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Abstract
Summary: The alevin-fry ecosystem provides a robust and growing suite of programs for single-cell data processing. However, as new
single-cell technologies are introduced, as the community continues to adjust best practices for data processing, and as the alevin-fry
ecosystem itself expands and grows, it is becoming increasingly important to manage the complexity of alevin-fry’s single-cell preprocess-
ing workflows while retaining the performance and flexibility that make these tools enticing. We introduce simpleaf, a program that simplifies
the processing of single-cell data using tools from the alevin-fry ecosystem, and adds new functionality and capabilities, while retaining the
flexibility and performance of the underlying tools.

Availability and implementation: Simpleaf is written in Rust and released under a BSD 3-Clause license. It is freely available from its
GitHub repository https://github.com/COMBINE-lab/simpleaf, and via bioconda. Documentation for simpleaf is available at https://simpleaf.read
thedocs.io/en/latest/ and tutorials for simpleaf that have been developed can be accessed at https://combine-lab.github.io/alevin-fry-tutorials.

1 Introduction

Single-cell sequencing has become an indispensable tool for
studying cellular biology at the resolution of individual cells
(Stuart and Satija 2019), and processing the resulting data of-
ten requires a dedicated suite of tools and methods. Recently,
He et al. (2022) demonstrated that the alevin-fry ecosys-
tem provides an efficient, accurate, and flexible framework
for single-cell data processing. Yet, the rapid arrival of new
technologies and experimental modalities have led to data
analysis pipelines that require increasingly complex
and sophisticated workflows. For example, analyzing CITE-
seq (Stoeckius et al. 2017) data involves executing the entire
alevin-fry pipeline three times, each time with a slightly
different configuration and on different sets of files. Likewise,
as improved tools, like the piscem (Fan et al. 2022) read
mapping tool, are introduced into the alevin-fry ecosys-
tem, users wishing to adopt these new tools must learn their
interfaces and logistics.

2 Software description

To simplify and ease the user experience for both simple and
complex experimental setups, and to allow seamless use of the
newest alevin-fry ecosystem components, we have devel-
oped simpleaf (simple alevin-fry). Simpleaf (overview
in Fig. 1) is a high-level framework, that provides simple,

flexible, and scalable interfaces for uniformly accessing stan-
dard and advanced features in the alevin-fry ecosystem.

The concept of “wrapper” or “workflow” programs in the
context of single-cell data processing pipelines is well-
established. Apart from the many bespoke workflows devel-
oped for individual technologies, there exist several tools
designed to ease and simplify the processing of multiple types
of data. Here, we highlight a few examples, though this is not
intended, to constitute an exhaustive list of such tools. The
popular Cell Ranger (Zheng et al. 2017) tool itself is, in
part, a Python script that wraps STAR (Dobin et al. 2013) and
other tools designed by 10� Genomics. The zUMIs (Parekh
et al. 2018) and UniverSC (Battenberg et al. 2022) tools pro-
vide highly capable suites of workflows for processing data
from many different technologies using, respectively, STAR
and Cell Ranger itself. Kb-python is a Python tool that
wraps kallisto j bustools (Melsted et al. 2021) and re-
lated tools, and provides a high-level interface to process data
from many different experimental protocols and setups. The
scPipe (Tian et al. 2018) tool is a modular wrapper around
multiple tools and packages within the R ecosystem, which
uses the Subread aligner (Liao et al. 2019) for mapping, and
is capable of processing data from a variety of different
single-cell technologies.
Simpleaf is dedicated to providing a simple and flexible

user interface for the alevin-fry ecosystem, which consists
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of a range of underlying tools and modules for single-cell data
processing (Patro et al. 2017, Srivastava et al. 2019, Khan
and Patro 2021, Fan et al. 2022, He et al. 2022). In addition
to coordinating the execution of these tools and providing a
unified and simplified interface, simpleaf also adds new
functionality aimed at further generalizing the capabilities of
the underlying tools, and allowing users to easily create and
share their own workflows without having to program or
modify simpleaf itself.

2.1 A simplified interface to core alevin-fry
functionality

The most basic functionality provided by simpleaf is that it
provides a simplified yet flexible interface to the underlying
alevin-fry modules and capabilities.

In simpleaf, the standard alevin-fry pipeline (He
et al. 2022) is distributed over two phases: (i) indexing, which
includes creating an augmented (splici (He et al. 2022) or spli-
ceu (He et al. 2023)) reference, where appropriate, and build-
ing the corresponding reference index, and (ii) quantification,
which consists of read mapping, cell barcode detection and
correction, and UMI resolution. These two phases are ex-
posed as two sub-commands within simpleaf: simpleaf
index and simpleaf quant. Each of these, in turn, exposes
various flags for retaining critical flexibility in processing.

