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Selective chemogenetic inactivation of corticoaccumbal
projections disrupts trait choice impulsivity
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Impulsive choice has enduring trait-like characteristics and is defined by preference for small immediate rewards over larger
delayed ones. Importantly, it is a determining factor in the development and persistence of substance use disorder (SUD). Emerging
evidence from human and animal studies suggests frontal cortical regions exert influence over striatal reward processing areas
during decision-making in impulsive choice or delay discounting (DD) tasks. The goal of this study was to examine how these
circuits are involved in decision-making in animals with defined trait impulsivity. To this end, we trained adolescent male rats to
stable behavior on a DD procedure and then re-trained them in adulthood to assess trait-like, conserved impulsive choice across
development. We then used chemogenetic tools to selectively and reversibly target corticostriatal projections during performance
of the DD task. The prelimbic region of the medial prefrontal cortex (mPFC) was injected with a viral vector expressing inhibitory
designer receptors exclusively activated by designer drugs (Gi-DREADD), and then mPFC projections to the nucleus accumbens
core (NAc) were selectively suppressed by intra-NAc administration of the Gi-DREADD actuator clozapine-n-oxide (CNO).
Inactivation of the mPFC-NAc projection elicited a robust increase in impulsive choice in rats with lower vs. higher baseline
impulsivity. This demonstrates a fundamental role for mPFC afferents to the NAc during choice impulsivity and suggests that
maladaptive hypofrontality may underlie decreased executive control in animals with higher levels of choice impulsivity. Results
such as these may have important implications for the pathophysiology and treatment of impulse control, SUDs, and related
psychiatric disorders.
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INTRODUCTION
Humans and animals are required to make decisions between
immediate and delayed rewards in order to survive (i.e., foraging
theory). Deciding between rewards of different delays to receipt is
referred to as intertemporal choice and is marked by various
gradations of choice impulsivity, or the propensity to choose
rewards available now over those available later. The process
underlying impulsive choice is commonly referred to as delay
discounting (DD), as individuals discount the value of rewards as a
function of the delay to their delivery [1, 2]. For instance, most
people would consider a free large pizza today more valuable than
five free large pizzas in a year and a wide body of research
demonstrates DD of rewards by both humans and animals [3, 4].
Excessive levels of DD, however, result in impulsive choices and
are associated with several psychiatric disorders, including
attention-deficit/hyperactivity disorder, impulse control disorders,
and substance use disorder (SUD) [3, 5–9]. Further, choice
impulsivity may directly contribute to the pathophysiology of
these disorders (e.g., immediate drug use vs. family and job

stability). For instance, steeper discounting as delays to reward
increase predicts enhanced acquisition and escalation of cocaine
self-administration in rats and is associated with greater severity of
SUD symptoms and reduced success of recovery in humans
[10–13]. Despite this, the neurobiological mechanisms underlying
DD remain unclear.
DD has both trait-like (enduring) and state-like (unfixed)

characteristics which may underlie both innate and acquired
vulnerabilities to SUD [14, 15]. Among its trait-like characteristics,
DD is heritable [16–18] and has robust test-retest reliability
[14, 19–22], and subjects demonstrate similar levels of discounting
across tasks [23, 24] and reinforcers [14, 25]. Conversely, DD is also
readily altered by short-term manipulations, such as drug
administration [26–28]. Even with the robust trait-like character-
istics of DD, comparisons of DD across the lifespan have yielded
mixed results. While several studies show a decline in DD as
individuals age from adolescence to adulthood and from young
adulthood to older adulthood [29–36], other research demon-
strates no difference in DD across the lifespan [32, 34, 37–40], or
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even an increase in DD [41]. Further, very few reports test the
same subjects across development, making it difficult to
determine if DD is a stable lifelong trait within subjects and thus
if DD phenotypes (e.g., high vs. low levels of choice impulsivity)
convey similar risk to the development of SUD across life stages.
Human studies suggest a role for corticostriatal circuits in DD.

For instance, corticostriatal activity is shown to be inversely related
to choice impulsivity [42–45], with greater DD associated with
reduced frontal cortical control over both ventral and dorsal
striatum [46–48]. Yet animal research interrogating corticostriatal
circuits during DD has not provided a clear conclusion. Several
investigations show that lesions or pharmacological manipulation
of the striatum disrupts DD in rodents [49–58]; in particular,
lesions of the nucleus accumbens core (NAc), the accumbens
subregion shown to be involved in processing delay to reinforce-
ment, increase delay aversion [50, 59]. However, it is unclear how
frontal cortical regions may influence striatal processing during
DD. Human research demonstrates a role for both orbitofrontal
cortex (OFC) [60, 61] and anterior cingulate cortex (ACC) [42, 45] in
intertemporal choice. Notably, OFC is conserved in rodents, while
human ACC aligns most with rodent medial prefrontal cortex
(mPFC) [62–64]. Rodent research illustrates that the role of OFC in
DD is complex; showing either decreased DD following inactiva-
tion, increased DD after inactivation, differences based on
subregion (i.e., medial versus lateral OFC), or no effect [65–71].
In rodent studies, DD is enhanced by prefrontal 6-OH-DA
dopamine depletion in juvenile rats [72], pharmacological
disruption of dopaminergic signaling in mPFC in adult rats [73],
or viral over-expression of D1 receptors in mPFC [74]. However,
while Churchwell and colleagues (2009) showed that pharmaco-
logical inactivation of mPFC increased impulsive choice on a single
delay T-maze procedure, several studies show that complete
lesions of the mPFC do not affect DD in rats during a multi-delay
instrumental choice procedure [50, 75–77]. Therefore, while a wide
body of research has observed cortical and striatal contributions
to DD, a causal role of corticostriatal projections in control over
impulsive choice has not been established.
Consequently, the current study had two main goals: (1) to

