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Molecular dynamics (MD) simulation is a powerful computational tool used in biomolecular studies to investigate 
the dynamics, energetics, and interactions of a wide range of biological systems at the atomic level. GROMACS is 
a widely used free and open-source biomolecular MD simulation software recognized for its efficiency, accuracy, 
and extensive range of simulation options. However, the complexity of setting up, running, and analyzing MD 
simulations for diverse systems often poses a significant challenge, requiring considerable time, effort, and 
expertise. Here, we introduce CHAPERONg, a tool that automates the GROMACS MD simulation pipelines for 
protein and protein-ligand systems. CHAPERONg also integrates seamlessly with GROMACS modules and third-

party tools to provide comprehensive analyses of MD simulation trajectories, offering up to 20 post-simulation 
processing and trajectory analyses. It also streamlines and automates established pipelines for conducting and 
analyzing biased MD simulations via the steered MD-umbrella sampling workflow. Thus, CHAPERONg makes 
MD simulations more accessible to beginner GROMACS users whilst empowering experts to focus on data 
interpretation and other less programmable aspects of MD simulation workflows. CHAPERONg is written in 
Bash and Python, and the source code is freely available at https://github .com /abeebyekeen /CHAPERONg. 
Detailed documentation and tutorials are available online at dedicated web pages accessible via https://

abeebyekeen .com /chaperong -online.
1. Introduction

Molecular dynamics (MD) simulation is a robust and valuable tool 
for studying the dynamic behavior, energetics, and interactions of di-

verse biological systems, including proteins, protein-ligand complexes, 
nucleic acids, and membrane lipids [1]. These simulations provide 
insights–in full atomic details and at precise temporal resolutions–into 
the dynamics, stability, and functional properties of biomolecules, com-

plementing experimental observations and providing guidance for fur-

ther investigations [2,3]. GROMACS [4] is a widely used MD simulation 
software. It is one of the gold standards for biomolecular simulation not 
only because of its efficiency, accuracy, and extensive range of simula-
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tion options but also because it’s a free and open-source software with 
a huge community of users and developers [5,6]. MD simulation pro-

tocols typically consist of three main stages: system preparation, MD 
production or simulation run, and trajectory analysis (Fig. 1) [7]. While 
advances in computational power and resources have improved the 
capabilities of MD simulation tools, setting up and running MD sim-

ulations with GROMACS (and other MD simulation codes) still present 
several challenges [8].

GROMACS is a command-line program and, as with most other pop-

ular MD simulation engines, is characterized by limited accessibility to 
many researchers who, despite possessing the necessary domain knowl-

edge to interpret the relevant computational results, may not be familiar 
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Fig. 1. An overview of the workflows and functionalities that CHAPERONg offers and automates. These include the entire GROMACS conventional MD simulation 
(left) and the steered MD-umbrella sampling (right) workflows, as well as several post-simulation analyses (middle). Ligand topologies are generated using parameters 
obtained from various servers/tools for the CHARMM, AMBER, GROMOS, and OPLS-AA force fields. Functionalities highlighted with various colors indicate those 
integrated with GROMACS but are offered or largely facilitated by CHAPERONg (blue) and other third-party tools such as DSSP (grey), PyMOL (red), g_mmpbsa 
(yellow), MD DaVis (green), etc. QA: Quality assurance, RMSD: Root mean square deviation, RMSF: Root mean square fluctuation, Rg: Radius of gyration, SASA: 
Solvent-accessible surface area, Hbond: Hydrogen bond, WHAM: Weighted histogram analysis method.
with working on the command line [5,6]. In addition, setting up and 
running MD simulations requires a lot of manual tasks, making the pro-

cess time-consuming, labor-intensive, and error-prone. Since many of 
these steps are repetitive and programmable, automation tools would 
greatly minimize manual user interventions, thereby improving effi-

ciency and empowering users (beginners and experts) to focus on other 
aspects like optimization of parameters, data analysis, and result inter-

pretation [9].

