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Abstract: Osteoarthritis (OA) is a painful joint disease that
is common among the middle-aged and elderly popula-
tions, with an increasing prevalence. Therapeutic options
for OA are limited, and the pathogenic mechanism of OA
remains unclear. The roles of cytokines and signaling path-
ways in the development of OA is a current research hot
spot. Interleukin (IL)-17 is a pleiotropic inflammatory cyto-
kine produced mainly by T helper 17 cells that has estab-
lished roles in host defense, tissue repair, lymphoid tissue
metabolism, tumor progression, and pathological processes
of immune diseases, and studies in recent years have iden-
tified an important role for IL-17 in the progression of OA.
This narrative review focuses on the mechanisms by which
IL-17 contributes to articular cartilage degeneration and
synovial inflammation in OA and discusses how IL-17 and
the IL-17 signaling pathway affect the pathological process of
OA. Additionally, therapeutic targets that have been pro-
posed in recent years based on IL-17 and its pathway in
OA are summarized as well as recent advances in the study
of IL-17 pathway inhibitors and the potential challenges of
their use for OA treatment.
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1 Introduction

Osteoarthritis (OA) is one of the main causes of joint stiff-
ness, pain and disability in the middle-aged and elderly
populations, with hip and knee OA ranking 11th on the
global list of disabling factors [1]. The pathogenesis of OA
is complex, and the etiology is not completely clear. It is
currently believed to be the result of a combination of risk
factors, mainly including advanced age, obesity, joint mis-
alignment, increased pressure load, genetics, and inflam-
mation, with advancing age and obesity being the most
prominent [2]. OA is characterized by progressive cartilage
degeneration followed by the gradual development of
synovial inflammation, subchondral bone sclerosis, bone
redundancy formation, degeneration and tearing of the
meniscus, inflammation and fibrosis of the infrapatellar
fat pad [3,4], and even involvement of the entire joint
[5,6]. Chronic joint pain severely affects the quality of life
of OA patients, which can lead to the development of
depressive states, increasing the probability of self-harm
and suicide [7,8]. With the continued aging of the population
and the increase in obesity in recent years globally, the
reported number of OA cases increased from 248 million in
1990 to 528 million in 2019, following an increasing trend each
year [9]. The current prevalence of OA in China is approxi-
mately 15%, and the condition affects up to 50% of people
over 60 years of age, with a greater prevalence in women
versus men and in rural populations vs urban populations,
with geographical variation [10]. This high prevalence
results in a huge consumption of medical resources and
a huge burden on individuals, the economy, and society
[11,12]. However, the current clinical treatments for OA are
mainly aimed at relieving pain, protecting joint function,
and slowing disease progression, and no non-surgical treat-
ment strategy is available to control or reverse OA [13].
Although, patients with end-stage OA can choose joint
replacement surgery, this treatment option is associated
with risks of postoperative bleeding, infection, thrombosis,
and persistent joint pain, and some patients are unable to
tolerate the surgical procedure [14]. Therefore, research to
understand the pathogenesis of OA in depth and to identify
targets and drugs for effective OA treatment is needed to
address urgent clinical problems at present.
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OA is the result of an imbalance between cartilage
synthesis and degradation that occurs under the combined
effects of mechanical and biological factors, such as trauma,
inflammation, aging, and various genetic, immune, and
metabolic factors [7,15]. Articular cartilage includes chon-
drocytes and cartilage matrix (mainly containing water,
type II collagen, and proteoglycans). Under normal condi-
tions, type II collagen interlinks with other collagens in the
extracellcular matrix (ECM) in the form of cross-linked
microfibils to maintain the biomechanical skeleton of
articular cartilage, and the ECM has a strong water reten-
tion capacity (hydrophilic and negatively charged), thus
allowing frictionless movement of the articular surfaces
and eliminating the crowding forces generated by pres-
sure loads on the articular surfaces [16]. In addition,
proteoglycans protect the articular surfaces from com-
pressive deformation by regulating the fluid pressure in
the cartilage tissue. With the occurrence of OA, interac-
tion between chondrocytes and ECM is altered, proteogly-
cans and type II collagen are degraded, chondrocyte
catabolism is enhanced, cartilage surfaces are compressed
and eroded, and inflammatory factors are increased,
leading to synovial inflammation and further aggravating
the development of OA [17–19].

