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Wetlands store 20–30% of the world’s soil carbon, and identifying the microbial controls on these carbon reserves is essential to
predicting feedbacks to climate change. Although viral infections likely play important roles in wetland ecosystem dynamics, we
lack a basic understanding of wetland viral ecology. Here 63 viral size-fraction metagenomes (viromes) and paired total
metagenomes were generated from three time points in 2021 at seven fresh- and saltwater wetlands in the California Bodega
Marine Reserve. We recovered 12,826 viral population genomic sequences (vOTUs), only 4.4% of which were detected at the same
field site two years prior, indicating a small degree of population stability or recurrence. Viral communities differed most
significantly among the seven wetland sites and were also structured by habitat (plant community composition and salinity). Read
mapping to a new version of our reference database, PIGEONv2.0 (515,763 vOTUs), revealed 196 vOTUs present over large
geographic distances, often reflecting shared habitat characteristics. Wetland vOTU microdiversity was significantly lower locally
than globally and lower within than between time points, indicating greater divergence with increasing spatiotemporal distance.
Viruses tended to have broad predicted host ranges via CRISPR spacer linkages to metagenome-assembled genomes, and
increased SNP frequencies in CRISPR-targeted major tail protein genes suggest potential viral eco-evolutionary dynamics in
response to both immune targeting and changes in host cell receptors involved in viral attachment. Together, these results
highlight the importance of dispersal, environmental selection, and eco-evolutionary dynamics as drivers of local and global
wetland viral biogeography.

The ISME Journal (2023) 17:2079–2089; https://doi.org/10.1038/s41396-023-01516-8

INTRODUCTION
Wetlands are an important carbon sink, estimated to store
between 20 and 30% of the global soil carbon [1]. They also
provide ecosystem services, such as flood control, drought
prevention, and water quality protection, and they support a rich
biodiversity [1–4]. However, these ecosystems are currently being
lost at an estimated annual rate of 1.5% globally, releasing stored
carbon into the atmosphere [2, 5]. Moreover, due to climate
change, soil salinity is increasing in formerly freshwater wetlands,
causing changes to microbial and plant communities [6–8] and
potentially leading to biodiversity loss [9]. Microorganisms play
central roles in carbon turnover and the emission of greenhouse
gasses from wetland ecosystems[10], and, by infecting, controlling
the metabolism of, and lysing microorganisms, viruses also likely
impact these biogeochemical cycles [10, 11]. It is therefore
important to characterize fresh- and saltwater wetland microbial
and viral communities, in order to understand the ecological and
biogeochemical responses of these fragile ecosystems under a
changing climate [12–14].
Methodological improvements have only recently made it

possible to study soil and wetland viral communities in detail.
While some prior efforts focused on bioinformatic mining of viral
sequences from total soil metagenomes [15, 16], by purifying the
viral size fraction through 0.22 μm filtration prior to metagenomic

sequencing (viromics), a much higher viral diversity can be
recovered [11, 17, 18]. Application of these methods to peatlands
and a variety of other soils is beginning to reveal ecological factors
important to soil viral biogeography, such as soil moisture content,
habitat characteristics, and (on local scales) spatial structuring
reflecting dispersal limitation and temporal dynamics suggesting
responses to fluctuating environments [15–18].
Recent studies have shown substantial differences in soil viral

community composition among habitats at both regional and
global scales [18, 19]. For example, soil viral ‘species’ (vOTUs) were
rarely shared among four different habitats (grasslands, shrub-
lands, woodlands, and wetlands) in northern California [19], and
similarly, few RNA viral sequences were shared between grass-
lands and peatlands in the United Kingdom [20]. Despite repeated
observations of soil viral community heterogeneity at regional or
continental scales [21, 22], the same viral species can be found on
different continents, usually in the same type of habitat (e.g., peat
viruses tend to be restricted to other peatlands) [18]. Although
habitat seems to be an important contributor to global soil viral
biogeography, the supporting data are sparse; further studies are
needed to assess the generalizability of these patterns.
Soil viral community spatial structuring and temporal turnover

have also been observed at more local scales, with viral
communities showing seasonal dynamics [23] and differing more
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significantly over space and time than bacterial communities
[17, 21]. However, those studies were conducted within the same
habitat or soil type; differences in viral community composition
across habitats have rarely been considered at local scales. In two
studies that did compare viral communities by habitat in the same
Swedish ecosystem, viral communities were found to be distinct
among three habitats along a peatland permafrost thaw gradient
[15, 24]. However, those three habitats were also spatially
separated, making the relative influences of habitat and spatial
location difficult to disentangle. Similarly, viral community
compositional differences along a grassland pH gradient also
reflected spatial separation, but pH was seemingly the predomi-
nant factor driving viral community composition, which was
corroborated in a meta-analysis of other soil and peat viral
datasets [25]. Disentangling the relative impacts of habitat
characteristics, spatial location, and temporal dynamics on soil
viral community composition is thus an important near-term goal
for advancing the field, but even the appropriate spatiotemporal
scales for sampling soil viral communities are unknown.
Building on our prior regional study of 30 viromes from four

habitat types with very little overlap in viral species across samples
[19], here we hypothesized that reducing complexity from the
regional to local scale and restricting the diversity of habitats
considered (only wetlands) would yield sufficient vOTU co-
occurrence to link viral biogeographical patterns to their potential
underlying drivers. We sampled seven different wetland sites
across a 0.6 km² area at three time points in 2021 at the Bodega
Marine Reserve on the California Pacific Coast (USA). We
generated 63 viral size-fraction metagenomes (viromes) and 63
total soil metagenomes to profile the dsDNA viral communities
and bacterial and archaeal (prokaryotic) communities, respec-
tively, in these wetlands. We also compared results to our viromic
dataset from Bodega Bay collected two years prior (in 2019) [19].
Here we explore local and global wetland viral biogeography,
investigate which factors among spatial distance, plant and
microbial community composition, soil physicochemical proper-
ties, and time influence viral community composition, and
evaluate the influences of spatial and temporal distance on viral
population microheterogeneity and virus-host eco-evolutionary
dynamics.