Furthermore, MD simulations typically generate huge amounts of 
trajectory data, but processing the data into particularly meaningful, 
relevant, and informative forms often requires programming and data 
analysis skills [10,11]. Thus, beginner and intermediate users with 
limited or no such skills are only able to gain superficial insights 
from MD output data in spite of MD simulation being a computation-

intensive process. The ability to transform simulation data into more 
interpretable forms and consequently obtain optimally useful informa-

tion would facilitate the gaining of relevant biological (structural and 
functional) insights from MD simulations [11].

In order to assuage the aforementioned challenges, several tools in-

tegrated into standalone or web-based graphical user interfaces (GUIs) 
have been developed to automate or simplify various steps or aspects of 
the GROMACS MD simulation process. The earliest GUI-based programs 
including GUIMACS [12], jSimMacs [13], and GROMITA [14] that of-

fered some capability to carry out GROMACS MD simulation of protein 
(only) systems have not been updated for a long time, making them in-

compatible with recent GROMACS versions [6]. Other GUI-integrated 
plugins like Dynamics PyMOL plugin [5,15], Enlighten2 (a PyMOL plu-

gin and Python package) [16], and YAMACS (a YASARA plugin) [6]

have such limitations as restrictions to the simulation of specific sys-

tems (protein only or protein complexes), support for only select force 
field(s), lack of trajectory analysis functions, non-trivial installation 
of dependencies, or the need to learn other software interfaces upon 
which they depend [16]. Existing web-based interfaces include MDWeb 
[17] and WebGro [18]; both of which offer MD simulation over lim-

ited timescales, and CHARMM-GUI [19]; a toolkit for generating input 
files for MD simulations using the CHARMM force field. MDWeb does 
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not support the simulation of protein-ligand complexes, and for Web-
Gro, the support is limited to the GROMOS force field. VisualDynamics 
[8] and BioBB-Wfs [9] are two recent web-based initiatives that also 
offer MD simulations over limited duration. While they are excellent 
platforms, they, however, only provide basic analyses of simulation tra-

jectories. They also do not offer advanced simulation workflows (such 
as biased or enhanced sampling simulations).

In this work, we present CHAPERONg, a comprehensive automated 
pipeline for GROMACS MD simulations and trajectory analyses. CHAP-

ERONg is a command-line interface to GROMACS that automates and 
streamlines the entire MD simulation protocols for protein, protein-

ligand, and protein-DNA systems (Fig. 1). It supports ligand topology 
parameters obtained from popular external parameterization programs 
for the CHARMM, AMBER, GROMOS, and OPLS-AA force fields. CHAP-

ERONg seamlessly integrates with GROMACS modules and third-party 
tools to enable an extensive automated workflow of up to 20 different 
post-simulation trajectory and end-point analyses. In addition, it au-

tomates the steered MD and umbrella sampling simulations, a biased 
enhanced simulation protocol often employed to overcome sampling 
limitations and investigate rare events. Thus, CHAPERONg would not 
only make MD simulation more accessible to beginner GROMACS users 
but also expand the toolset of experts by facilitating improved efficiency 
and providing a platform upon which advanced and customized analy-

ses and scripting could be built.

2. Methods and code implementation

CHAPERONg has been developed using the Bash shell scripting and 
the Python 3 programming language. The framework and primary mod-

ules of the CHAPERONg source code were written using Bash shell 
scripting because GROMACS is a Linux-based software. This allows 
a seamless GROMACS-CHAPERONg integration and ensures that the 
only real dependency of CHAPERONg is simply a functional GROMACS 
installation. Thus, the entire MD simulation pipelines can be automati-

cally executed without the need for installation of additional dependen-

cies or software save those required by GROMACS itself.