Chondrocyte differentiation and apoptosis as well as
cartilage matrix synthesis and degradation are dynamically
balanced to maintain cartilage homeostasis. Disturbance of
cytokine homeostasis disrupts this intrachondral homeos-
tasis, and thus, is one of the most important factors in the
pathogenesis of OA [20]. Researchers have found elevated
levels of tumor necrosis factor alpha (TNF-α), interleukin
(IL)-1, and IL-6 in the synovial fluid, synovium, and carti-
lage ECM of OA patients, which suggests that low-level
inflammation is involved in the pathogenesis of OA
[21–23]. In addition, the infrapatellar fat pad, which is as
rich in vascular and neural tissue as the synovium, appears
to be an anatomical-functional unit with the synovium,
and is thought to be one of the causes of OA joint pain
[24,25]. The infrapatellar fat pad also produces pro-inflam-
matory cytokines and chemokines that induce synovial
inflammation and promote OA progression [26]. These
cytokines are known to stimulate chondrocytes, disturb
the balance of anabolic and catabolic metabolism, induce
high expression of matrix metalloproteinase 3 (MMP3),
MMP13 and other factors, and contribute to cartilage
matrix degradation [27,28]. They also stimulate synovial
cells to release proteases, causing synovial inflammation
and promoting bone resorption [28], which induces pro-
gressive degradation and destruction of articular cartilage.
Accordingly, the important roles of cytokines in the patho-
genesis of OA have been confirmed.

In recent years, the relationship between the pleiotropic
inflammatory cytokine IL-17A (also commonly referred to as
IL-17) and OA has attracted considerable attention. Previous
studies showed that IL-17 is associated with host defense,
tissue repair, lymphoid tissue metabolism, and tumor
progression [29], and IL-17 has been most extensively stu-
died in relation to autoimmune diseases, such as rheuma-
toid arthritis (RA) [30], ankylosing spondylitis [31], and
psoriatic arthritis [32]. The circulating IL-17 level was shown
to play an important role in the pathogenesis and progres-
sion of inflammatory arthritis [33]. Synergy between IL-17
and TNF-α has been demonstrated to activate the produc-
tion of proinflammatory mediators, such as IL-1β, IL-6, IL-8,
prostaglandin E2 (PGE2), and MMPs, to promote the progres-
sion of early inflammation to chronic arthritis [34]. In the
context of OA, IL-17 affects the inflammatory response, com-
plement production, hypoxia response, angiogenesis, and
glycolytic pathways in chondrocytes and synovial fibro-
blasts [35]. IL-17 may play a crucial role in the pathogenesis
of OA and is closely associated with joint pain in OA patients
[36]. Significant correlation between IL-17 expression and
cartilage defects and bone marrow lesions was observed
in the serum of patients with knee osteoarthritis (KOA),
and a positive correlation was also observed between IL-
17 expression and the severity of KOA [37,38]. Several animal
models have also confirmed the role of IL-17 in inflamma-
tory arthritis [39–41], and injection of IL-17 into the rabbit
knee joint induces a model of OA similar to that induced by
the Hulth method [42]. Therefore, This review article sum-
marizes current knowledge regarding the mechanism of
action of IL-17 in OA and discusses the potential challenges
of using IL-17 inhibitors for the treatment of OA.