assess DD in adolescence and adulthood in the same subjects to
directly compare intertemporal choice across the lifespan and (2)
to investigate the role of corticostriatal projections in trait-like DD.
To accomplish this, adolescent male rats were trained daily on a
DD task in which delay to the larger reinforcer increases across the
session. Stable DD behavior was recorded in adolescence and
again in adulthood to allow comparison of impulsive choice across
developmental stages in the same animals and determine
potential trait-like choice impulsivity. Following stable DD
behavior in adulthood, rats received bilateral infusion of an
inhibitory DREADD virus (Gi-DREADD) in the prelimbic region of
the mPFC and bilateral guide cannulae aimed at the NAc. Systemic
delivery of the Gi-DREADD actuator clozapine-n-oxide (CNO)
allowed for the assessment of temporary mPFC inactivation on
DD behavior, while intra-NAc infusion of CNO allowed for the
interrogation of mPFC-NAc projections in impulsive choice.

MATERIALS AND METHODS
Animals
Subjects were male Long-Evans rats bred at the University of Maryland
School of Medicine. Many studies investigating sex differences in
intertemporal choice show that male and female rodents and humans
exhibit similar levels of DD [78, 79], have conserved corticostriatal activity
during task performance [47], and express indistinguishable test-retest
reliability [41, 80]. Adolescent rats (PND 30–55) were group-housed, and
adult rats (PND 55+) were pair-housed until stereotaxic surgery in
adulthood (PND ~ 120–130); they were then singly housed to protect
surgical implants. When littermates were used, they were distributed
across experimental and control groups. All housing rooms were
maintained at 24 °C and 40–50% humidity under a 12-h light/dark cycle

(lights on at 0700 h). Experimental procedures were approved by the
Institutional Animal Care and Use Committee (IACUC) at University of
Maryland School of Medicine.

Apparatus
See Supplementary Methods.

DD task
In adolescence and adulthood, food was removed from the homecage the
evening before initiation of training or re-testing to facilitate acquisition of
the task. Afterwards, daily food pellets earned on the task were
supplemented up to 16 ± 2 g of chow after the session. This feeding
schedule resulted in adolescent animals maintaining a typical free-feeding
body weight throughout adolescence (based on feeding regimen by [29]
as well as growth charts published by Charles River Laboratories) and adult
animals maintaining 85 ± 5% free-feeding body weight.
Figure 1A illustrates the study timeline. During adolescence and early

adulthood, rats were tested in 2 sessions per day. Following re-stabilization
on the DD task after surgery, rats were thereafter tested once per day.
Initially, adolescents underwent nosepoke training under a fixed ratio 1
(FR1) schedule of reinforcement during 45-min sessions; in addition to
response-contingent pellets delivered by a nosepoke at either port, a
single, noncontingent pellet was delivered every 5min. Once nosepoking
produced ≥50 reinforcers in both sessions, rats were trained to
discriminate among two ports that produced 1 (“small”) vs. 3 (“large”)
pellets under an FR1 schedule of reinforcement until they allocated ≥80%
of responses to the large alternative port.
Rats then progressed to a within-session increasing delay procedure [2,

28]. Sessions consisted of 4 blocks of 2 sample trials followed by 12 choice
trials (Fig. 1B). The start of each trial was signaled by houselight and active
nosepoke port(s) light illumination. In the 2 sample trials, rats were
exposed to both choice alternatives in random order. If the left port was
signaled, a response in that port produced a single pellet immediately (i.e.,
small-immediate alternative). If the right port was signaled, a response in
that port produced three pellets after a delay of T-s (i.e., large-delayed
alternative) during which the stimulus light above the port flashed (2 Hz)
until pellet delivery. Choice trials allowed rats to choose between the
small-immediate and large-delayed alternatives. During the first block, the
delay (T) to the large-delayed alternative was 0-s, and it increased across
successive trial blocks (5, 10, and 20-s). Trials were separated by a 45-s
compensating inter-trial interval (ITI) that ensured equal trial spacing
regardless of the alternative chosen. Sessions terminated following
completion of all trials or 60min, whichever occurred first. Changes in
delay gradient shape were quantified using the area-under-the-curve
(AUC) method where a decrease in AUC indicated an increase in impulsive
choice [81]. Stable discounting behavior (i.e., less than 10% change in AUC
for 3 consecutive sessions with no successive increases or decreases in
AUC across the 3 sessions) was averaged in adolescence (~PND 50–53) and
again in adulthood following stereotaxic surgery but prior to chemoge-
netic testing (PND ~ 150–153) (n= 16).