Other modules of CHAPERONg which provide additional and ad-

vanced functionalities are written using Python. Various Python li-
braries are used including Numpy [20], Pandas and Scipy [21]; for 
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data manipulation and numerical and scientific calculations, and Mat-

plotlib [22]; for generating graphical plots and figures. PyMOL [23], 
ImageMagick, or ffmpeg is used for generating simulation movies. Sec-

ondary structure elements are analyzed using DSSP [24]. Xmgrace is 
used for graph plotting and conversion. The MD DaVis package [11]

is used for the construction of hydrogen bond matrices and interactive 
three-dimensional visualizations of free energy landscapes. Installation 
of CHAPERONg is achieved by simply running the install script pro-

vided in the package. To make all features offered by CHAPERONg

easily accessible to users, an isolated Anaconda Python environment 
with all needed dependencies can be set up by running a conda setup 
script also provided in the package.

CHAPERONg offers automated GROMACS-based workflows for un-

biased conventional MD simulation of protein(-only) and protein com-

plex systems, using established and previously reported protocols [25,

26]. In addition, up to 20 automated analysis types covering sys-

tem setup and simulation quality assurance analyses as well as post-

simulation trajectory analyses are provided. A GROMACS-based work-

flow for the steered MD and enhanced umbrella sampling simulations 
for protein complexes are also automated [27,28,25]. Automated qual-

ity assurance analyses and the WHAM (weighted histogram analysis 
method)-based free energy calculations [29,30] are also provided for 
the biased simulations.

3. CHAPERONg features and functionalities

CHAPERONg can be run in one of two modes of automation depend-

ing on the user’s choice; either as full-auto or semi-auto. In the full-auto

mode, all simulation steps and post-simulation analyses are automati-

cally carried out based on the simulation type and user-provided param-

eters. This greatly reduces repetitive and tedious manual interventions, 
and the user is only prompted for inputs in a very few exceptional cases 
where automatic or pre-defined choices might not be trivial or suit-

able (e.g. determining the box size of an umbrella sampling simulation). 
The semi-auto mode still has most of the simulation and analyses auto-

mated, but the user is prompted more for inputs and confirmation of 
automatically selected choices to give more flexibility and control over 
the simulation parameters.

3.1. Automated conventional MD simulation

CHAPERONg offers automated MD pipelines for various systems, 
namely protein-only (including protein-protein complexes), protein-

ligand complexes, and protein-DNA complexes. For protein-ligand sys-

tems, the pipeline recognizes small molecule ligand topologies gener-

ated via popular ligand parameterization programs and webservers, 
including CGenFF (for CHARMM) [31], ACPYPE (for AMBER) [32], 
PRODRG2 (for GROMOS) [33], and LigParGen (for OPLS-AA) [34]. The 
automated protocol is organized into 12 major steps, enabling the user 
to start or resume from any step of the simulation process. The mini-

mum input files required to run CHAPERONg are the starting structure 
and appropriate GROMACS parameter (.mdp) files.

3.1.1. System preparation and quality assurance analyses

Once launched, CHAPERONg automatically runs through the con-

version of the input structure file to the GROMACS format, generation 
of protein topology (and ligand topology, if applicable), definition of 
the simulation box, addition of ions to the system, energy minimiza-

tion and NVT/NPT equilibration steps. For each of these steps, the user 
has full control over how the system is set up. The system and topol-

ogy files are automatically updated accordingly, depending on the type 
of system. Following the energy minimization and equilibration steps, 
quality assurance analyses–such as plots of the progression of the poten-

tial energy, density, temperature, pressure, and other thermodynamic 
parameters–are run. These enable the user to monitor the convergence 
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of the indices and, hence, the quality of the simulation system.
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3.1.2. MD simulation

Following a successful setup of the system, the production MD run 
proceeds for the duration specified by the user in the corresponding pa-

rameter file. CHAPERONg also offers the option to call GROMACS to 
extend a previously completed run, or to resume a terminated simula-

tion. Similar to the system preparation stage, several quality assurance 
indices including some thermodynamic parameters are analyzed and 
produced as Xmgrace .xvg files as well as publication-quality .png fig-

ures.