RESULTS AND DISCUSSION
Dataset overview
To investigate wetland dsDNA viral biogeography on a local scale,
we sampled seven nearby wetland sites within a 0.6 km² area in
the Bodega Marine Reserve, California, USA (Fig. 1A, map).
Sampling sites were initially selected to represent freshwater,
brackish, and saltwater wetlands, based on institutional knowl-
edge of plant community composition, and we subsequently
measured both plant communities and salinity to empirically
define the sampled habitats. Near-surface (top 15 cm) wetland
soils were collected at three time points (March, May, and July of
2021), with three samples per time point per wetland site. Samples
were collected on average 17m apart, with the closest samples
within a site (regardless of the time point) 1.7 m apart and the
farthest 89 m apart (Supplementary Table 1). All 63 samples
(7 sites x 3 samples x 3 time points) underwent viral size-fraction
metagenomics (viromics) and total metagenomics to measure
viral and prokaryotic community composition, respectively. A suite
of soil physicochemical properties was also measured for each
sample (Supplementary Table 2).
In total, 12,826 viral operational taxonomic units (vOTUs, ≥10

kbp, ≥95% average nucleotide identity, approximately species-
level taxonomy [26]) and 219 metagenome-assembled genomes
(MAGs, ≥50% complete, ≤10% contaminated [27], Supplementary
Table 3) were detected in our samples. From the viromes, we
assembled 17,703 viral contigs de novo, which clustered into

12,261 vOTUs, and we recovered an additional 565 vOTUs by read
mapping to our Phages and Integrated Genomes Encapsidated Or
Not (PIGEONv2.0) database of 515,763 vOTUs from diverse
ecosystems, including 369 vOTUs recovered from Bodega Bay
viromes collected in 2019 [19]. Read mapping to these sets of
vOTUs and MAGs yielded the estimated relative abundances of
each vOTU and MAG in each sample, used for downstream
community compositional analyses (Supplementary Tables 4, 5).

Habitat features (plant community composition and salinity)
We identified 32 plant species across the seven sites (Supple-
mentary Table 6), and plant communities separated the sites into
two vegetation groups, based on the presence or absence of
halophytes (salt-tolerant plants). There were no overlapping plant
species between the two groups, and while most sites in the same
vegetation group shared at least one dominant plant species,
plant community composition differed at each of the seven sites
(Supplementary Table 6). We also used salinity measurements to
define habitats, with electrical conductivity measurements ran-
ging from 0 to 82 mmhos/cm in our wetlands, and those between
0 to 2 mmhos/cm considered non-saline, 2 to 4 slightly saline, 4 to
8 moderately saline, 8 to 16 strongly saline, and 16 or greater
extremely saline wetlands [28]. Based on these parameters, we
separated the seven sites into four habitat groups: “Halophyte (H)”
for the two sites with halophyte plants and overall medium to
extreme soil salinity (H1 and H2), “No Halophyte (NH)” for the
three sites with no halophytes and low to slight soil salinity (NH1,
NH2, and NH3), and two “Mismatched (M)” groups (M1 and M2)
for two sites for which the vegetation did not correspond with soil
salinity. The mismatched (M) sites did not share the same
vegetation and salinity mismatch, so they do not represent the
same habitat type, leading to four habitat groups (H, NH, M1,
M2).Although vegetation tended to be indicative of soil salinity,
our salinity measurements varied both within and among sites,
and two sites had consistently mismatched salinity and vegetation
measurements (site M1 had a ‘no halophyte’ plant community
with non-to-strongly saline soils, and site M2 had a “halophyte”
plant community with non-saline soils). These seemingly contra-
dictory vegetation and salinity results left us initially concerned
that our salinity measurements might have been faulty, but
evaporation during dry periods, seasonal waterlogging, precipita-
tion, and leaching of water can all influence soil salinity in short
time spans [29]. Halophytic plants outcompete non-halophyte
plants in saline environments [30], and coastal salt marshes such
as site M2 experience tidal flooding with seawater, leading us to
believe that M2 likely sometimes experiences higher soil salinity
than we measured, promoting halophyte growth. Halophytes are
not competitive in non-saline habitats [31], and since there were
no halophytes at site M1 despite the moderate salinity measure-
ments, we speculate that M1 soil is often non-saline.

Viral and prokaryotic communities were distinct at each of the
seven wetland sites but were more similar within than
between habitat types
Most (90%) of the vOTUs were uniquely identified in only one of
the seven wetland sites. While 38% of the vOTUs were detected in
only one of the 63 viromes (Supplementary Fig. 1), the proportion
of these single instance vOTUs was substantially reduced,
compared to our prior regional-scale comparison of 30 viromes
across grassland, shrubland, woodland, and wetland habitats, in
which 81% of the vOTUs were detected in only one virome [19].
Thus, the localized focus in one area and restriction to wetland
habitats here, as well as increased spatiotemporal resolution,
improved our ability to identify vOTUs shared across samples, as is
necessary for recognizing biogeographical patterns. Of the 62% of
vOTUs detected in more than one virome, 6680 (52%) were
recovered only within one wetland site, and viral community
composition was significantly different at each site (PERMANOVA
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p < 0.001, Fig. 1B, C). The average pairwise Bray-Curtis dissimilarity
between viromes from the same site at the same time point versus
at different time points was not significantly different (T test,
p= 0.26), indicating that viral community compositional differ-
ences over space were just as substantial as differences over time,
so samples from the same time point at the same site were