Virus injection and cannula implantation surgery
Under isoflurane anesthesia, rats (n= 16) were bilaterally transduced with
0.5 µl/side of pAAV-CaMKIIa-hM4D(Gi)-mCherry (gift from Bryan Roth,
University of North Carolina Vector Core, Chapel Hill, NC) [82] into the
prelimbic region of mPFC (+2.7 AP, ±0.5 ML, −2.5 DV relative to skull
surface at Bregma) to primarily target excitatory projection neurons [83].
Bilateral guide cannulae (26 G, Plastics One, Roanoke, VA) were targeted at
the NAc (+1.3 AP, ±1.4 ML, −5 DV), and a stainless steel obdurator (33 G,
Plastics One) was inserted in each cannula [83]. Projections of the prelimbic
cortex project preferentially to the NAc core [84–86]. An additional group
of animals was implanted with guide cannula (as above) but not
transduced with virus in order to control for stereotaxic implantation
and to examine the intrinsic pharmacological effects of CNO (NIDA Drug
Supply Program, RTI International, Research Triangle Park, NC). Rats were
administered topical antibiotic and analgesic ointment as well as injectable
analgesics for 48 h following surgery and were allowed at least 7 days of
recovery.

Systemic and intracranial pharmacology
Following surgery, rats were allowed to restabilize on the DD task. In
separate sessions, the same group of rats underwent systemic (1.5–3.0 mg/
kg, IP; n= 9) and intra-NAc (1.5 μg/side, IC; n= 16) injections of CNO or

J.M. Wenzel et al.

1822

Neuropsychopharmacology (2023) 48:1821 – 1831



saline vehicle (n= 14). Doses of CNO and vehicle were counterbalanced
between animals within each block. Two rats did not complete vehicle
injections due to blocked IC cannulae. After each test session animals were
given at least 3 sessions to re-establish stable discounting behavior. To
determine if CNO infusion itself in the absence of Gi-DREADD transduction
affects impulsive choice, a separate cohort of rats received bilateral
cannula aimed at the NAc but no transfection with Gi-DREADD virus
(n= 10). Once they achieved stable DD performance in adulthood, the
effects of intra-NAc CNO were assessed. For IP injections, CNO or vehicle
was delivered in a volume of 1ml/kg 30min before testing. For IC
infusions, bilateral infusion cannulae (33 G, 1.5 mm projection) were
connected to a 5 µl Hamilton syringe via PE50 tubing back-filled with
CNO. Infusion cannulae were inserted through the guide cannulae 1min
prior to CNO delivery, and CNO was delivered in a volume of 0.5 µl/side
over 2 min using a motorized syringe pump. Infusion cannulae were left in
place for 5 min after infusion.

Histology
After behavioral experiments, animals were anesthetized with a fatal dose
of pentobarbital and transcardially perfused. Brains were extracted,
sectioned into 40 µm coronal sections, and viewed using a fluorescent
confocal microscope to confirm hM4Di-mCherry expression in cell bodies
of the mPFC and terminals in the NAc, as well as cannula placement in the
NAc. Rats included in data analysis had viral expression confined to the
prelimbic cortex [83] and bilateral NAc cannulae placement within a
confined range of the targeted NAc coordinates (+/− 0.25mm AP, +/−
0.3 mmML, and + 0.25mm DV) (Fig. 2).

Slice electrophysiology
To verify inhibitory function of the DREADD virus following CNO, a subset
of rats were deeply anesthetized with isoflurane, and their brains were
rapidly removed and submerged in ice-cold, modified artificial cerebrosp-
inal fluid (aCSF; in mM: 194 sucrose, 30 NaCl, 4.5 KCl, 1 MgCl2, 26 NaHCO3,
1.2 NaH2PO4, and 10 D-glucose). 250 µm thick coronal slices were made
containing the NAc (Leica VT 1200 vibratome, Leica Biosystems, Deer Park,
IL) and stored in 95% oxygen, 5% carbon dioxide (carbogen)-bubbled aCSF
(in mM: 124 NaCl, 4.5 KCl, 2 CaCl2, 1 MgCl2, 26 NaHCO3, 1.2 NaH2PO4, and
10 D-glucose) at 32 °C for 30min. Hemisected slices were placed in a
recording chamber with aCSF containing 50 µM picrotoxin at 30 ± 1 °C.
Whole-cell patch-clamp recordings were made from NAc medium spiny
neurons (MSNs) using boroscillate glass micropipettes (World Precision
Instruments, Sarasota, FL) in the 2–5 MΩ range filled with a high CsMeSO3

internal solution (in mM: 120 CsMeSO3, 5 NaCl, 10 tetraethylammonium-Cl,
10 HEPES, 5 QX-314, 1.1 EGTA, 0.3 Na-GTP, and 4 Mg-ATP). Cells were
voltage clamped at −60mV using a Multiclamp 700B amplifier (Molecular
Devices, San Jose, CA), and excitatory postsynaptic currents (EPSCs) were
evoked every 20 s using a concentric bipolar stimulating electrode (World
Precision Instruments) located approximately 100 µm from the cell. Signals
were filtered at 2 kHz and digitized at 10 kHz. Following a stable 5-min
baseline period, aCSF containing either 10 µM CNO or vehicle was applied
to the slices. Cells were discarded from analysis if the series resistance
changed more than 15% throughout the recording.

Data analysis
See Supplementary Methods.