3.2. Post-simulation processing and trajectory analyses

CHAPERONg provides the capability to carry out up to 20 post-

simulation processing and trajectory analyses. These analyses, enabled 
by modules available in GROMACS, CHAPERONg, and other third-party 
tools, include root mean square deviation (RMSD), root mean square 
fluctuation (RMSF), radius of gyration (Rg), solvent accessible solvent 
area (SASA), hydrogen bond (Hbond) analysis, principal component 
analysis (PCA), secondary structure analysis, clustering analysis, simu-

lation movie, two- and three-dimensional (visualizations of) free energy 
landscapes (FELs), kernel density estimation (KDE), interactive hydro-

gen bond matrix, MM-PBSA (Molecular mechanics Poisson–Boltzmann 
surface area) free energy calculations, and multiple quality assur-

ance analyses. The plots from the analyses are generated as .xvg and 
publication-quality .png files. These analyses provide valuable compu-

tational metrics for characterizing the stability, folding, conformational 
changes, interactions and dynamics of biomolecules. For example, they 
help in the comparison of different MD simulation trajectories, analy-

sis of the impact of mutations or ligand binding, and assessment of the 
accuracy of simulation models with respect to experimental data.

3.2.1. RMSD, RMSF, Rg and SASA

The RMSD, RMSF, and Rg are three important structural metrics 
used to characterize the MD simulation of biomolecular systems [35]. 
The RMSD, Rg, and RMSF are computed in GROMACS by the gmx rms, 
gmx gyrate, and gmx rmsf modules, respectively. RMSD measures the 
average distance between the atoms of a structure at an instant of the 
simulation against the reference starting structure. Thus, it is used to 
analyze the overall time-dependent structural deviation or similarity 
between the structures recorded in the trajectory [36,37]. The RMSD 
plot of the simulated protein (and that of the ligand in the case of a 
protein-ligand complex) is generated as .xvg files and .png figures.

The RMSF, like the RMSD, is a common mobility measure that quan-

tifies the local fluctuations or flexibility within a biomolecule during 
simulation by measuring the average atomic or residue-level deviations 
[36]. RMSF provides insights into the dynamic regions of proteins such 
as flexible loops, and can indicate the importance of specific residues 
in conformational changes or protein-ligand interactions [38]. Rg is a 
commonly used measure of the compactness of protein molecules, with 
smaller Rg values indicating a more compact or folded structure, and 
larger Rg values suggesting more extended or flexible conformations 
during the simulation [39].

SASA is a metric that provides information about the exposed sur-

face area of a biomolecule that is accessible to the solvent molecules. It 
is commonly used to investigate protein folding and stability, as well as 
to characterize the interaction of a protein with the surrounding solvent 
[40]. SASA is computed in GROMACS by the gmx sasa module, which 
employs the double cubic lattice method [41]–a variant of the “rolling 
ball” algorithm of Shrake and Rupley [42]. Fig. 2 shows some exam-

ples of the automatically generated figures of the RMSD, RMSF, Rg, and 
SASA plots.

3.2.2. Hydrogen bonding analysis

Hydrogen bond (Hbond) analysis is often used in MD simulations of 
biomolecules for the investigation and understanding of protein struc-
ture, folding, function, and ligand binding as well as other biomolecular 
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Fig. 2. Some trajectory analysis plots generated from the MD simulation of the Kelch domain of the KEAP1 protein (PDB ID 4IQK) as an example. Analyses include 
the (A) Root mean square deviation (RMSD), (B) Root mean square fluctuation (RMSF), (C) Radius of gyration, and (D) Solvent accessible surface area (SASA). For 
details of the simulation system and setup, see Supplementary Method section 1.
interactions [35]. Hbond calculation in GROMACS is carried out using 
the gmx hbond module. Depending on the type of system, the numbers of 
intra- and inter-molecular Hbonds are calculated and plotted as a func-

tion of simulation time. Several other output files, such as the Hbond 
matrix and index files, are also generated and processed by CHAPER-

ONg to parse them as input to other analyses, like the MD Davis-based 
interactive Hbond matrix calculations.