statistically treated as individual samples, rather than biological
replicates. The PCoA plots (Fig. 1B, C) explained a relatively small
percentage of the variance in viral community composition, which
we think is attributable to very high viral community beta-diversity
in the dataset, including within each site, as shown in
Supplementary Fig. 1. Viral community beta-diversity was
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significantly negatively correlated with the pairwise spatial
distance between samples (Supplementary Fig. 2A), implicating
dispersal limitation as one potential driver of these patterns (as
also suggested in previous work [17, 19, 21]). Specifically, viral
community Bray-Curtis dissimilarity scores increased on average
by 0.13 (out of a maximum dissimilarity score of 1) per 10 meters
between samples (Supplementary Fig. 2A).
Despite overarching differences among wetland sites, viral

communities grouped secondarily according to habitat type
(Fig. 1B, C), with significant differences among the four habitat
groups (H, NH, M1, and M2, PERMANOVA, p < 0.001). Consistent
with edaphic factors as potential drivers of these differences, viral
community composition correlated significantly with plant com-
munity composition, microbial community composition, and soil
chemical measurements (Supplementary Fig. 2B, Supplementary
Table 2), such as pH, moisture content, and sulfate concentrations
(Supplementary Fig. 2C). Microbial community composition also
correlated significantly with plant community composition and
various soil chemical measurements. A BIO-ENV analysis indicated
that soil potassium and calcium correlated best with viral
community composition (R² = 0.53, p= 0.001). These results are
similar to those from a California grassland, in which calcium, zinc,
and potassium concentrations were significantly correlated with
viral community composition [21]. Considering only between-
habitat beta-diversity, the viral communities from sites NH1 and
NH2 were the most similar (Fig. 1C), despite being physically far
apart (Fig. 1A), perhaps related to their similar salinity and plant
communities (Supplementary Table 6). This is consistent with prior
work that has suggested that plant cover type could play an
important role in shaping soil viral communities [32]. Similar
salinity and plant communities were likely also drivers of viral
community compositional similarity at sites H1 and H2. Those sites
are also connected by a culvert (a human-made water tunnel
beneath a road) (Fig. 1A), presumably facilitating dispersal
between the sites. Finally, the two mismatched sites each had
distinct viral communities, potentially due to their unique
combinations of plant composition and salinity.
A co-occurrence analysis revealed that vOTUs were most often

shared across samples from the same habitat type. Specifically,
vOTUs from all three non-halophyte soils (NH1, NH2, and NH3)
tended to co-occur, as did vOTUs from wetlands with halophyte
plants (H1 and H2). Perhaps reflecting the lack of other samples
from the same habitat types in this dataset, vOTUs from each of
the mismatched sites tended to co-occur only with other samples
from the same site, but a small subnetwork of vOTUs from the
halophyte site H2 co-occurred with vOTUs from the non-
halophyte wetlands. All of those co-occurring vOTUs were either
the most abundant in or only detected in one particular
H2 sample, H2-1-T2, which had low salinity (1.69 mmho/cm)
(Supplementary Table 2). This suggests that environmental
selection (presumably by way of microbial hosts) can act on
wetland viral communities on very short time scales, and/or that
an influx of new vOTUs was brought to site H2, being already

adapted to conditions in the less saline water that brought
them there.
The two sites with the most within-site vOTU co-occurrences

(NH3 and M1) also had the highest moisture content, consistent
with hydrological mixing facilitating greater viral community
homogeneity. Specifically, site NH3 harbored viral communities
distinct from all other sites (Fig. 1B), despite its similar salinity and
plant community composition to the other two non-halophyte sites
and its close proximity to NH2 (Fig. 1A, Supplementary Table 2). A
comparatively large percentage of vOTUs was shared across
samples within the NH3 site (35% of vOTUs were shared among
five or more NH3 samples, relative to only 8% on average for the
other two non-halophyte sites, Supplementary Fig. 1). Similarly,
communities from site M1 were also distinct, with 30% of their
vOTUs detected in five or more samples from the same site,
whereas the five other sites (not NH3 or M1) shared only 9% of their
vOTUs across five or more samples from the same site. Soil moisture
content was highest at sites NH3 (83% on average) and M1 (52% on
average), compared to 34% on average at the other five sites, likely
facilitating more mixing and greater viral community homogeneity
due to greater hydrologic connectivity. Overall, the viral community
compositional and vOTU co-occurrence patterns revealed both
dispersal (and dispersal limitation) and environmental selection
(biotic and abiotic habitat characteristics) as likely drivers of local
wetland viral biogeographic patterns.
To determine whether prokaryotic communities exhibited

similar patterns to the viral communities, prokaryotic community
composition and co-occurrence were also investigated. Briefly, the
relative abundances and co-occurrences of MAGs and, separately,
of 16S rRNA gene reads recovered from total metagenomes were
used for these analyses. While most of the prokaryotic commu-
nities were significantly different at each of the wetland sites
(Fig. 1E, Supplementary Fig. 3A), the communities from the
Halophyte sites (H1 and H2) were not significantly different from
each other (PERMANOVA, p= 0.055), grouping more by habitat
type than did the viral communities. Co-occurrence networks for
MAGs showed similar patterns to those of the viral communities,
largely reflecting shared MAGs within the same habitat type,
though relatively few MAGs were recovered from the non-
halophyte wetlands (Supplementary Fig. 3B, C). Although read-
based 16S rRNA gene OTUs also showed the most co-occurrence
within habitat types, OTUs were detected in multiple habitats far
more often than were MAGs, suggesting that increased resolution
(i.e., not requiring assembly into MAGs) revealed more co-
occurrence, presumably due to increased access to both rare
community members and taxa with genomes that did not
assemble well [33]. Overall, patterns for prokaryotic communities
were similar to those of their viruses, and viral community
composition was significantly correlated with prokaryotic com-
munity composition (Mantel test, p < 0.001), suggesting that at
least some of the observed viral biogeographical patterns were
due to habitat filtering (environmental selection) by way of
their hosts.