2 Introduction of IL-17

The IL-17 family is a class of structurally similar inflamma-
tory molecules that includes six cytokines, IL-17A, IL-17B,
IL-17C, IL-17D, IL-17E (also known as IL-25), and IL-17F. They
are mainly derived from T helper 17 (Th17) cells, CD8+ T
cells, γδT cells, and natural killer (NK) T cells [43] and can
also be produced by neutrophils and macrophages during
inflammation (Figure 1) [44,45]. The most well-known one
is IL-17A (referred to hereafter as IL-17 unless otherwise
stated). To achieve their biological effects, members of the
IL-17 family must bind to the corresponding receptor (R)
complex on the cell surface to regulate gene transcription.
The IL-17 recepter (IL-17R) family has five receptor subunit
members, which are labeled IL-17RA, IL-17RB, IL-17RC,
IL-17RD, IL-17RE, of which IL-17A and IL-17F exist as homologs
or heterodimers and act together in a complex formed with
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IL-17RA and IL-17RC. Interestingly, IL-17RA exerts pleio-
tropic functions by binding and interacting with IL-17RB,
IL-17RC, IL-17RD, and IL-17RE [46,47]. In the inflammatory
environment, IL-17 can be active against various cells,
including keratin-forming cells, fibroblasts, osteoblasts,
endothelial cells, and immune cells [48], and is involved in
the pathological processes of inflammation, autoimmunity,
tumorogenesis, and metabolic disorder through the produc-
tion of various molecules, such as inflammatory factors
(IL-6, IL-1, TNF), chemokines, antimicrobial peptides (AMPs),
MMPs, and acute phase proteins (Figure 1) [49].

3 IL-17 signaling pathway

IL-17RA consists of an extra-membrane fibronectin-like
structural domain, an intracytoplasmic SEF/IL-17(SEFIR)
structural domain and a distal activation structural domain
(CBAD). In addition, IL-17RA also has SEFEX, an extension
sequence of SEFIR [50]. The signal transduction and negative
regulatory pathway of IL-17 consists of four main steps: (1)
IL-17 (IL-17A, IL-17A/F, IL-17F) binds to receptor complexes
formed by IL-17RA and IL-17RC and induces binding of the
receptor SEFIR structural domain to the multifunctional sig-
naling protein Act1 (with E3 ubiquitin ligase activity). Act1 is
critical in IL-17 signaling pathway-dependent autoimmune
and inflammatory diseases, and IL-17-induced expression
of inflammation-related genes is suppressed when Act1 is

defective [51]. (2) Act1 rapidly recruits and ubiquitinates TNF
receptor-associated factor 6 (TRAF6), a critical step in sig-
naling pathway transduction. TRAF3 and TRAF4 can nega-
tively regulate this pathway by interfering with the coupling
between Act1 and TRAF6. Additionally, deubiquitinating
enzymes A20 and USP25 can remove the ubiquitination dis-
ability of TRAF6 to similarly prevent TRAF6 from binding to
Act1. Meanwhile, USP25 also inhibits TRAF5 activity and
affects post-transcriptional RNA stability. (3) TRAF6 pro-
motes the activation of mitogen-activated protein kinase
(MAPK)/AP-1, C/EBPβ, and δ transcription factor, and through
transforming growth factor beta (TGF-β)-activated kinase 1
(TAK1), phosphorylates nuclear factor kappa B (NF-κB), tar-
geting an important transcriptional target NF-κB inhibitor
zeta (IBζ), which is involved in psoriasis development. (4)
Act1 recruits TRAF2/5 and binds HuR and Arid5a to promote
post-transcriptional RNA stabilization (Figure 2) [52,53]. In
conclusion, IL-17 signaling is very complex, and the above
description summarizes only the main processes. Many spe-
cific molecular mechanisms and branches remain to be
further explored.