3.2.3. Principal component analysis

Principal component analysis (PCA) is a statistical technique used 
to reduce the high-dimensional simulation data–i.e., the coordinates of 
atoms over time–into a smaller set of orthogonal (principal) compo-

nents. It helps to visualize the essential dynamics and conformational 
changes in the trajectory by identifying the most important collective 
motions in the system [43]. PCA in GROMACS is carried out using the 
gmx covar and gmx anaeig modules. The principal components are also 
processed by CHAPERONg and parsed as input for further conforma-

tional analyses–e.g., as order parameters for constructing free energy 
landscapes.

3.2.4. Clustering analysis

Clustering in MD simulation is another common technique that is 
also used to reduce the complexity of trajectory data. It involves group-

ing similar conformations based on defined structural similarity, en-

abling the identification of dominant conformational states, dynamics, 
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and transitions [44]. The gmx cluster module in GROMACS carries out 
the analysis, and the automation by CHAPERONg maintains the flexi-

bility and array of options it offers. Fig. 3A shows examples of two of 
the output data plots generated by the analysis.

3.2.5. Secondary structure analysis

Secondary structure (SS) analysis of MD simulation trajectory in-

volves identifying and quantifying the protein secondary structure el-

ements throughout the simulation. The SS analysis in GROMACS is 
carried out by the gmx do_dssp module which relies on the DSSP pro-

gram [24] for the assignment of SS elements. In addition to the SS 
analysis plot featuring the default seven SS types assigned by DSSP 
(see Fig. 3B, left), CHAPERONg reprocesses the SS elements matrix data 
to generate a second copy of the plot containing only the four basic 
SS elements—helices, beta-sheets, turns and coils–as shown in Fig. 3B

(right). This simplifies the appearance of the plot to aid its visualization 
and analysis.

3.2.6. Simulation movie

An MD simulation can be summarized into a movie, which is a 
collection of frames extracted at a specified interval from the trajec-

tory. Simulation movies facilitate the analysis, interpretation, and com-

munication of the simulation results [45]. They provide an animated 
overview and visual representation of simulations, and can help to eas-

ily visualize the motions of regions of interest, such as active sites and 
pockets, or to observe conformational movements, interactions or dis-
placement of ligands. The minimum requirement for CHAPERONg to 
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Fig. 3. Example output plots of clustering and secondary structure (SS) analyses of MD simulation trajectory. (A) Sizes of clusters (left) and time-dependent 
distribution of cluster members (right) for the clustering analysis of the ligand-bound Kelch domain of the KEAP1 protein (PDB ID 4IQK) MD simulation trajectory. 
For details of the simulation system and setup, see Supplementary Method section 3. (B) Secondary structure analysis of the human erythrocytic ubiquitin (PDB ID 
4GD6) simulation trajectory. Two plots with the seven-SS-type (left) and the four-SS-type (right) representations are produced. For details of the simulation system 
and setup, see Supplementary Method section 2.
create a simulation movie is PyMOL, a widely used molecular visual-

izer. CHAPERONg also utilizes either of the ImageMagick convert tool 
or ffmpeg (when either of them is detected on the user’s machine) for 
improved movie quality. Supplementary Files S1 and S2 show two ex-

ample movies generated by CHAPERONg for the example simulations 
of ubiquitin and ligand-bound KEAP1 Kelch domain, respectively.