Fig. 1 Sampling design and overarching compositional patterns for Bodega Bay viral and prokaryotic communities. A Sampling locations
for all Bodega Bay samples. Center: locations of the seven wetland sites within the Bodega Marine Reserve, Left and Right: locations of each of
the nine samples per site (a zoomed in view of each site with individual sample labels is in Supplementary Fig. 1). Per the legend below the
images, circles correspond to locations with halophyte vegetation and saline soils, triangles correspond to locations without halophytes and
non-saline soil, and squares correspond to mismatched locations. The ‘culvert’ label indicates the location of a human-made pipe below the
road that allows for water movement. B, C Principal coordinates analysis (PCoA), based on Bray-Curtis dissimilarities derived from the table of
vOTU abundances (read mapping to vOTUs). Each point is one sample (one virome), with viral communities from (B) all 63 viromes, and (C) the
45 viromes indicated by the dashed rectangle in (B). Panel (C) is a new PCoA to better show separation among overlapping samples in (B).
D Co-occurrence network of vOTUs detected in more than one Bodega Bay virome, colored by the site in which they were most abundant
(had the highest average per-bp coverage depth). Nodes represent vOTUs, and edges represent a significant co-occurrence between the
vOTUs, calculated using a probabilistic co-occurrence model with the R package cooccur. E PCoA based on Bray-Curtis dissimilarities of 16S
rRNA gene OTU community composition, where 16S rRNA gene reads were bioinformatically mined from 63 total metagenomes. For all PCoA
plots (B, C, E), the percent variance explained by each axis is indicated in parenthesis.
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Global distribution patterns for Bodega Bay vOTUs suggest
that wetland viral biogeography reflects habitat and salinity
To compare vOTUs recovered at Bodega Bay to the global viral
metacommunity, we leveraged a new version of our Phages and
Integrated Genomes Encapsidated Or Not (PIGEONv2.0) database,
which we introduce here. Since the first iteration of PIGEON
(PIGEONv1.0), which contained 266,125 vOTUs [18], PIGEONv2.0
has almost doubled in size, now including 515,763 vOTU
sequences. The number of soil vOTUs increased from 15,892 to
61,757, predominantly from our in-house soil viromics data,
including previously unpublished datasets that we are now
making publicly available in PIGEONv2.0. The number of fresh-
water vOTUs also substantially increased, largely due to the
addition of viruses from aquatic viromes from Lake Baikal in Russia
[34]. Here, these PIGEON improvements have facilitated global
comparisons of Bodega Bay vOTU occurrence patterns.
Of the 12,826 vOTUs recovered at Bodega Bay, 196 (1.5%) were

previously detected at other sites throughout the world (Fig. 2A),
recovered here through read mapping to PIGEONv2.0 (Fig. 2B,
Supplementary Table 7). Bodega Bay vOTUs were previously
recovered from non-wetland soils (83), freshwater lakes (57),
marine ecosystems (33), non-peat freshwater wetlands (14), and
peat wetlands (8), indicating globally present viruses in relatively
similar ecosystems throughout the world (Fig. 2A, Supplementary
Fig. 4A). Notably, zero vOTUs from human-associated habitats
were detected in these wetlands, perhaps indicating species
boundaries between these very different habitat types, though we

also note that our focus in developing PIGEON has been on
environmental viruses, with only 15,235 human-associated vOTUs
in the database. Most vOTUs that were detected in non-saline or
slightly saline wetlands at Bodega Bay were originally recovered
from non-wetland soils (62) or freshwater ecosystems (46),
whereas most vOTUs from saline wetlands were previously
recovered from marine (34) or non-wetland soil (28) ecosystems
(Supplementary Fig. 4B), again suggesting that habitat character-
istics underlie global viral biogeographic patterns. Similarly, we
also considered the relationship between vegetation group at
Bodega Bay and the habitat in which a given vOTU was originally
recovered (Fig. 2D) and found that vOTUs from the non-halophyte
sites were most often previously detected in non-wetland soils
(79) or freshwater ecosystems (57), while vOTUs from the
halophyte sites were most often previously detected in marine
ecosystems (24) (Fig. 2C). Together, these results indicate that
habitat characteristics—in this case, salinity and salinity indicators
(halophyte or non-halophyte plant community composition)—can
drive wetland viral community biogeography on a global scale.

Wetland viral microdiversity was lower locally than globally
and lower within than between time points
To investigate the contributions of viral genotypic heterogeneity to
local and global viral ecology, we used inStrain [35] to calculate
vOTU microdiversity profiles and compared dominant allelic
variants over time and space. Specifically, we compared vOTU
reference sequences initially recovered from PIGEONv2.0 (not