4 Role of IL-17 in the pathogenesis
of OA

The etiology of osteoarthritis remains incompletely under-
stood, but various molecular mechanisms have been

Figure 1: IL-17 is produced by Th17 cells, CD8+ T cells, γδ T cells, NKT cells, etc. IL-17 acts on keratin-forming cells, fibroblasts, osteoblasts, endothelial
cells, and immune cells and participates in the pathological processes of tumor development, immune diseases, and inflammation by inducing
production of inflammatory factors, inflammatory mediators, and MMPs.
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shown to be involved in this pathological process, including
the JAK/STAT signaling pathway [54], PI3K/AKT/mTOR sig-
naling pathway [55,56], p38 MAPK/c-Fos/AP-1 pathway [57],
and Wnt/β-linked protein pathway [58]. These signaling
pathways have been found to mainly affect the OA patholo-
gical process by regulating chondrocyte survival, sub-
chondral bone remodeling, and synovial inflammation.
Interestingly, IL-17 is also involved in the degeneration

and destruction of articular cartilage and synovial inflam-
matory processes in the pathology of OA (Figure 3).

4.1 Cartilage

The degeneration and destruction of articular cartilage are
recognized as central to the progression of OA [59] along
with the involvement of IL-17 and its pathways, mainly in
the form of effects on chondrocyte autophagy, senescence,
and cartilage matrix [41].

Autophagy is a stress response mechanism for cell
survival that involves removal of intracellular microorgan-
isms through lysosomes and degradation of dysfunctional
or damaged organelles and proteins, and is an important
system for energy and nutrient metabolic homeostasis
within the body [60,61]. Abnormal cellular autophagy can
advance the progression of chondrocyte senescence and
apoptosis, with peroxide production and mitochondrial
dysfunction being the main mechanisms [62]. Previous stu-
dies by our group and others have confirmed that autop-
hagy, as a form of cell death, is closely associated with OA
progression [63,64].

Furthermore, autophagy and inflammation are two
biological processes important for cells in physiological
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Figure 2: IL-17 signal transduction pathway.

Figure 3: Mechanism of action of IL-17 within articular cartilage and synovium in OA. (1) IL-17 reduces autophagy through activation of the PI3K/AKT/
mTOR and JAK/STAT3 signaling pathways; (2) IL-17 promotes chondrocyte senescence in OA, and senescent chondrocytes induce differentiation of
naive T cells to Th17 cells in a vicious cycle; and (3) IL-17 promotes synovial inflammation.
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and pathological states, with autophagy regulating innate
and adaptive immune responses and, conversely, immune
response-induced cytokine release regulating autophagy
levels [65–67]. IL-17 is known to influence autophagy in
two ways. (1) IL-17 promotes autophagy: IL-17 can induce
autophagy in B cells in vitro by increasing Erk1/2 phosphor-
ylation, as evidenced by an increase in the activity of
autophagy proteins Beclin-1 and P62 on the ubiquitin pro-
teasome system, and by an increase in the anti-apoptotic
capacity of B cells [68]. In contrast, 3-MA, an inhibitor of
autophagy, significantly reversed the above effects of IL-17.
It was found that IL-17 increased the accumulation of
RAW264.7 cellular autophagy protein LC3B-II–induced
autophagic activity, significantly increased the number
and size of cellular autophagosomes, and promoted the
antimicrobial activity of primitive macrophages [69]. (2)
IL-17 inhibits autophagy expression: In normal skin fibro-
blasts, IL-17 stimulation significantly increased the expres-
sion of p-STAT3 and hypoxia-inducible factor-1α (HIF-1α)
and increased P62 activity, suggesting an accumulation of
autophagosomes (P62), leading to autophagy defects. hIF-1α
inhibitor reversed the IL-17-induced autophagy downregu-
lation [70]. The IL-17/STAT3/HIF-1α/P62 signaling axis cas-
cade is associated with autophagy inhibition.