RESULTS
Delay discounting in adolescence and adulthood is positively
correlated
To examine impulsive choice across development, performance
on the DD task during adolescence and again in adulthood was
assessed. Fig. 1C shows delay gradients for the same animals in
adolescence and adulthood. A significant main effect of delay
[F(3,45)= 207.207, P < .001, ηp2= 0.932] illustrates that animals
robustly discounted delayed rewards across adolescence and
adulthood. Interestingly, animals exhibited greater discounting of
delayed rewards in adulthood as compared to adolescence [main
effect of developmental stage F(1,15)= 8.251, P= 0.012, ηp2=
0.355; delay x developmental stage interaction F(3,45)= 3.321,
P= 0.028, ηp2= 0.181]. Post-hoc comparisons between groups at
each delay showed that rats chose significantly fewer rewards at
the 20-s delay [t(15)= 3.372, P= 0.004, Cohen’s d= 0.843] but
exhibited similar levels of discounting at the other delays
[corrected α= 0.0125; 0-s, t(15)=−0.019, P= 0.985, Cohen’s
d= 0.005; 5-s, t(15)= 0.498, P= 0.626, Cohen’s d= 0.124; 10-s,
t(15)= 2.578, P= 0.021, Cohen’s d= 0.644]. Paired-samples t-test
revealed a significant difference between AUC in adolescence and
adulthood [Fig. 1D; t(15)= 2.983, P= 0.009, Cohen’s d= 0.746].
Fig. 1E illustrates a significant positive correlation between delay
gradient AUC in adolescence and adulthood [r= 0.85, P < 0.0001],
evidencing that, although DD tends to increase as training

Fig. 1 Delay discounting is stable across development. A Experimental timeline indicating postnatal day (PD) on which animals began nose-
poke training for food pellets and the DD task. B Illustration depicting the DD task structure. During each session, rats cycled through 2
forced-choice and 12 free-choice trials of each delay in ascending order (0, 5, 10, and then 20 s), with 1 food pellet available immediately or 3
pellets available after a delay. C % choice of the large reinforcer in adolescence (~PND 50–53) and adulthood (~PND 150–153) at each delay
(n= 16). Two-way repeated measures ANOVA shows that animals discounted delayed rewards in both their adolescence and adulthood
(P < .001); however, in adulthood they exhibited greater DD (P= 0.012), specifically at the 20-s delay (P= 0.004). D AUC in adolescence and
adulthood similarly illustrated greater DD in adulthood (P= 0.009). E Scatter plot and fit line (Y= 1.162*X - 0.1638) showing a significant
positive correlation between impulsive choice in adolescence and in adulthood, as measured by AUC, evidencing relative stability in level of
DD across development. Error bars indicate +/− SEM. *P ≤ 0.05, **P < 0.01, ****P < 0.0001.
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continues into adulthood, each animal maintains relative stability
of choice impulsivity across development.

Chemogenetic inactivation of mPFC does not affect impulsive
choice
In adulthood, rats transduced with Gi-DREADD in the mPFC
received systemic (IP) injection of vehicle and each of 2 doses of
CNO to determine if DREADD-induced inactivation of mPFC
altered impulsive choice. There was no significant change in DD
task performance from baseline following IP vehicle or CNO at
either dose [Fig. 3A; F(3,24)= 0.909, P= 0.452, ηp2= 0.102],
suggesting no effect of mPFC inactivation on impulsive choice.
These data align with previous work showing no effect of mPFC
lesion or inactivation on DD [50, 75, 76].

CNO-mediated inactivation of excitatory mPFC-NAc
projections increases impulsive choice
In order to directly assess the role of excitatory projections from
mPFC to NAc in impulsive choice, vehicle or CNO was
microinfused bilaterally into the NAc to selectively inactivate
mPFC afferents (Fig. 3B). During baseline and following intra-NAc
vehicle, selection of the large-delayed reinforcer decreased as
delays increased [main effect of delay F(3,39)= 75.258, P < 0.000,
ηp2= 0.853]. However, vehicle did not significantly alter impulsive
choice at any delay relative to baseline [no main effect of
treatment, F(1,13)= 0.026, P= 0.875, ηp2= 0.002; no treatment x
delay interaction, F(3,39)= 0.791, P= 0.507, ηp2= 0.057] and did
not affect AUC between sessions [Fig. 3C; t(13)= 0.489, P= 0.633,
Cohen’s d= 0.131]. Interestingly, intra-NAc CNO robustly
increased impulsive choice across the session, as shown by a
decrease in AUC [Fig. 3E; t(15)= 3.578, P= 0.003, Cohen’s

d= 0.895]. All animals decreased their choice of the large-delayed
reinforcer as delays increased, and CNO similarly decreased choice
of the large reinforcer at each delay (Fig. 3D) [main effect of delay,
F(3,45)= 199.354, P < 0.000, ηp2= 0.930]. However, administration
of CNO significantly reduced choice of the large-delayed
reinforcer compared to baseline [main effect of CNO,
F(1,15)= 15.280, P = 0.001, ηp2= 0.505; no delay x CNO
interaction, F(3,45)= 2.742, P= 0.54, ηp2= 0.155]. Critically,
planned comparisons confirmed that CNO had no effect on
choice of the large reinforcer at the 0 s delay [t(15)= 0.253,
P= 0.507, Cohen’s d= 0.170], demonstrating no disruption in
preference for the large-delayed reinforcer over the small-
immediate reinforcer or the ability of animals to perform the
task. There was also no difference observed following CNO
treatment at the 5-s delay [corrected α= 0.0125, t(15)= 2.681,
P= 0.017, Cohen’s d= 0.670]. However, at the two longest delays,
CNO-induced inactivation of mPFC-NAc excitatory projections
significantly reduced choice of the large-delayed reinforcer
[corrected α= 0.0125; 10-s, t(15)= 2.846, P= 0.012, Cohen’s
d= 0.711; 20-s, t(15)= 3.091, P= 0.007, Cohen’s d= 0.773]. Finally,
CNO did not affect consumption of food pellets or time to
complete the task (data not shown).
No-virus control animals exhibited normal DD gradients (Fig. 3F),

decreasing their choice of the larger reinforcer as the delay
increased [F(3,27)= 57.184, P < 0.001, ηp2= 0.864]. CNO infusion
had no effect on DD performance [no main effect of treatment,
F(1,9)= 2.715, P= 0.134, ηp2= 0.232; no difference in AUC,
t(9)= 0.261, P= 0.800, Cohen’s d= 0.083], suggesting that CNO-
induced increases in impulsive choice in experimental rats cannot
be attributed to non-specific actions of intra-NAc CNO or its
metabolites [87, 88].