Fig. 2 Global distribution and habitat context of Bodega Bay vOTUs, leveraging the PIGEONv2.0 database. A vOTUs (n= 196) from
PIGEONv2.0 recovered at Bodega Bay by read mapping, according to the location where they were first recovered, colored by the
environment in which they were originally recovered. Circle size indicates the number of vOTUs. B Composition of the PIGEONv2.0 database
of 515,763 vOTU sequences, colored by environment. C Relative proportions of all vOTUs recovered from PIGEONv2.0 at Bodega Bay, colored
by the original environment from which they were recovered. D Relative proportions of vOTUs recovered from PIGEONv2.0 at Bodega Bay, as
in panel (C), but separated by the Bodega vegetation group in which they were recovered, colored by original source environment. If a vOTU
was recovered in both vegetation groups, it appears twice in the chart.
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assembled from Bodega Bay, 196), assembled from Bodega Bay in
2019 (2377) [19], and assembled from Bodega Bay in 2021 (this
study, 12,261) to their variants recovered in different samples at
Bodega Bay. As these vOTUs were derived from consensus
assembly sequences, representing composite genomes, highly
variable regions of the genome are less likely to be included in
the consensus sequencee, so these microdiversity results are likely
skewed towards measurements within the more conserved regions
of the viral genomes. For each vOTU, we calculated pairwise
average nucleotide identities (ANIs) between each sample-specific
consensus variant sequence from Bodega Bay and the reference
vOTU sequence. Genomic similarity between Bodega Bay variants
and PIGEON references was significantly lower on average (average
ANI 97.48%) than that for variants that were both assembled and
recovered from Bodega Bay (average ANI 99.55%, Fig. 3A, p < 0.001,
Student’s T test). Given the global scale of PIGEON and local scale of
Bodega Bay, this indicates greater viral population allelic variance
(genomic heterogeneity) with increasing distance and/or time
between samplings, a pattern known as ‘isolation by distance’ that
has been studied for geographic distance, whereby populations in
closer proximity are more genetically similar than populations that
are farther away [36].
A relatively small number of the Bodega Bay vOTUs detected in

2021 were also recovered from Bodega Bay in 2019 (568 vOTUs,
4.4% of the 2021 dataset). This suggests that a small part of the
wetland soil virosphere was stable or consistently recurrent over
time. However, for vOTUs that were assembled and recovered
through read mapping in the same year, the genomic similarity of
dominant allelic variants was higher (99.86%) than for vOTUs that
were assembled and recovered in different years (99.25%,
Student’s T test, p < 0.001, Fig. 3B). Thus, although these viral
species persisted over time, their strain-level heterogeneity
increased over the two years, consistent with temporal “isolation
by distance” [36], with populations farther apart in time exhibiting
more genomic divergence.
Sub-population dynamics for vOTUs that were recovered

multiple times within the same Bodega Bay wetland site in 2021

were also compared to assess short-term eco-evolutionary
dynamics. Genomic similarity of dominant allelic variants was
highest for vOTUs recovered through read mapping at the time
point from which they were assembled (Fig. 3C) and was
significantly lower at both of the other time points. This indicates
that, even over short time scales of two to four months, variants
significantly fluctuated in abundance and/or diverged. Given that
there was no linear trajectory in variant ANI divergence with time
(variants were just as different between adjacent time points as
between the first and third time points), it is possible that
abundance fluctuations could explain these patterns better than
iterative divergence, but greater temporal resolution would be
needed to bolster that interpretation.
We also used inStrain to compare MAG allelic variants in the

2021 Bodega Bay dataset. MAG variants recovered and assembled
at the same time point were most genomically similar (had the
highest ANI), whereas MAGs from different time points had
significantly lower ANI (Supplementary Fig. 3D). Interestingly, in
contrast to the vOTU variants, MAG sub-population dynamics
exhibited temporal progression, with sub-population pairs from
the same time point most similar, those from the first and last time
points most distinct, and those from adjacent time points (i.e.,
from time points 1 and 2 or 2 and 3) exhibiting intermediate
similarity in their ANIs. Additional time points would be required
to determine whether this is likely due to divergence over time,
but results show sub-population dynamics for both viral and
prokaryotic populations over months.

vOTUs tended to have broad predicted host ranges, and on
average, MAGs had evidence for past interactions with more
than 10 vOTUs
To investigate putative host ranges, we bioinformatically linked
vOTUs to MAGs, using CRISPR arrays [37]. All 12,826 vOTUs and
219 MAGs (210 Bacteria and 9 Archaea) were used for this analysis.
A total of 29,709 CRISPR arrays was recovered from the
metagenomes, and 683 virus-host linkages were predicted
between 378 vOTUs and 53 MAGs. All identified host MAGs were
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bacteria and could be classified to at least the phylum level, with
Proteobacteria and Actinobacteriota among the most commonly
reconstructed MAGs (Fig. 4A). Since the number of linkages was
low, we also attempted to run iPHoP [38] for additional virus-host
linkages, and hosts were predicted for an additional 247 vOTUs. Of
these linkages, 204 (82.6%) were to bacteria from the Actinobac-
teriota (n= 132) and Proteobacteria (n= 72). Samples from
medium to extremely saline wetlands had significantly more
CRISPR arrays and spacers than others, perhaps suggesting
increased viral predation, but there was no significant relationship
between the number of CRISPR arrays or spacers and the number
of vOTUs in a given sample (Supplementary Fig. 5). Previous
research has shown that there is a relationship between
environment and CRISPR-Cas prevalence, where environment
type (e.g., saline versus non-saline environments) accounted for
approximately 22% of the variation in prevalence [39]. A positive
correlation between viral abundance and CRISPR-spacer abun-
dance was also found in that study, with CRISPR spacers more
abundant when viral diversity was lower, but we were not able to
detect these trends in our data, perhaps due to differences in
dataset sizes and/or ecosystems studied. The average MAG was
linked to 13 vOTUs in our dataset, indicating that wetland
prokaryotic populations can be infected by (or otherwise interact
with [40]) multiple, diverse viral species. On average, each vOTU
was linked to four MAGs, and 164 vOTUs (45% of those with
predicted hosts) had putative linkages to MAGs in different phyla
(Fig. 4A, B). The average vOTU was linked to MAGs in two phyla,
and, when only considering vOTUs linked to more than one MAG,
vOTUs were linked to MAGs across three or more phyla on
average.
These results suggest either that CRISPR spacer matches to viral