3.2.7. Free energy landscapes

Free energy landscapes (FELs) provide insights into the energetics 
and stability of different conformational states in MD simulation tra-

jectories. CHAPERONg offers three alternative automated ways for the 
construction of two-dimensional representations of the FEL (Fig. 4). 
These are enabled by the GROMACS gmx sham module for 2D visu-

alizations (Fig. 4A), the CHAPERONg energetic landscape module for 
enhanced 2D visualizations (Fig. 4B), and the MD DaVis tool for in-

teractive 3D visualizations (Fig. 4C). Each of these alternatives requires 
the user to specify two order parameters for the FEL calculations. Global 
parameters that describe the state of the system can be used as input, 
including RMSD, Rg, principal components, fraction of native contacts 
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or number of Hbonds, backbone dihedral angles and configurational 
distance, etc. [46]. Two preset pairs of order parameters–principal com-

ponents from a PCA run and the RMSD-Rg pair–are available in CHAP-

ERONg. A third option that allows the user to provide other quantities 
of interest as input is also available.

The FEL calculation by CHAPERONg employs a modified version of 
a previously described method [46,47]. The relative free energies of 
states are estimated using Boltzmann inversion as shown in Equation 
(1). The relative free energy of the most probable state is set to zero 
while other states are computed to have more positive relative free en-

ergies. For all the three approaches, CHAPERONg also automates the 
extraction of the lowest energy structures from the FELs, as well as 
other FEL-guided structures or frames specified by the user.

Δ𝐺𝑖 = −𝑘𝑇 ln
(

𝑃𝑖(𝑟)
𝑃𝑚𝑎𝑥(𝑟)

)
, (1)

where 𝑘 is the Boltzmann constant, 𝑇 is the simulation temperature, 
𝑃𝑖(𝑟) is the probability of the system being in a particular state 𝑖 char-

acterized by some reaction coordinate 𝑟 (quantities of interest) and is 
obtained from a histogram of the MD data, 𝑃𝑚𝑎𝑥(𝑟) is the probability of 
the most populated bin (i.e., most probable state), and Δ𝐺𝑖 is the free 

energy change of the state 𝑖.
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Fig. 4. Examples plots of the free energy landscapes (FELs) generated using the free Kelch domain of the KEAP1 protein (PDB ID 4IQK) MD simulation trajectory as 
an example. (A) A 2D plot of the FEL based on principal components generated with gmx sham. (B) A CHAPERONg-based enhanced 2D plot of the FEL using Rg and 
RMSD as order parameters. (C) An interactive 3D visualization of the Rg-RMSD FEL generated with MD DaVis. For details of the simulation system and setup, see 
Supplementary Method section 1.
3.2.8. Kernel density estimation

Kernel density estimation (KDE) is a non-parametric technique used 
to estimate the probability density function (PDF) of a given dataset. 
This technique utilizes a smooth function, using the Numpy and Scipy 
Python libraries, CHAPERONthe kernel, centered at sampled datapoints 
or bins. The Gaussian kernel is one of the commonly used kernels. Given 
a sample 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 with an unknown density 𝑓 at any given point 
𝑥. The kernel density estimator of the shape of the function 𝑓 is defined 
as shown in Equation (2).

𝑓ℎ(𝑥) =
1
𝑛ℎ

𝑛∑
𝑖=1

𝐾
(𝑥− 𝑥𝑖

ℎ

)
, (2)

where 𝐾 is the kernel (a simple non-negative function such as the Gaus-

sian distribution), and ℎ(> 0) is the smoothing bandwidth.

Using the Numpy and Scipy Python libraries, CHAPERONg auto-

mates the kernel density estimation of the PDF for four common MD 
trajectory data types, including RMSD, Rg, Hbond, and SASA. This esti-

mation can be carried out for single dataset KDE plots (Fig. 5A) as well 
as for comparative multiple datasets plots (Fig. 5B). The plots are gener-

ated as .xvg and high-quality .png files. Depending on the user’s choice, 
CHAPERONg offers automatic and custom selection of the type of bin 
size estimator, optimal number of histogram bins, and the smoothing 
bandwidth. The KDE analysis presents a means to gaining further in-

sights into MD simulation trajectories. For instance, the SASA KDE 
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plots shown in Fig. 5 provide a different perspective towards the under-
standing of the SASA data other than the time-dependent information 
provided in Fig. 2D.

