nonexc-bf–controls β = 0.1; 95% CI [− 0.1, 0.3] p = .211 β = 0.4; 95% CI [0.1, 0.7] p = .003

E2 (pmol/l) 3 Exc-bf–nonexc-bf β = − 46; 95% CI [− 122, 30] p = .233 β = − 49; 95% CI [− 197, 100] p = .522
Exc-bf–controls β = − 124; 95% CI [− 159, − 88] p < .001 β = − 150; 95% CI [− 207, − 94] p < .001
Nonexc-bf–controls β = − 78; 95% CI [− 157, 1] p = .054 β = − 102; 95% CI [− 248, 45] p = .174

6 Exc-bf–nonexc-bf β = 12; 95% CI [− 52, 76] p = .704 β = 81; 95% CI [− 76, 237] p = .313
Exc-bf–controls β = − 82; 95% CI [− 146, − 18] p = .012 β = − 55; 95% CI [− 172, 62] p = .358
Nonexc-bf–controls β = − 95; 95% CI [− 166, − 23] p = .010 β = − 135; 95% CI [− 278, 7] p = .063

ßCTX (pg/ml) 3 Exc-bf–nonexc-bf β = 77; 95% CI [13,  142] p = .019 β = 36; 95% CI [33, 105] p = .308
Exc-bf–controls β = 410; 95% CI [385, 434] p < .001 β = 323; 95% CI [295, 351] p < .001
Nonexc-bf–controls β = 332; 95% CI [268, 397] p < .001 β = 287; 95% CI [219, 356] p < .001

6 Exc-bf–nonexc-bf β = 69; 95% CI [33,  104] p < .001 β = 63; 95% CI [23, 103] p = .002
Exc-bf–controls β = 419; 95% CI [391, 446] p < .001 β = 334; 95% CI [301, 367] p < .001
Nonexc-bf–controls β = 350; 95% CI [318, 382] p < .001 β = 271; 95% CI [234, 308] p < .001

P1NP (ng/ml) 3 Exc-bf–nonexc-bf β = 1; 95% CI [7,  9] p = .835 β = 2; 95% CI
[− 7, 10]

p = .711

Exc-bf–controls β = 53; 95% CI [50, 56] p < .001 β = 43; 95% CI [39, 46] p < .001
Nonexc-bf–controls β = 52; 95% CI [44, 60] p < .001 β = 41; 95% CI [32, 50] p < .001

6 Exc-bf–nonexc-bf β = − 1; 95% CI [− 5, 4] p = .716 β = − 4; 95% CI [− 10, 1] p = .094
Exc-bf–controls β = 60; 95% CI [56, 63] p < .001 β = 50; 95% CI [46, 55] p < .001
Nonexc-bf–controls β = 61; 95% CI [57, 65] p < .001 β = 55; 95% CI [50, 60] p < .001

OC (ng/ml) 3 Exc-bf–nonexc-bf β = 1; 95% CI [− 1, 4] p = .317 β = 2; 95% CI [− 1, 6] p = .122
Exc-bf–controls β = 19; 95% CI [18,  20] p < .001 β = 15; 95% CI [14,  17] p < .001
Nonexc-bf–controls β = 17; 95% CI [14,  20] p < .001 β = 13; 95% CI [10,  16] p < .001

6 Exc-bf–nonexc-bf β = 1; 95% CI [0, 3] p = .140 β = 0; 95% CI [− 2, 2] p = .972
Exc-bf–controls β = 21; 95% CI [19,  22] p < .001 β = 17; 95% CI [15,  18] p < .001
Nonexc-bf–controls β = 19; 95% CI [18,  21] p < .001 β = 16; 95% CI [15,  18] p < .001

Ca (mmol/l) 3 Exc-bf –
nonexc-bf

β = 0.02; 95% CI [− 0.01, 0.04] p = .212 β = 0.02; 95% CI [− 0.01, 0.05] p = .171

Exc-bf – controls β = 0.06; 95% CI [0.05, 0.07] p < .001 β = 0.05; 95% CI [0.04, 0.06] p < .001
Nonexc-bf–controls β = 0.04; 95% CI [0.02, 0.07] p < .001 β = 0.03; 95% CI [0, 0.06] p = .088