proto-spacers are imperfect for predicting virus-host linkages
associated with infections in these systems, or that wetland

viruses have much broader host ranges than previously appre-
ciated. Recent studies have suggested that viral interactions with
hosts may be far less specific than previously understood, with
viruses infecting (or otherwise interacting with) prokaryotes across
different phyla [17, 40, 41]. The mechanisms that could routinely
enable viruses to infect different phyla are unknown, but recent
evidence for diverse plasmid-dependent phages [42] (which
target conjugation proteins encoded by horizontally transferrable
plasmids) offers one interesting possibility for cross-infection that
bears further exploration. Cross-phylum CRISPR linkages could also
reflect non-specific interactions (e.g., uptake of viral particles or
DNA by non-primary hosts, or horizontal transfer of CRISPR
regions), as opposed to infections, and these interactions
have been suggested to be more common than previously
appreciated [40].
To investigate viral evolution in response to host immunity, we

calculated the allelic variance within and outside of the viral
genomic regions linked to CRISPR spacers, using the originally
assembled vOTU sequence as the reference for SNP identification
for each vOTU. Viral genomic regions with a CRISPR-spacer match
had on average 5.6 SNPs/Kbp, whereas the genome outside of the
match had on average 3.3 SNPs/Kbp, indicating more allelic
variance in CRISPR-targeted regions, compared to the rest of the
viral genome. This has been seen previously, for example in
Streptococcus thermophilus phage-host coevolution experiments
and in an acid mine drainage system [43, 44], and it suggests
increased phage genome diversification in CRISPR targeted
regions to promote immune evasion. Of the predicted proteins
in the CRISPR-targeted viral genomic regions with SNPs, 87%
were annotated as hypothetical proteins, and 9% were putative
major tail proteins. A significantly larger proportion of putative
tail proteins was found in these regions than was annotated
as putative major tail proteins in the whole dataset
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(0.93%, p < 0.00001, Z-test). This suggests that there is selection for
accelerated evolution in viral genomic regions targeted by
CRISPRs, particularly in tail proteins likely involved in attachment
to host cell receptors [45]. Evidence for higher mutation rates in
phage tail protein genes is presumably due to viral adaptation to
changes in host cell receptors to facilitate attachment, as
previously suggested [46, 47].

CONCLUSIONS
We analyzed dsDNA viral communities from the Bodega Bay,
California wetland ecosystem and showed significant differences
in viral community composition across seven wetland sites, with
evidence for dispersal, dispersal limitation, and habitat filtering as
underlying drivers of the observed patterns. Although wetland
viral communities differed predominantly by location within
Bodega Bay, perhaps reflecting local dispersal limitation, the two
wetland sites with the most homogeneous communities had the
highest soil moisture content, suggesting hydrologic mixing and
more opportunities for within-site dispersal with increasing
moisture content. Local wetland viral communities were secon-
darily structured by habitat characteristics, such as plant commu-
nity composition and soil salinity, indicating environmental
filtering, perhaps by way of host adaptation. A small fraction
(1.5%) of the vOTUs were previously recovered elsewhere, with
global biogeographical patterns largely linked to habitat char-
acteristics; marine vOTUs tended to be recovered in saline
wetlands, freshwater vOTUs in non-saline wetlands, and soil
vOTUs across wetland habitats.
In addition to dispersal and environmental filtering, eco-

evolutionary dynamics (e.g., diversification and/or compositional
shifts among dominant allelic variants) contributed to local and
global viral biogeographical patterns. Pairwise ANI % between
dominant allelic variants (sub-populations) differed significantly
between years and over the four-month timescale of this study. In
addition, Bodega Bay vOTU variants tended to be more divergent
from reference vOTUs recovered elsewhere globally than from
reference sequences assembled from Bodega Bay. The observed
greater divergence over larger spatiotemporal scales is consistent
with patterns of ‘isolation by distance’, whereby variants closer
together in time and/or space likely had greater opportunities for
gene flow. On a global scale, this may reflect local diversification
and global dispersal limitation of most variants. Our limited ability
to link viruses to their hosts (a limitation of the current state of the
field) makes the contributions of virus-host co-evolutionary
dynamics to biogeographic patterns difficult to evaluate, but we
did see evidence for virus-host interactions spanning multiple
phyla. Taken together, these results highlight dispersal, environ-
mental filtering, and eco-evolutionary dynamics as likely drivers of
both local and global wetland viral biogeographical patterns,
expanding our understanding of the highly diverse and dynamic
global soil virosphere.

METHODS
Field site and sample collection
Samples were collected three times over four months at the University of
California, Davis Bodega Marine Reserve, in seven wetland soil ecosystems
within the reserve (Supplementary Table 2). Sample collections were
performed on March 17th, May 13th, and July 15th, 2021 (T1, T2 and T3,
respectively) from each of seven distinct wetland sites. The plant
community at each site was used as an indicator for soil salinity
(Supplementary Table 6), such that the seven wetland sites were initially
selected to represent three low-salinity and four high-salinity habitats, but
subsequent analyses revealed more nuance in these habitat types (see
main text). At each time point, three surface soil samples (0–15 cm deep,
2.5 × 2.5 cm square area) were collected per wetland site, using a soil knife.
The soil within each sample was homogenized and stored at –80 °C until
further processing.