Fig. 2 Histological verification of Gi-DREADD expression. A Top panel shows illustration of bilateral hM4Di virus infusion into mPFC (coronal
section +2.7 mm from Bregma) [83]. Bottom panel shows mCherry fluorescence of Gi-DREADD transduced cell bodies in mPFC, scale bar
represents 100 μm. B Top panel shows illustration of cannula placement in NAc (coronal section at +1.7 mm from Bregma) [79]. Rats included
in data analysis had viral expression confined to the prelimbic cortex [83] and bilateral NAc cannulae placement within a confined range of
the targeted NAc coordinates (+/− 0.25 mm AP, +/− 0.3 mmML, and +0.25 mm DV). Bottom panel shows mCherry fluorescence of Gi-
DREADD-expressing mPFC terminals in NAc, scale bar represents 100 μm.
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Fig. 3 Systemic DREADD inhibition of mPFC neurons does not affect impulsive choice, however, inhibition of mPFC-NAc projections
increases impulsive choice. A Impulsive choice (AUC) was not different from baseline following systemic (IP) infusion of either dose of CNO or
vehicle (n= 9; P= 0.452). Each dot represents a single subject. B Illustration of rat brain showing transduction of the inhibitory Gi-DREADD
virus (hM4Di) in the mPFC and implantation of guide cannula in the NAc for infusion of CNO or vehicle. C Percent of trials in which a rat chose
the larger delayed reward across delays during baseline and following intra-NAc vehicle infusion (n= 16). Inset shows no significant difference
in DD task performance (measured by AUC) (P= 0.633). D CNO significantly increased impulsive choice across delays (P= 0.003). Planned
comparisons showed that intra-NAc CNO did not affect choice of the larger reward when there was no delay (0-s), but significantly reduced
large choice on 10-s (P= 0.012) and 20-s delay (P= 0.007). E Similarly, intra-NAc infusion of CNO significantly decreased AUC (P= 0.003).
F Intra-NAc CNO infusion in rats not transduced with Gi-DREADD virus had no effect on choice of the larger-delayed reinforcer (P= 0.134).
G Scatter plots and fit lines (red) showing correlation between the percent of large choices at baseline (i.e., baseline delay tolerance or choice
impulsivity) and the change in percent large choice following CNO infusion for the 5-s (left), 10-s (middle) and 20-s (right) delays. Black lines
are the constraints on the positive or negative CNO-mediated change that could occur given the baseline percent large choices. Significant
negative correlations were identified for the 10-s (r=−0.57, P= 0.020) and 20-s (r=−0.57, P= 0.028) delays, but not for the 5 s delay
(P= 0.288). Greater percent decreases in choice of the large alternative occurred in animals with higher percentage choice of the large
alternative, i.e., animals with lower levels of trait choice impulsivity. Error bars indicate +/− SEM. *P ≤ 0.05, **P < 0.01.
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Trait impulsivity determines degree of change in impulsive
choice following silencing of PFC-NAc projections
A large body of research indicates stable subpopulations in
impulsive choice and suggests differences in underlying neuro-
biology [89–92]. To explore individual differences in the contribu-
tions of the mPFC-NAc pathway to DD, the change in proportion
of large-alternative choices following CNO was assessed as a
function of trait level of impulsivity or proportion of large-
alternative choices during baseline (the average of the three
sessions preceding CNO test day) (Fig. 3G). Pearson’s correlation
indicates that animals with lower levels of impulsivity, i.e., those
with higher baseline choice of the large alternative at the 10-s and
20-s delays, exhibit larger decreases in these choices following
intra-NAc CNO (5-s: r=−0.2830, R2= 0.08009, P= 0.288; 10-s:
r=−0.5745, R2= 0.3300, P= 0.020; 20-s: r=−0.5664, R2= 0.3208,
P= 0.028). Additionally, constraint lines (Fig. 3G, black lines)
indicate that the majority of animals did not reach a floor in their
% large choices following intra-NAc CNO treatment. Altogether
these data demonstrate that mPFC-NAc excitatory projections
mediate impulse control during the DD task differentially in
animals with higher vs. lower levels of trait choice impulsivity.

Ex vivo confirmation of Gi-DREADD expression and function
Electrically-evoked EPSCs were measured using whole-cell patch-
clamp recordings from NAc MSNs and compared to baseline
following vehicle and CNO (Fig. 4A, B) [main effect of treatment:
F(2,22)= 11.288, P < 0.001, η2= 0.530]. Post-hoc analyses showed
that while EPSC amplitude following vehicle did not differ from
baseline [t(12)= 1.026, P= 0.163, Cohen’s d= 0.548], EPSC ampli-
tude was significantly reduced following CNO treatment when
compared to both baseline and vehicle [corrected α= 0.0167;
t(14)= 7.917, P < 0.001, Cohen’s d= 3.990; t(14)= 2.752, P= 0.008,
Cohen’s d= 1.387]. To confirm a CNO-induced reduction in the
probability of presynaptic vesicular release, paired-samples t-test
revealed a significant reduction in PPR following CNO (Fig. 4C, D)
[t(8)= 2.437, P= 0.0408, Cohen’s d= 0.812]. Altogether, these
data support inhibitory function of CNO-mediated Gi-DREADD
activation on mPFC afferents to NAc.