6 Exc-bf–nonexc-bf β = 0; 95% CI [− 0.02, 0.01] p = .741 β = 0; 95% CI [− 0.02, 0.01] p = .699
Exc-bf–controls β = 0.03; 95% CI [0.02, 0.04] p < .001 β = 0.02; 95% CI [0.01, 0.04] p < .001
Nonexc-bf–controls β = 0.04; 95% CI [0.02, 0.05] p < .001 β = 0.03; 95% CI [0.01, 0.04] p < .001

P (mmol/l) 3 Exc-bf–nonexc-bf β = 0.04; 95% CI [− 0.01, 0.08] p = .085 β = 0.04; 95% CI [− 0.02, 0.1] p = .189
Exc-bf–controls β = 0.22; 95% CI [0.2,0.23] p < .001 β = 0.2; 95% CI [0.18,0.22] p < .001
Nonexc-bf–controls β = 0.18; 95% CI [0.14,0.22] p < .001 β = 0.16; 95% CI [0.1,0.22] p < .001

6 Exc-bf–nonexc-bf β = 0.01; 95% CI [− 0.02,0.03] p = .482 β = 0; 95% CI [− 0.04,0.03] p = .820
Exc-bf–controls β = 0.16; 95% CI [0.14,0.18] p < .001 β = 0.13; 95% CI [0.11,0.16] p < .001
Nonexc-bf–controls β = 0.15; 95% CI [0.13,0.17] p < .001 β = 0.14; 95% CI [0.11,0.17] p < .001
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Discussion

The aim of this study was to examine serum PTH, E2, BTM, 
Ca, and P in bf women and controls to extend the under-
standing of how molecular mechanisms regulate Ca metabo-
lism during lactation. To do so, we compared bmrp levels 
between exc-bf and nonexc-bf women as well as healthy, 
nonpregnant, nonlactating controls.

In previous studies, lactational bone loss has frequently 
been attributed to low levels of estrogen rather than to clas-
sic calciotropic hormones including PTH and Calcitriol [6, 
7, 18, 20, 30–34]. For PTH, in earlier studies, either no dif-
ference was found between bf and nonbf women or controls 
(a finding that is consistent with our finding at 3 m when we 
compared exc-bf women with controls) [15–17], or else the 
hormone was suppressed in lactating women [11, 18–20, 
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Fig. 2   Serum ßCTX (a), P1NP (b), and OC (c) levels at 
6  months  postpartum. Exclusively breastfeeding (exc-bf) and non-
exclusively breastfeeding (nonexc-bf) women were compared with 
controls at each visit. Results of multivariate analyses. Grey lines 
indicate reference levels. Bone turnover marker levels in exc-bf and 

nonexc-bf women were significantly higher than those of controls (all 
ps < .001) and either close to (ßCTX, OC) or above the upper refer-
ence limit  (P1NP). ßCTX was significantly higher in exc-bf women 
than in nonexc-bf women (p = .002)
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35]. Although our data showed significantly higher PTH 
levels in exc-bf and nonexc-bf women when compared with 
the controls at 6 m, we believe that this effect has only minor 
clinical and biological relevance, as the distributions of data 
in all three groups existed largely in the lower half of the 
reference range of the assay (Fig. 3a). Therefore, we surmise 
that lactational bone loss is relatively independent of PTH 
[36]. With respect to E2, lactation causes hypoestrogenemia 
by suppressing the hypothalamic-pituitary-ovarian axis. In 
agreement with other authors [6, 11, 13], our results sup-
ported this effect, as we found suppressed levels in bf women 
compared with controls. The difference was significant only 
for exc-bf women at 3 m, most likely due to the smaller 
case number with available E2 values in the exc-bf group at 
6 m (Suppl. Table 1) [29]. Although the findings were not 
significant, E2 levels were also suppressed in the nonexc-bf 
women, a finding that could be attributed to the effect of 
partial bf on the hypothalamic-pituitary-ovarian axis.

During lactation, bone turnover is increased as reflected 
by high rates of osteoclast-driven bone resorption and oste-
oblast-driven bone formation [5–7, 12, 13, 16, 21, 23, 37]. 
Similarly, our study demonstrates elevated rates of bone 
resorption markers. In exc-bf women, we found increased 
ßCTX levels that were twice as high as those of nonpreg-
nant, nonlactating controls, confirming prior findings by 
Carneiro et al. [13]. In our data, ßCTX was also higher 
in exc-bf women when compared with nonexc-bf women, 
but this difference was significant only at 6 m which might 

once again reside in the smaller sample size of the nonexc-bf 
women at 3 m (Suppl. Table 1) [29].