However, how IL-17 regulates autophagy in OA remains
less well characterized. An study observed significantly ele-
vated IL-17 expression in an IL-1β-induced OA chondrocyte
inflammation model, which exacerbated autophagy defects
and promoted cartilage degeneration by mediating PI3K/
AKT/mTOR autophagy-related pathways [41]. In addition,
stimulation of mouse osteoblasts with IL-17 was found to
suppress the level of autophagy by activating the JAK2/
STAT3 signaling pathway and downregulating Beclin 1,
LC3, and Atg7 expression [71]. In summary, in OA, IL-17
promotes OA progression mainly by inhibiting autophagy
expression, which is closely related to the PI3K/AKT/mTOR
and JAK2/STAT3 signaling pathways, and targeting these two
pathways and blocking the action of IL-17 may be the direc-
tion of OA treatment. Unfortunately, additional research in
this specific area is lacking, and it remains unclear whether
IL-17 is an independent upstream target of autophagy.

Cellular senescence also is involved in OA pathogen-
esis [15,72]. Chondrocyte senescence affects articular carti-
lage biomechanics, biochemistry, and cellular function,
making articular cartilage more susceptible to damage
[73]. In addition, one of the hallmarks of aging is mitochon-
drial dysfunction, which in OA leads to an imbalance in
cellular energy metabolism and an increase in reactive
oxygen species (ROS) production, exacerbating the pro-
gression of OA as evidenced by an increase in oxidative

stress in articular cartilage, cytokine production, an increase
in inflammation-mediated catabolism of cartilage matrix,
and increases in calcification of the cartilage matrix and
apoptosis of chondrocytes [74,75]. Experiments in an animal
model of post-traumatic OA showed anterior cruciate
ligament transection (ACLT) induced a Th17-type immune
response with increased IL-17 expression and that senescent
OA chondrocytes drove the differentiation of naive T cells to
Th17 cells [39]. Furthermore, intra-articular injection of neu-
tralizing antibodies to IL-17 into the OA animal model
decreased the expression of the senescence marker P16
(Cdkn1α) [39]. Wang et al. reported that stimulation of chon-
drocytes with IL-17 induces production of reactive oxygen
species, monocyte chemoattractant protein-1 (MCP-1), and
IL-1β along with increased senescence-associated β-galacto-
sidase activity, a prolonged stationary/gap phase (G0/G1) in
the cell cycle, a shortened S-phase in DNA synthesis, and
ultimately premature senescence of chondrocytes [76]. In
summary, the Th17/IL-17 axis can accelerate chondrocyte
senescence, and a reciprocal promoting relationship exists
between IL-17 secretion and cellular senescence-associated
protein expression. Moreover, this combined effect may
induce more rapid destruction of articular cartilage than
each single factor.

Chondrocytes are responsible for the synthesis and
secretion of cartilage needed to form the cartilage matrix,
and this activity is essential for the maintenance of carti-
lage homeostasis and is regulated by physical and chemical
signaling within the joint that influences the physiological
function of chondrocytes [77,78]. IL-17 was found to be
involved in cartilage matrix synthesis and catabolic path-
ways [79]. Elevated IL-1β and IL-6 expression was observed
in a sodium iodoacetate-induced IL-1 receptor antagonist
(IL-1Ra) knockout mouse model of OA, and cartilage tissue
thinning and chondrocyte reduction also were observed
[80]. However, silencing of IL-17 significantly inhibited
inflammatory mediator release and cartilage damage. The
same study also stimulated human chondrocytes with IL-17
and found that MMP1, MMP3, and MMP13 were upregulated
while SOX9 (a protein associated with chondrocyte anabo-
lism) was downregulated, which led to increased cartilage
matrix degradation and exacerbated cartilage tissue damage.
Hu et al. reported that treatment of chondrocytes with
recombinant IL-17 results in activation of the NF-κB and
MAPK signaling pathways, upregulation of the cartilage
catabolic factors IL-6, MMP3, and zinc metalloproteinase 4
(ADAMTS-4) expression, promotion of cartilagematrix degra-
dation, disruption of homeostasis within cartilage, and aggra-
vation of OA progression [81]. In summary, stimulation by
IL-17 disrupts the balance in cartilage matrix metabolism,
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and the resulting feedback affects the physiological function
of chondrocytes, leading to cartilage tissue degeneration.
Thus, the role of IL-17 in OA is not limited to inflammatory
effects, as this factor also plays a key role in the pathological
progression of OA by influencing chondrocyte senescence,
apoptosis, and cartilage matrix degradation.