3.2.9. Interactive hydrogen bond matrix

CHAPERONg automates the integration of the MD DaVis tool with 
GROMACS for the construction of a Hbond matrix. To achieve this, 
CHAPERONg prepares a reference (the first structure from the trajec-

tory) and the Hbond list (from the Hbond index file produced by gmx 
hbond). These files are then parsed as input to MD DaVis to produce an 
interactive .html plot (Fig. 6) that gives detailed information about the 
Hbond contacts recorded in the trajectory [11].

3.2.10. Binding free energy calculations using g_mmpbsa

The g_mmpbsa [48] is a widely used tool that integrates MD simula-

tion with MM-PBSA binding free energy calculation for protein com-

plexes. It also carries out the decomposition of the calculated free 
energies into contributions per residue [48]. CHAPERONg automates 
and streamlines the workflow for these calculations. Since the original 
g_mmpbsa is only compatible with GROMACS versions 5.x (or lower) 
and does not support the more recent and upgraded versions, it has 
become a common practice for users to install the older GROMACS 
version as a second copy for use by g_mmpbsa. Thus, the user would 
need to provide CHAPERONg with the path to the appropriate gmx ex-

ecutable. However, the g_mmpbsa code has recently been updated by 

other people [49] and is supposed to support newer GROMACS ver-
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Fig. 5. Example CHAPERONg kernel density estimation (KDE) plots. (A) Histogram (left) and KDE (right) plots of the SASA data from the example MD simulation 
trajectory of the KEAP1 Kelch domain. (B) Comparative KDE plots of the free KEAP1 Kelch domain protein and the ligand-bound form. Plots are generated as .png

(left) and .xvg (right) files. For details of the simulation system and setup, see Supplementary Method sections 1 and 3.

Fig. 6. An interactive hydrogen bond matrix generated with MD DaVis using the KEAP1 Kelch domain MD simulation trajectory as an example. For details of the 
4855

simulation system and setup, see Supplementary Method section 1.
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Fig. 7. Example steered MD simulation pulling a ligand way from the KEAP1 Kelch domain. (A) Illustration of the pulling simulation. The pulled group (ligand) 
is shown in magenta sticks, and the restrained reference group (receptor) is shown in green cartoon. (B-D) Plots of (B) pull force against simulation time, (C) 
displacement of the pulled group (the ligand) with time, and (D) pull force against the displacement of the pulled group. For details of the simulation system and 
setup, see Supplementary Method section 4.
sions. In this case, there would be no need to specify any path and 
CHAPERONg would automatically call the active GROMACS.

3.2.11. Averaged plot of replica analysis plots

It is a common practice to conduct replica MD simulations of a 
system, yielding multiple independent trajectories with a higher prob-

ability of a wider sampling of the conformational space. Typically, the 
analysis of the simulations is carried out as means of the replica runs 
to obtain statistically reliable data, ensure reproducibility, and provide 
error estimates [50]. CHAPERONg offers a way to automatically gener-

ate averaged plots of multiple replica analysis plots, such as the replica 
plots of the RMSD, Rg, RMSF, SASA, number of hydrogen bonds, or 
some other user-provided replica plots.

3.3. Steered MD and umbrella sampling simulations

The steered MD-umbrella sampling simulation workflow is a pow-

erful technique for estimating the free energy of binding for protein 
complexes [51,27,52], and for studying ligand unbinding pathways 
[28,53]. This involves a pulling simulation driven by a biasing potential 
along a given reaction coordinate (Fig. 7). Umbrella sampling simu-

lations are then carried out on a series of configurations in different 
sampling windows (Fig. 8A). A technique such as the WHAM is finally 
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used to de-bias the system, calculate the potential of mean force (PMF), 
and consequently, estimate the free energy of binding (Fig. 8B). This en-

tire workflow is streamlined and automated by CHAPERONg as briefly 
described below.