Virome DNA extraction, library construction, and sequencing
Soil virions were enriched using a modified version of a previously
published protocol [48]. For each sample, 10 g of soil were suspended in
30mL of protein-supplemented phosphate-buffered saline solution (PPBS:
2% bovine serum albumin, 10% phosphate-buffered saline, 1% potassium
citrate, and 150mM MgSO4 in ultrapure water), briefly vortexed, placed on
an orbital shaker (30min, 400 rpm, 4 °C), and then centrifuged (10min,
3095 × g, 4 °C). Supernatant was then centrifuged twice (8 min, 10,000 × g,
4 °C) to remove residual soil particles. The purified supernatants were then
filtered through a 0.22 μm polyethersulfone membrane to remove most
cells. The resulting filtrate was ultracentrifuged (2 h 25min, 32,000 rpm,
4 °C) to pellet the virions, using an Optima LE-80K ultracentrifuge with a
50.2 Ti rotor (Beckman-Coulter Life Sciences). Supernatants were decanted,
and pellets were resuspended in 100 μl of ultrapure water. DNase
treatment was not performed, as soil samples were stored frozen prior
to processing, due to COVID-19 lockdown restrictions, and avoiding DNase
treatment on such samples has been shown to improve viromic DNA yields
without substantially compromising the viral ‘signal’ in the data [49]. DNA
was extracted from the virus-enriched fraction, using the DNeasy
PowerSoil Pro kit (Qiagen, Hilden, Germany), following the manufacturer’s
instructions, with an added step of a 10-min incubation at 65 °C before the
bead-beating step. Libraries were constructed by the UC Davis DNA
Technologies Core, using the DNA Hyper Prep library kit (Kapa Biosystems-
Roche, Basel, Switzerland), and paired-end 150 bp sequencing was done
using the NovaSeq S4 platform (Illumina) to an approximate depth of 10
Gbp per virome.

Total DNA extraction, library construction, and sequencing
Total DNA was extracted from 0.25 g of soil per sample with the DNeasy
PowerSoil Pro kit (Qiagen, Hilden, Germany), following the manufacturer’s
instructions, with an added step of a 10-min incubation at 65 °C before the
bead-beating step. Libraries were constructed and sequenced as described
above, but to an approximate depth of 20 Gbp per total metagenome.

Soil chemistry and moisture
Soil moisture was defined by calculating the gravimetric water content of
the soil. Soil chemistry measurements were performed by Ward
Laboratories (Kearney, NE, USA). Briefly, soil pH and soluble salts were
measured using a 1:1 soil:water suspension. Soil organic matter was
calculated as percent mass loss on ignition. Nitrate was measured using a
KCl extraction. Potassium, calcium, magnesium and sodium were
measured using an ammonium acetate extraction. Zinc, iron, manganese
and copper were measured using a DTPA extraction. Phosphorus was
measured using the Olsen method, and sulfate was measured using a
Mehlich-3 extraction.

Virome bioinformatic processing
Reads were trimmed using Trimmomatic v0.39 [50] to remove Illumina
adapters and for quality trimming, using paired-end trimming, a sliding
window size of 3:40, and a minimum read length of 50 bp. PhiX sequences
were removed using BBDuk, from the BBMap v38-72 package [51], using
k= 31 and hdist= 1. De novo assemblies were generated separately for
each virome from the quality-trimmed, phiX-free reads, using MEGAHIT
v1.0.6 [52], with k-min of 27, presets meta-large, and a minimum contig
length of 1000 bp. It is likely that by using assembly-based approaches for
vOTU recovery, heterogenous viral populations were not sufficiently
assembled, and therefore, the viral community diversity may be under-
estimated [53]. Contigs were renamed, using the rename command from
the BBMap package [51], using standard settings, and only contigs ≥10 kbp
were retained, using reformat from BBmap with the setting min-
length=10000. Viral contigs were predicted using VIBRANT v1.2.0 [54], in
virome mode and retained for downstream analyses if VIBRANT classified
the contig as viral. It should be noted that we chose to use only one viral
prediction tool, in order to minimize the number of false-positive vOTUs,
which means that we likely have missed true-positive viral contigs in our
analysis. Viral contigs were dereplicated into vOTUs using dRep v3.2.0 [55]
at 95% ANI with a minimum coverage threshold of 85%, using the ANImf
algorithm. Reads were mapped to the vOTUs, using Bowtie2 v2.4.2 [56] in
sensitive mode (a conservative setting but lacking a specific nucleotide
identity cutoff), and the resulting samfiles were converted to bamfiles via
SAMtools v1.15.1 [57]. A coverage table was produced using CoverM v0.6.1
[58], using CoverM contig with the mean coverage and a minimum
covered fraction (breadth) of 75% (Supplementary Table 4). Reads were
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subsequently mapped back to our PIGEONv2.0 database, using CoverM
with the same settings.

Total metagenome bioinformatic processing
Read trimming, PhiX removal, and assembly were done the same way as
for the viromes. Contigs were renamed, using the rename command from
the BBMap package [51], using standard settings, and only contigs ≥2 kbp
were retained, using reformat from BBmap with the setting minlength=
2000. CD-HIT v2007-013 [59] was used to deduplicate the contigs at
approximately 99% ANI, using the -c 0.99 -aS 0.99 settings. Bowtie2 v2.4.2
[56] was used to map reads to the contigs, using sensitive mode, and the
samfiles were converted to bamfiles using SAMtools v1.15.1 [57]. A depth
file for binning was created using MetaBAT2 v2.12.1 [60], using
jgi_summarize_bam_contig_depths. Bins were then created using Meta-
BAT2 v2.12.1, using standard settings. dRep v3.2.0 [55] was used to
dereplicate the bins, using primary clustering at 90%, secondary clustering
at 95%, coverage method larger, a contamination threshold of 5%, and a
coverage threshold of 30% [61]. CheckM v1.0.13 [62] was used to estimate
completeness and contamination of genome bins, and bins ≥50%
complete and ≤10% contaminated were retained [27]. RefineM v0.1.2
[63] was used to refine the recovered bins, using standard settings. Reads
were mapped to these bins (metagenome-assembled genomes, MAGs)
using Bowtie2 v2.4.2 [56] with default settings, except setting --min-
covered-fraction to 0.5 [64] (Supplementary Table 5). Phylogenetic trees
were constructed using GTDB-Tk v2.1.0 [65], using the classify-wf
command for phylogenetic inference and for aligning the identified
marker genes. After this, GTDB-Tk infer was used to create the
phylogenetic tree, using standard settings.