4.2 Synovium

The synovium is a connective tissue located in the inner
layer of the joint capsule that surrounds tendons and
forms the lining of bursae and fat pads, which secrete
and regulate the formation of synovial fluid, providing
nutrients to the chondrocytes [82]. Injury-related mole-
cules, products of mitochondrial dysfunction, cytokines,
and metabolites in joints activate synovial cells to promote
the release of large amounts of pro-inflammatory cyto-
kines and inflammatory mediators, inducing OA-related
cartilage matrix degradation and osteophyte formation
[83–85]. Pro-inflammatory cytokines and chemokines are
central regulators of synovial inflammation in OA [20,21].
Interestingly, IL-17 amplifies the synovial inflammatory
effects in OA by promoting the expression of pro-inflam-
matory factors (e.g., IL-6 and IL-1β) and chemokines (e.g.,
CXCL8, CCL20, CXCL3, and CXCR4) [86]. Deligne et al. found
that IL-17 and IL-22 are highly expressed in conditioned
medium collected from synovial tissues of OA patients
and responsible for inducing the combined release of
IL-6, IL-23 and TGF-β1; upregulating MMP9 expression;
and ultimately driving synovial inflammation and cartilage
matrix degradation [87]. Moreover, in a clinical trial of
end-stage hip and knee OA, patients with detectable IL-17
levels in synovial fluid had significantly increased levels of
adipokines (leptin, resistin), IL-6, C-C motif chemokine
ligand 2 (CCL2), CCL17, and nerve growth factor (NGF)
[88]. These findings supported those of previous studies
regarding the involvement of adipokines in cartilage degen-
eration, synovitis, subpatellar fat pad changes, and bone
formation [89,90]. Again, IL-17 was shown to promote OA
progression by increasing adipokine and inflammatory
factor production. In conclusion, IL-17 itself has limited
pro-inflammatory effects and cannot directly act on chon-
drocytes, but it exerts intense inflammatory effects by
enhancing and synergizing the pro-inflammatory effects
of other cytokines and inflammatory mediators, leading
to cartilage degradation, matrix degradation, and synovial
inflammation in OA.

5 IL-17–based therapeutic targets
and drugs for OA

5.1 Targets

Levels of long non-coding (lnc)RNA cancer susceptibility
candidate 2 (lncRNA CASC2) were found to be elevated in
the blood and synovial fluid of OA patients, and lncRNA
CASC2 was shown to regulate chondrocyte proliferation
and apoptosis through mediation of the IL-17 signaling
pathway [91]. In human OA synovial fibroblasts (OASFs),
the CCN family protein connective tissue growth factor
(CCN2) inhibits miR-655 synthesis by mediating the ILK
and Syk signaling pathways, whereas miR-655 can bind
to IL-17 and directly inhibits IL-17 activity; therefore, CCN2
down-regulatesmiR-655 expression and indirectly promotes
IL-17 synthesis, leading to increased inflammation in OA
[40]. Low levels of lncRNA growth arrest-specific tran-
script-5 (GAS-5) were shown to affect IL-17–related immune
and cytokine expression and to be a potential marker of OA
progression [92]. The cyclic RNA ciRS-7/micro-RNA7 (mi-
RNA7) axis is aberrantly expressed in OA and may drive
OA progression through upregulation of IL-17–mediated
inflammatory responses [43]. IL-17 is the target gene of
miR-136, the expression of which is negatively correlated
with miR-136 expression, and thus, miR-136 can be used as
a potential biomarker of KOA [93]. TRAF3 significantly inhi-
bits IL-17–induced activation of NF-κB and MAPK, as well as
the production of downstream MMPs, resulting in a protec-
tive effect against OA [49]. miR-34a, miR-146a, and miR-181a
are mediators of adipokine-induced oxidative stress and
synovial inflammation in humans with OA via NF-κB
pathway expresssion in synoviocytes [94]. In conclusion,
most therapeutic targets for OA based on IL-17 and its
signaling pathway are related to mRNA expression, and
targeting of the gene transcription–translation pathway
is expected to be a new strategy for OA therapy.