DISCUSSION
We utilized a DD task to assess impulsive choice across
development and to interrogate the functional role of the mPFC
and its afferents to the NAc in impulsive decision-making. First, we
found that DD performance in adolescence was positively
correlated with performance in adulthood, suggesting relative
phenotypic delay tolerance or aversion throughout the lifespan.
Second, specific Gi-DREADD-mediated inactivation of mPFC-NAc
projections, but not global inactivation of the mPFC, reversibly
increased DD. Finally, increases in impulsive choice due to mPFC-
NAc inactivation were negatively associated with characteristic
baseline levels of delay discounting; namely, animals with lower
levels of choice impulsivity were more affected by silencing mPFC
input to the NAc than animals with higher levels. These data
together suggest that phenotypic intertemporal choice may be, in
part, mediated by mPFC input to the NAc.
Relative stability of DD from adolescence to adulthood aligns

with a wide body of research demonstrating long-term, stable
“trait-like” levels of impulsive choice in humans and animals
[14, 19, 20, 41]. Although it is possible that DD behavior observed
here is not the result of trait-like choice impulsivity but rather due
to fixed patterns of responding on the task established through
extended training, the propensity for DD behavior to become
fixed or habitual over training is currently unexplored. Addition-
ally, while our animals displayed relative stability over develop-
ment (i.e., rats that were more/less impulsive during adolescence
were more/less impulsive during adulthood), results did not
support absolute stability across developmental stages (i.e., rats

were overall less impulsive during adolescence than in adulthood).
Previous direct comparisons of DD between adolescents and
adults also yielded mixed results. While a number of studies show
a tendency for adolescents to exhibit more impulsive choice
[29, 30, 33, 34, 93], other research demonstrates no differences
[34, 37–40]. Interestingly, McClure and colleagues (2014) found
that rats in early adolescence (PND 28–42) were less impulsive
than when tested again in the transition from late adolescence to
early adulthood (PND 58–64) [41, 94–96]. Disparate findings
among previous work and present findings may be attributable to
individual differences between cohorts [97]. The use of a within-
subjects design in the current study allowed for sensitive
comparisons of DD across development to uncover an increase
in impulsive choice in adulthood that would not have reached
significance with a between-subjects design. Of course, it is
possible that extended experience with the reinforcer altered its
value, reducing choice of the large reinforcer at longer delays in
adulthood. However, it is important to note that animals were
motivated to earn reinforcers, completed each session, and
consumed all earned pellets. Altogether, these data evidence
relative trait-like levels of impulsive choice within subjects and
provide a framework to investigate neural systems contributing to
intertemporal choice.
Here we show that chemogenetic silencing of the mPFC using a

Gi-DREADD under the CaMKII promoter had no effect on DD
performance, replicating the results of previous lesion and
pharmacological inactivation studies [50, 75, 76]. However, present
results also indicate that Gi-DREADD-induced inhibition of the
mPFC-NAc pathway reliably increases impulsive choice. Thus,
while global inhibition of the CaMKII-expressing neurons of the
prelimbic mPFC had no effect on DD, selective attenuation of
afferents from the prelimbic cortex to the NAc core resulted in
robust increases in DD. Other published studies demonstrate
similar phenomena. For example, Giertler and colleagues (2003)
showed that intra-NAc infusion of amphetamine significantly
reduced reaction time in a conditioned lever release task, while
temporary inactivation of the NAc with lidocaine had no effect on
reaction times [98]. Similarly, disruption of dopamine signaling in
the mPFC with intra-mPFC infusion of a D2 receptor agonist or
antagonist is shown to increase impulsive choice, while the
current study and others show no effect of mPFC inactivation
[50, 75, 76]. There are at least two potential possibilities through
which this may occur: (1) complete disruption of mPFC activity
allows for other regions to control behavioral output, and (2)
mPFC activity during DD promotes both impulsive and self-
controlled choices through different efferent pathways and thus
complete inhibition has no net effect on behavior. While the
current study was not designed to test these hypotheses, previous
research supports a combination of these possibilities. Indeed,
brain regions other than mPFC are shown to similarly exert control
over the NAc during DD. For instance, inhibition of OFC-NAc
projections increases impulsive choice [99], suggesting an
alternative pathway that may be relied upon to maintain self-
control following mPFC inactivation. Also, while no published
studies evidence an mPFC efferent pathway that promotes
impulsive choice, Li and colleagues (2020) found that two parallel
mPFC pathways mediate impulsive action in mice. They show that
optogenetic inhibition of mPFC projections to the subthalamic
nucleus (STN) severely impairs performance on a go/no-go task
(i.e., increases impulsive action), whereas inactivation of mPFC
projections to the lateral hypothalamus improves performance
[100]. Thus, it remains a target for future research to determine
how mPFC inactivation and mPFC-NAc pathway inactivation
differentially affect DD.
Downstream of the cortex, minor projections of the prelimbic