Although most of the functionality provided by simpleaf
programs can be directly replicated by calling the underlying
tools with the appropriate configurations and arguments,
the advantage of using simpleaf comes from the fact that
simpleaf, by default, incorporates the best practices for
running the underlying tools, reduces the workload by auto-
matically handling tedious but crucial details one needs to
take care of in the most common use cases, and also retains
critical flexibility when necessary. For example, if a sim-
pleaf index invocation is followed by a call to simpleaf
quant, simpleaf quant will automatically recruit and
parameterize the correct mapper, and will automatically
locate and provide the file containing the transcript-to-gene
mapping information to later quantification stages where

appropriate. This file would have explicitly provided if
alevin-fry is not invoked through simpleaf. Yet, to
provide for maximum flexibility, simpleaf provides alterna-
tive processing options as well, like the option to begin the
quantification process from an already-computed set of map-
ping results and thus to skip the mapping process.

2.2 Dedicated parameterization for easily switching

between options and underlying tools

As the methodologies underlying single-cell quantification ad-
vance, we have continued to improve the existing features of
the alevin-fry ecosystem and introduce new options and
functionality wherever appropriate. Yet, the options and pos-
sibilities for single-cell analysis continue to expand, and the
burden on users to keep up with new methods, tools, and best
practices grows.
Simpleaf ensures that the best practices and new features

of the alevin-fry ecosystem can be easily accessed and ap-
plied by users to their data. On one hand, every new version
of simpleaf tracks and applies current best practices for the
supported alevin-fry tools, and manages the relevant
version requirements for the backing tools from the alevin-
fry ecosystem. On the other hand, simpleaf provides sim-
plified configurations for parameterizing its underlying tools.
Especially for processing steps with multiple backend tool
options available, simpleaf exposes a unified set of flags for
controlling the find-grained parameterization of all relevant
options, along with a flag for conveniently switching between
options. As a result, users gain seamless access to all software
tools in the alevin-fry ecosystem, including those alterna-
tives, without the need to interact directly with each tool’s
user interface. At the same time, simpleaf is designed to
provide fine-grained access to the options and parameters of
the underlying tools so that users can alter or modify these
processing options and parameters if they wish.

One example is the ability to easily switch between piscem
(Fan et al. 2022) and salmon (Patro et al. 2017, Srivastava
et al. 2019) as the underlying reference indexing and mapping
tools. Piscem is a new index and mapper in the alevin-

Figure 1. Overview of some salient simpleaf subcommands, showing the flow of data through a hypothetical invocation. The leftmost expanded

column (blue) represents using the simpleaf index command to build a reference sequence and the corresponding piscem index. The center

expanded column (aqua) represents using this piscem index in conjunction with sequenced reads to produce a count matrix for subsequent analysis.

Note that the indexer and mapper of both piscem and salmon are fully supported in simpleaf. Finally, the rightmost expanded column (red) represents

the invocation of a hypothetical simpleaf workflow, where the workflow can require several input files and produce several outputs. Additional

simpleaf subcommands are described in the Supplementary Appendix
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fry ecosystem that further lowers the memory requirements
for single-cell data processing (He et al. 2023), and salmon
(Patro et al. 2017, Srivastava et al. 2019), which relies on the
pufferfish index (Almodaresi et al. 2018), is the tradi-
tional mapper used with alevin-fry. As piscem and
salmon are independent tools with distinct parameters, ex-
plicitly switching from salmon to piscem requires knowl-
edge about the piscem tool and the relevant details of its
indexing and mapping subcommands. However, in sim-
pleaf, the only modification needed to make use of piscem
is to pass the–use-piscem flag. Furthermore, for simplicity,
if this flag is set when calling simpleaf index, the subse-
quent simpleaf quant executions that map against this in-
dex will automatically use piscem, with appropriate
parameters, as the mapper.

Another example is the ability to seamlessly build different
types of reference indices by simply changing the flags passed
to the simpleaf index command. Currently, simpleaf
has the ability to build three kinds of reference indices.
Although the procedure for generating these types of reference
indexes is different, simpleaf abstracts over the technicali-
ties and only requires the user to set the–ref-type option as
desired.