5.2 Drugs

According to the 2019 edition of the Chinese Osteoarthritis
Diagnosis and Treatment Guidelines, OA is most commonly
treated currently with a combination of treatments, including
health education, weight management, symptomatic drug
therapy (non-steroidal anti-inflammatory drugs, NSAIDs),
intra-articular sodium hyaluronate injection, physical
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therapy, and surgery, with the aims of relieving pain and
improving joint function [13,95–97]. The 2019 American
College of Rheumatology/Arthritis Foundation guidelines
on OA of the hands, hips, and knees emphasize exercise,
weight loss, self-management (tai chi), use of canes and
hand orthotics and braces, oral and topical NSAIDs, intra-
articular glucocorticosteroid injections, acupuncture, and
heat treatments, to name a few, but none of them can cure
OA [97]. These guidelines are similar to the Chinese guide-
lines for the diagnosis and treatment of osteoarthritis.
However, NSAIDs can cause gastrointestinal, hepatic, renal,
and cardiovascular side effects, and thus, their use should be
limited [98]. Several new therapeutic approaches have been
explored in recent years, including combination injections
of nerve growth factor, stem cells, and platelet-rich plasma,
but the balance of efficacy and safety for these approaches
remains questionable [5,99]. Accordingly, treatment of OA
remains a challenge worldwide. Multiple studies in recent
years have demonstrated that regulation of Th17 cells, IL-17
expression, IL-17 signaling pathway activation, and mRNA
expression of inflammatorymediators may be effective stra-
tegies for treating OA, with effects of reducing cartilage
tissue damage and improving joint pain, inflammation,
and function (Table 1). The most important of these effects
is the control of synovial inflammation in OA.

6 Inhibitors of IL-17

Inhibitors of IL-17 or the IL-17 signaling pathway, including
Secukinumab (AIN457), Ixekizumab (LY2439821), and
Brodalumab (AMG827), have been approved in recent
years for clinical use for the treatment of ankylosing spon-
dylitis [100,101], moderate-to-severe plaque psoriasis and
psoriatic arthritis [102–104], radiographic and nonradio-
graphic spondyloarthritis [105], and Netherton’s syndrome

[106] (Table 2), and have shown excellent efficacy, safety,
and tolerability. Additionally, some small molecule inhibi-
tors of the orally available IL-17 pathway continue to be
studied in the clinical research phase, such as IMU-935, an
inhibitor of retinoic acid-related orphan receptor γt (RORγt),
which is a major regulator of Th17 cell secretion and IL-17A/F
production in innate and adaptive immunity and is
involved in the regulation of bacterial and fungal immune
responses [107]. As a treatment for psoriasis, IMU-935 was
shown to reduce the release of pro-inflammatory cytokines
and inflammatory mediators by inhibiting the RORγt/Th17/
IL-17 signaling pathway [108,109], but its drug efficacy and
risk of adverse events have yet to be established. Although
IL-17 pathway inhibitors are not currently used for the
treatment of OA, research evidence that IL-17 plays an
important role in the pathological progression of OA and
is positively correlated with OA severity suggests that inhi-
bitors of IL-17 and its pathway may become the next clin-
ical research target for OA treatment strategies.