cortex target the accumbens shell subregion of the ventral
striatum, but the vast majority preferentially target the accumbens
core [84–86]. The core promotes learning and selection of delayed
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rewards [50, 101, 102], and its lesioning or inactivation results in
steeper delay discounting [50, 103, 104]. Permanent lesions of the
accumbens shell, however, have not affected intertemporal choice
[103, 104]. Recent studies outline differentially patterned dopa-
mine release in both the core and shell subregions during a DD
task [78], and reversibly inactivating the core or the shell during a
T-maze DD task resulted in waiting impairments [105]. Therefore,
there may be a mediating role for the shell in addition to the core
in DD. In the present study, we cannot entirely rule out
inactivation of Gi-DREADD-expressing afferents targeting the shell
from the prelimbic cortex. However, given that the majority of
prelimbic afferents project to the core and only a proportion of all
prelimbic afferents expressed Gi-DREADD, we believe our CNO
injections targeting the core were acting upon terminals in this
subregion. Dissecting the contributions of accumbens subregions
in choice impulsivity is an opportunity for future investigation.
The observed increased preference for the small-immediate

reward most likely reflects an intolerance to delay following
mPFC-NAc inhibition. Intertemporal choice requires neural com-
putations of reward size, delay duration, and preference for a
small-immediate or large-delayed reward [106]. Here we show
that inhibition did not affect preference for the large reward at the
0-s delay, suggesting that this pathway did not affect discrimina-
tion of reward size or preference for a larger reward when there
was no delay to receipt. Preserved preference for the large reward
at the 0-s delay also indicates that mPFC-NAc inhibition did not

affect baseline motivation for food [107]. Additionally, rats
completed all test sessions and ate all pellets, suggesting that
motivation for food rewards remained intact across the test
session. As delays progressed across the session, CNO decreased
choice of the large reward to a similar degree at both the 10- and
20-s delay. Thus, it is possible that mPFC-NAc projections exert
control over intolerance to longer delays, rather than intolerance
to delay based on computations of reward value and delay length.
Future research using additional delays or an adjusting delay
procedure may provide further evidence of the precise role of this
pathway. It is also possible that corticostriatal silencing reduced
choice for the large-delayed reward by increasing subjective
overestimation of the delay until reward, shifting the DD curve
down at both 10-s and 20-s delays [108]. Humans and animals
with poor interval timing also demonstrate greater impulsive
choice [41, 106, 109–111]. However, rodent studies using lesions
or temporary inactivation of mPFC or NAc do not support a causal
role for these structures in time estimation required for DD
[52, 112, 113]. Thus, these data align with previous research
showing that both regions integrate information about reward
size and delay to reward receipt [78, 114–118], and extend these
findings to show that activity of projections from mPFC to NAc
promote self-control during intertemporal choice.
mPFC-NAc inhibition significantly reduced choice of the large-

delayed reward to a greater extent in rats with lower levels of
baseline impulsivity, suggesting reliance on this pathway for

Fig. 4 Whole-cell patch-clamp recordings from nucleus accumbens medium spiny neurons (MSNs) verify hM4Di function. A Graph
showing mean % of baseline EPSC amplitude over 25min for 16 cells following bath application of 10 μM CNO (n= 9) or vehicle (n= 7). CNO
application depresses EPSC amplitude as compared to vehicle. B Representative traces following vehicle (left) or CNO (right). C Statistical
analysis of baseline (first 5-min) compared to the last 5 min of recording. CNO significantly reduces EPCS amplitude as compared to baseline
(P= < 0.001) and compared to the last 5 min of recording in the vehicle and CNO recordings (P= 0.008). D Paired-pulse ratio increases
following CNO application over baseline (P= 0.041), suggesting that CNO application decreases the probability of glutamate release. Each
point represents a single cell; red points indicate mean +/− SEM. Error bars indicate +/− SEM. *P ≤ 0.05, **P < 0.01, ***P < 0.001.

J.M. Wenzel et al.

1827

Neuropsychopharmacology (2023) 48:1821 – 1831



control over DD may be stronger in animals with greater delay
tolerance. In support of this, research demonstrates individual
differences in DD in both humans and animals, with high and low
impulsive subjects exhibiting differing structural and functional
neurobiology [97, 119]. Neuroimaging studies show that indivi-
duals with high levels of impulsive choice have reduced
corticostriatal functional connectivity and structural integrity of
white matter compared to low impulsive individuals [46–48]. The
current data align with these findings, highlighting a role for
corticostriatal projections in DD and substantiate a mechanistic
role for this projection in impulsive choice. Rodent studies have
not specifically interrogated mPFC-NAc pathway during DD,
although several studies have delineated neurobiological differ-
ences in both mPFC and NAc in animals differing in trait
impulsivity. For instance, high impulsive rats have reduced D2
mRNA expression in prelimbic cortex and D2 receptor availability
in the NAc [120–122], as well as blunted NAc dopamine release
during DD [116] compared to low impulsive counterparts.
Interestingly, similar dopaminergic dysfunction is observed in
SUD, and it is hypothesized to result in decreased valuation of
natural rewards (e.g., food) as well as increased impulsive choice
through enhanced salience of immediate rewards [120, 123, 124].
The current data substantiate a role for mPFC-NAc projections in
control over intertemporal decision-making and suggest that this
pathway may be recruited to a greater degree in self-controlled
versus impulsive individuals. Nevertheless, the current data cannot
rule out the possibility that the observed greater increases in DD
in rats exhibiting lower levels of impulsive choice at baseline may
be due to greater parametric space for downshifts in discounting
curves compared to animals exhibiting higher impulsive choice.
However, the majority of animals did not reach a floor in their %
large choices following CNO silencing of mPFC-NAc projections.
It is important to note that the DD behavior we analyze here