Recovery and analysis of 16S rRNA gene sequences from
metagenomes
SortMeRNA v4.2.0 [66] was used against the bacterial and archaeal SILVA
databases [67] to recover reads containing 16S rRNA gene sequences from
the total soil metagenomes. RDP tools v11[68] was used to taxonomically
classify the sequences, using the RDP database v18 as a reference [69]. A
count table of the 16S rRNA gene OTUs was generated using the
hier2phyloseq() function from the RDPutils package [70].

PIGEONv2.0
To build upon PIGEON 1.0 [18], we added more viral sequences, mostly from
in-house soil data, both published [17, 19, 21, 49] and currently unpublished,
and from recent publications of viral ecology in soil [25], lakes [34, 71] and
oceans [72, 73]. For each of these vOTUs, the original source environment
and original publication is in a table available on Dryad (see Data Availability
Statement), but since not all vOTUs had associated metadata and some were
detected in multiple samples, researchers are referred to the original
publications for additional metadata information. We also mined a total soil
(rhizosphere) metagenome dataset for viral sequences [74]. A prefix was
added to all sequence headers, in order to quickly identify the dataset from
which the original sequence was derived (Supplementary Table 9). All
sequences were dereplicated using CD-HIT 2007-0131 [59], because the
dataset was too large to use other programs for dereplication. Sequences
≤10 kbp and ≥500 kbp were removed. The viromic reads from the current
Bodega Bay dataset were also mapped to RefSeq prokaryotic viral genomes
(n= 2305, release 85) [75], according to the read mapping parameters
described above, but no RefSeq viral sequences were detected in our dataset.
We opted not to add the RefSeq database to PIGEONv2.0, as the RefSeq
database is frequently updated, and users may want to use different (newer)
versions of RefSeq in combination with PIGEONv2.0.

Microdiversity profiles
Within-population genetic diversity was calculated using inStrain v1.4.0 [35].
The bam files created by bowtie2 from the viromes were used as input for
the inStrain profile option to identify divergent sites for each of the vOTUs.
Variants were only called if they had a minimum coverage of 5 reads. MAG
population genetic diversity was calculated the same way, using the bam
files created by Bowtie2 from the total metagenomes as input for inStrain.

CRISPR-spacer and iPHoP analyses for virus-host linkages
Crass v1.0.1 [37] was used to assemble spacer and repeat sequences in the
total metagenomes, using -l 4. All spacer sequences were then compared to
the vOTUs, using BLASTn v2.7.1 [76], retaining hits with fewer than two

mismatches, a minimum alignment length of 23 bases, and >95% nucleotide
identity. All repeat sequences were compared to the MAGs using BLASTn,
retaining hits that had no mismatches and 100% nucleotide identity
(Supplementary Table 8). Additionally, iPHoP [38] was used to investigate the
dataset for additional virus-host linkages, and matches with a confidence
score ≥95 were retained. VIBRANT annotations using the VOG database,
based on HMM-based probabilistic searches against the database, were used
for the ‘predicted viral proteins recovered in CRISPR regions’ analysis.

Data analysis and visualization
All statistical analyses were done using R v 4.1.0 [77]. Analysis for viral
community composition were done on the mean coverage vOTU
abundance table, unless otherwise noted. Bray-Curtis dissimilarities were
calculated on log-transformed relative abundances, using the vegdist
function from the vegan package v2.6-2 [78]. PERMANOVA analyses were
done using the adonis2 function from vegan. Principal coordinates
analyses were performed with the pcoa() function from ape v5.4-2 [79].
The BIO-ENV analysis was done using the bioenv function from vegan. Co-
occurrence analyses for vOTUs, MAGs and 16S rRNA gene OTUs were done
using the coocur package in R [80], using a presence-absence version of
the abundance tables. Only significantly positive co-occurrences (p < 0.001)
were used for visualization. Co-occurrence networks were visualized using
Cytoscape v3.7.1 [81], using the edge-weighted spring embedded model,
placing vOTUs that co-occur more frequently in closer proximity to each
other in the figure. UpSet plots were created using the UpSetR package
v1.4.0 [82], using a presence-absence version of the vOTU abundance
table. All maps were created using the R package ggmaps [83]. Pie charts
and bar charts were created with Python v3.8, using matplotlib v3.4.2 [84]
and seaborn v0.11.2 [85]. The phylogenetic tree was created using the iTOL
website [86], and the CRISPR-repeat network linking viruses to hosts was
created using Cytoscape. All other plots were created, using the R package
ggplot2 v3.3.5 [87]. Correlation tests between community Jaccard
Dissimilarity and spatial or environmental distance were done using the
cor.test() function, using the Pearson method with the alternative
parameter set to two-sided. The linear regression slopes were calculated
using the lm function, as has been done previously [21]. All scripts are
available at https://github.com/AnneliektH/BodegaBay2021.

DATA AVAILABILITY
Raw sequencing reads are available at NCBI under BioProject number PRJNA913601,
and sequence processing and statistical analysis code can be found on GitHub
(https://github.com/AnneliektH/BodegaBay2021). The PIGEONv2.0 database vOTU
sequences, the vOTU sequences recovered in this dataset, and MAGs recovered in
this dataset are available on Dryad (https://datadryad.org/), using the following
https://doi.org/10.25338/B8C934 (datasets with the most recent date stamp are the
most current).
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