Similar to findings from previous papers [9, 13, 15, 
20–22], our bone formation markers, assessed as OC and 
P1NP, were significantly elevated in exc-bf women when 
compared with the controls. Both OC and P1NP levels were 
either at the upper limit (OC) of the reference range or even 
considerably above it (P1NP). The substantially elevated 
rates of bone formation and bone resorption markers in exc-
bf women support the concept of high bone turnover during 
lactation.

We also observed increased bone formation markers 
(P1NP, OC) in nonexc-bf women with levels significantly 
above those of the controls and almost equal to those of 
exc-bf women. We surmise that this finding is due to the 
effect of partial bf. However, the significantly lower levels 
of ßCTX in nonexc-bf compared with exc-bf women indicate 
a decrease in bone resorption that might be attributable to 
reduced bf as Kent et al. and others reported a normalization 
of bone resorption in weaning mothers [2, 15]. Nevertheless, 
we cannot completely rule out the possibility that the eleva-
tion in BTM in the lactation cohort was due to the effect of 
a previous pregnancy, as we did not have a pregnant nonbf 
control group, and bone turnover has been shown to also be 
increased in late pregnancy [9, 21, 38–40]. Further research 
is needed to compare bmrp in exc-bf and nonexc-bf women 
as well as in nonbf pregnant women.

Attributable to skeletal Ca mobilization, serum total Ca 
was significantly increased in exc-bf and nonexc-bf women 
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Fig. 3   Serum PTH (a) and serum Estradiol (E2) (b) at the respec-
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each visit. Results of multivariate analyses. Grey lines indicate refer-

ence levels. PTH was significantly increased in exc-bf and nonexc-bf 
women compared with controls (p < .001 and p = .003, respectively), 
whereas E2 levels were suppressed in exc-bf and nonexc-bf women, 
below levels of controls (p < .001 and p = .174, respectively)
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compared with the controls but remained within normal lim-
its. Previous studies have also reported increased or normal 
levels [13, 17, 19–21, 31]. Results were similar for serum 
P. Increased bone resorption, along with decreased renal P 
excretion, is thought to be the cause of increased serum P 
levels in lactating women, as reported by others [2].

This study has some advantages and limitations. The 
greatest strength of the present study was that we had large-
sized lactation and control cohorts. To our knowledge, this 
is the largest published data that describes bone turnover 
in the comparison of breastfeeding and non-breastfeeding 
women. We were thereby able to provide an up-to-date over-
view on bone metabolism during lactation and re-evaluate 
the findings of other studies, some of which have been con-
tradictory and have only been conducted in small samples 
[15, 17, 19, 21, 32, 41–43]. However, we lack measurements 
of Prolactin, PTHrP, Calcitonin and Calcitriol, which are 
also involved in bone turnover in animal or human models 
[2]. Missing data on other factors potentially affecting bone 
metabolism, such as menstrual status, breast milk volume, 
or Ca and P intake, must be considered when interpreting 
our results. In addition, we did not measure bone mineral 
density, so changes in BTM could not be directly correlated 
with bone loss. Furthermore, the number of cases we had in 
our lactation cohort varied by visit and lactation subgroup. 
In particular, the size of the group of nonexc-bf women at 
3 m was comparatively small (Table 1), as the World Health 
Organization (WHO) recommends exclusive bf for 6 m 
[44]. Moreover, for the nonexc-bf group, we did not have 
any information about the frequency of bf. Both must be 
considered when interpreting our results. Lastly, the lacta-
tion and control cohorts differed significantly in BMI and 
age. The control cohort was significantly older and heavier. 
Consequently, we cannot completely rule out that the dif-
ferences in bmrp levels between the lactation and control 
cohorts are related to the higher age and BMI of the con-
trols. To summarize, this study shows that bone formation 
and bone resorption are substantially higher in exc-bf and 
nonexc-bf women compared with nonpregnant, nonlactating 
controls, indicating high bone turnover during lactation. Our 
data suggest that lactational bone loss is relatively independ-
ent of PTH as the data distribution of exc-bf, nonexc-bf, and 
control groups were in the underpart of the reference range.
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