may have been shaped by the design of the task, such as the use
of cues or the order of delay presentation. Similarly, task design
may have influenced the effects of neurobiological manipulations
on behavior. In the current experiments, when rats responded for
the delayed reward a cue light above the nosepoke port flashed at
2 Hz throughout the duration of the delay until reward delivery.
Such delay-spanning cues are reported to enhance learning in a
DD task, and with over-training they can begin to function as a
conditioned reinforcer [65, 125, 126]. Zeeb and colleagues (2010)
examined how the use of delay cues alters OFC involvement in
DD. Briefly, they found that when the delay was cue-signaled,
pharmacological inactivation of the OFC increased impulsive
choice in low-impulsive animals; however, when the delay was
unsignaled, OFC inactivation decreased impulsive choice in high-
impulsive animals [65]. Cardinal et al. (2001) found no effects of
mPFC lesions on DD using an unsignaled delay procedure, and
here we replicated these results using a task in which the delay to
reward was cue-signaled, suggesting that effects of mPFC
inactivation may not be influenced by delay-spanning cues [50].
It remains a potential target for future research to determine how
mPFC-NAc inactivation affects DD in an unsignaled DD procedure.
Like delay-spanning cues, the order in which delays are

presented can also affect intertemporal choice. In our experiments,
each session contained four blocks of trials with delay progressively
increasing across blocks (i.e., ascending delays). Human research
suggests that presenting delays in an ascending order results in
greater discounting of rewards over delays as compared to
descending order; however, behavior in both procedures is
correlated [127, 128]. Rodent studies are mixed, with some reports
showing differences in intertemporal choice as a function of the
order of delay presentation [129, 130] and others showing no effect
of delay order on behavior [131]. A number of rodent studies,
however, do show that amphetamine administration, either
systemically or directly into the NAc, decreases impulsive choice
when delays are ascending but increases impulsive choice when

delays are descending [54, 132, 133]. The authors of these studies
argue that amphetamine reduces cognitive flexibility, biasing an
animal to perseverate on their initial choice. When the initial choice
was for a larger reinforcer at a short delay (as in ascending delays)
choice across the session is biased towards choice of the larger
reinforcer. If, in our investigation, chemogenetic inhibition of mPFC-
NAc projections similarly reduced cognitive flexibility, we would
assume this would decrease DD in our ascending procedure.
However, instead we show greater discounting of the delayed
reward. Thus, this suggests that decreased activity in this pathway
results in reduced control over DD and greater impulsive choice.
Finally, a growing body of human and animal research presents

conflicting data on sex differences in intertemporal choice [22, 134].
For instance, studies in human subjects either show that men exhibit
greater control over delay discounting [135–138], that women exhibit
greater control [139], or that both men and women discount delayed
rewards at similar rates [139, 140]. Further, a recent meta-analysis of
28 papers shows no significant differences in delay DD between men
and women [79]. Undoubtedly, in rodents, intertemporal choice has
been more well-characterized in males, due to decades of using male
rodents as “standard” in preclinical research. In studies that have
compared DD behavior in male and female rodents, several studies
do not substantiate sex differences in intertemporal choice
[29, 78, 141]. Those studies that have identified sex differences in
DD show that males are more impulsive than females when using a
procedure in which delays are presented at random across the
session [80], and females are more impulsive than males when using
an adjusting delay procedure in which delays decrease after
responses on the small/immediate lever and increase after responses
on the large/delayed lever [142]. Further, evidence suggests that
female rats express greater DD following amphetamine administra-
tion [141], and female rats bred to be low saccharin (LoS) preferring
similarly exhibit greater DD than LoS male rats [142]. Thus, while sex
differences may not be found at baseline levels of intertemporal
choice, they may be unveiled by experimental manipulations and
within subgroups of subjects. In the current study, we used male rats
to examine baseline DD behavior across adolescence to adulthood
and to determine a role for mPFC-NAc projections in intertemporal
choice. We found that DD behavior was highly correlated in
adolescence and adulthood evidencing relative stability and that
mPFC-NAc inhibition increased impulsive choice in male rats. Based
on previous research using similar within-session increasing delay
procedures [78, 141] we expect we would observe similar effects in
females; however, this remains an objective of future research.
In conclusion, here we show that impulsive choice assessed with

DD (1) is conserved from adolescence to adulthood in rats and (2)
requires mPFC-NAc pathway activation. These findings have clinical
relevance as excessive DD is positively correlated with SUD, ADHD,
and impulse control disorders [3, 5–9]. Further, mPFC, NAc, and
projections between these structures are shown to be involved in
these disorders. For instance, both ACC and NAc exhibit altered size
and thickness in individuals with SUD [143], and reduced functional
connectivity in ACC-NAc projections is correlated with greater
relapse vulnerability [144]. Further, in rodents, optogenetic or
chemogenetic silencing of the mPFC-NAc pathway attenuates both
drug- and cue-primed reinstatement of drug seeking [145–147].
Therefore, these data provide integral knowledge for the under-
standing the neural underpinnings of DD and identify the mPFC-
NAc pathway as a potential target for the treatment of excessive
impulsive choice across the lifespan.
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