3.3.1. System preparation

Depending on the type of system being simulated, the protein and 
ligand topologies are generated. Then, a placeholder cubic unit cell is 
generated and the user is interactively guided to adjust the box and 
center-of-mass dimensions in an iterative visualize-and-adjust manner 
(using a molecular visualizer such as PyMOL). This is followed by the 
solvation, ion adding, energy minimization, and equilibration steps. 
Several system setup quality assurance analyses are then carried out.

3.3.2. Steered MD simulation and movie

Steered MD simulation involves the pulling apart of the defined 
pulled and reference groups (illustrated in Fig. 7A). Examples of some 
of the output files are shown in Fig. 6, including plots of each of 
the displacement of the pulled group and the pull force against time 
(Figs. 7B and 7C) and a plot of the pull force against the displacement 
(Fig. 7D). In addition, a movie of the pulling simulation is also gener-

ated. Supplementary File S3 and Supplementary File S4 show example 
movies for protein-protein and protein-ligand steered MD simulations, 
respectively. Using the PyMOL interface, the user can customize the 
renderings in the movie, and then re-run CHAPERONg to effect the 

modifications.
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Fig. 8. Analysis of an example steered MD and umbrella sampling simula-

tions of the ligand-bound KEAP1 Kelch domain. (A) Histograms of the umbrella 
sampling simulations. (B) Potential of mean force (PMF) curve of the ligand un-

binding obtained via WHAM calculations. For details of the simulation system 
and setup, see Supplementary Method section 4.

3.3.3. Umbrella sampling

Coordinates are extracted from the steered MD trajectory and the 
COM distance for each frame is calculated using the gmx distance mod-

ule. Based on user-specified spacing, CHAPERONg further uses the dis-

tances to identify the starting configurations for the umbrella sampling 
simulations. Umbrella sampling is then iteratively run for each sampling 
window.

3.3.4. Potential of mean force and binding energy calculation

Using the WHAM calculations via the gmx wham module, the out-

put files from the umbrella sampling simulations are used to compute 
the PMF and, consequently, the free energy of binding. The plots of the 
umbrella sampling histograms (Fig. 8A) and the PMF curve (Fig. 8B) 
are generated as .png and .xvg files. Also, the binding free energy is cal-

culated and written to a summary file. In a situation where there are 
windows with insufficient sampling, CHAPERONg also offers the possi-

bility to run umbrella sampling for additional user-defined windows.

4. Example test cases

Four detailed tutorials using example test cases are available on-

line at dedicated web pages accessible via https://abeebyekeen .com /
chaperong -online -tutorials. These include individual tutorials for:

1. Protein-only systems MD simulation.

2. Protein-ligand complex MD simulation.
4857

3. Protein-ligand Umbrella sampling simulation.
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In addition, two studies that utilized CHAPERONg have recently 
been published [54,55] while this article was under review. These 
works demonstrate the application of CHAPERONg for GROMACS MD 
simulations in drug discovery projects.

5. Conclusions

In this work, we have developed CHAPERONg, an easy-to-use open-

source software that automates the GROMACS MD simulation pipelines 
for conventional unbiased MD, steered MD, and enhanced umbrella 
sampling simulations for diverse biomolecular systems. It also offers 
automated extensive system setup, post-simulation quality assurance 
analyses, and comprehensive trajectory analyses. Thus, CHAPERONg

makes MD simulation more accessible to users who have limited ex-

perience working with the command line or lack programming skills. It 
also enables users to gain more insights into MD simulation data by pro-

viding an interface that overcomes the technical barriers to processing 
and analyzing trajectory data. We aim to continuously enhance the us-

ability of CHAPERONg based on users’ feedback. Future updates would 
include additional functionalities to expand the capabilities of the soft-

ware.
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