Although down regulation of IL-17 and inhibition of
the IL-17 signaling pathway can be beneficial in OA as
mentioned above, inhibitors of IL-17 and its pathway are
currently inappropriate for the treatment of OA based on
the mechanism of action of IL-17 in the pathological pro-
cess of OA, and many potential challenges persist. (1) IL-17
cannot act directly on chondrocytes but rather affects
chondrocyte survival by indirectly upregulating or down-
regulating the expression of related pathways and pro-
teins. Inhibiting IL-17 expression can reduce its role in
promoting chondrocyte apoptosis and senescence but
cannot block the pathological changes that occur in OA
itself. (2) The pro-inflammatory effect of IL-17 itself is lim-
ited; this effect is instead, mainly achieved by synergizing
and amplifying the effects of other pro-inflammatory fac-
tors and inflammatory mediators to indirectly promote
synovial inflammation in OA. Thus, inhibiting the activity
of IL-17 and its receptors only weakens or eliminates this

Table 1: Potential IL-17–related treatments for OA

Drug name Target Research platform Effect Refs.

RA10-6 IL-17/IL-6 Mice Suppression of OA synovial inflammation [110]
Krocina™ Th17/IL-17 Humans (clinical trial) Suppression of OA synovial inflammation [111]
Resveratrol IL-17/NF-κB Rats Repair of OA soft tissue damage [111]
Platelet-rich- plasma IL-17 Rats Improvement of joint function, pain and inflammatory [112–114]
Baccharis IL-17 Mice Suppression of OA immune inflammatory [115]
Pioglitazone IL-17/NF-κB Human myeloid cells and tissues Inhibition of mRNA expression of inflammatory mediators [116]
1,25-Vit D3 Th17 Dendritic cells Inhibition of pro-inflammatory cytokine [117]
Dexamethas-one Th17 Dendritic cells Inhibition of pro-inflammatory cytokine [118]
Apremilast IL-17 ATDC5 chondrocytes Inhibition of inflammatory factors, cellular senescence, ROS [76]
Salidroside CD4+/IL-17 Rats Regulates inflammation and immune response [118]
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amplifying effect but cannot block the occurrence of syno-
vial inflammation. (3) OA progression is supported by
many molecular mechanisms that are connected by subtle
links. It is not accurate to consider IL-17 activity as an
independent cause of OA. Therefore, an in-depth under-
standing of the relationship between IL-17 and other sig-
naling pathways in OA is critical. Much basic and clinical
research is needed to address questions like whether tar-
geting IL-17 gene expression and inhibiting IL-17 pathway
activation will have different effects, and whether the com-
bined application of IL-17 inhibitors and blockers of other
pathways will have different efficacies.

7 Conclusions

IL-17 is involved in the maintenance of innate and adaptive
immunity, and dysregulated production of IL-17 has been
shown to promote OA development from multiple perspec-
tives. On the one hand, it promotes OA progression by
regulating chondrocyte autophagy and senescence and car-
tilage matrix degradation, while on the other hand, it
induces synovial inflammation by mediating the IL-17 sig-
naling pathway to promote the release of inflammatory
cytokines and adipocytokines. These research findings
provide valuable evidence for the application of inhibi-
tors of IL-17 and its signaling pathway in OA treatment.
Additionally, IL-17 expression was found to be positively
correlated with the severity of OA, and thus, it may
become a new immunological indicator for evaluating
the efficacy of OA treatment and may be an effective
target for OA therapy. However, the following questions
persist regarding the role of IL-17 in OA: (1) Does IL-17
affect chondrocyte mitosis and cell cycle progression in
OA? (2) Are multiple members of the IL-17 family involved
in OA development? (3) What relationships exist between
IL-17 and other signaling pathways, and what are their
side effects? In the future, it will be important to also

investigate the impact of IL-17 on other joint tissues
such as the meniscus and infrapatellar fat pad, consid-
ering that OA is a whole joint disease. A clear under-
standing of the specific molecular mechanism of IL-17’s
action in OA and a means to target this axis accurately
without affecting physiological functions could facilitate
effective approaches for the prevention and treatment of
OA based on IL-17 and its signaling pathways.
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