2.3 Parsing protocols with a complex fragment

geometry

Another useful feature provided by simpleaf is the ability
to represent and parse fragment geometry specifications that
are potentially more complex than those directly supported
by the underlying mappers—for example, those with variable
barcode length and floating barcode position, such as
sci-RNA-seq3 (Cao et al. 2019)—using a concise description
language. (The current specification of this description lan-
guage is available at https://hackmd.io/@PI7Og0l1ReeBZu_
pjQGUQQ/rJMgmvr13.) An example of streaming
parser invocation can be found in Supplementary Appendix
Section SB.

When presented with a “complex” geometry specification,
simpleaf “normalizes” these reads into an appropriate
“simple” format (a format with only known position and
fixed-length barcodes and UMIs) on the fly, and provides a
modified (and simplified) geometry format description to the
underlying mapper. Moreover, it streams the normalized
reads directly to the mapper using FIFOs programmatically
managed by simpleaf, thereby avoiding intermediate disk
usage. This feature enables the existing mappers in the
alevin-fry ecosystem, which are designed to process reads
with simple geometry, to handle sophisticated geometries
without modifying the underlying mapping tools, requiring
extra preprocessing from the users, or taking the extra time
and space to write and read the intermediate representations.

To date, the community has put significant efforts into doc-
umenting and categorizing the library layout for many exist-
ing sequencing assays (Battenberg et al. 2022, Booeshaghi
et al. 2023). A good resource describing existing library lay-
outs is the scg_lib_struct GitHub repository (https://
github.com/Teichlab/scg_lib_structs). Furthermore, general
parsers for such protocols have been developed (Smith et al.
2017, Liu 2019, Battenberg et al. 2022, Sullivan and Pachter
2023). Of course, these tools, or their relevant components
could also be applied to this task, with the user handling the
appropriate bookkeeping. However, the built-in capability of
simpleaf focuses on providing a concise language for

representing both simple and complex fragment geometry
that can be passed directly to simpleaf from the command
line, and the seamless internal normalization of this complex
geometry into a simplified form compatible with both sup-
ported mappers.

2.4 Generalized and sharable workflow construction

for complex single-cell workflows

Simpleaf also provides the ability to execute complex and
highly configurable alevin-fry workflows described by
simple user-provided configuration files. The purpose of the
simpleaf workflow module is neither to replace general
workflow languages like Nextflow (Tommaso et al. 2017) or
Snakemake (Mölder et al. 2021) that enable near-limitless
generality, but that require learning sophisticated and com-
plex domain-specific languages, nor to expose some set of
easy-to-use but pre-defined workflows for complex single-cell
protocols as in Cell Ranger and kb-python. Rather,
simpleaf workflow aims to provide a platform for
alevin-fry users with all levels of programming knowl-
edge to easily create, invoke, and share their workflows,
which can contain not only simpleaf commands but also
any shell commands that are valid in the user’s terminal. It
allows the definition, via a simple imperative configuration
and templating system, of custom workflows parameterized
on user-defined input, which can then be reused to simplify
the processing of complex workflows and easily shared with
other users.

The simpleaf workflow module is built upon the idea
of the simpleaf workflow template. Users can build their own
template or, more commonly, obtain an existing (self-
documented) template, fill in minimal information about the
current sample to instantiate it, and execute the instantiated
template using the workflow executor. More details can be
found in Supplementary Appendix Sections SA.7 and SC.
This design allows users with limited programming experi-
ence to define a simple but useful workflow as a JSON config-
uration, but also makes it possible for advanced users to
develop sophisticated workflow templates to generate sim-
pleaf workflows by taking advantage of the full functional-
ity provided by the Jsonnet language. Furthermore, this
design also makes it easy for users to create and share their
workflows by simply sharing their workflow templates, with-
out the need to understand and contribute to the codebase of
simpleaf itself. To demonstrate the utility of the simpleaf
workflow module, we have built such workflow templates
for processing 10� Chromium 30 v2 and v3 RNA-seq, CITE-
seq (Stoeckius et al. 2017) and 10� feature barcode data. The
list of currently published simpleaf workflow templates can
be found in Supplementary Appendix Table S2. We expose
the simpleaf workflow list program (Supplementary
Appendix Section SA.9) for obtaining the list from the com-
mand line. We continue developing workflow configurations
and are accepting contributions from the community.

3 Discussion

Simpleaf provides a simple and flexible interface to access
the state-of-the-art features provided by the alevin-fry
ecosystem, tracks best practices using the underlying tools,
enables users to transparently process data with complex frag-
ment geometry, and to build and execute sophisticated work-
flows containing both simpleaf and external commands
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without the need to write code. Simpleaf has already seen
adoption in community-led projects, for example, in the
scrna analysis pipeline of the nf-core project (Ewels et al.
2020, Peltzer et al. 2023). We hope that, in the future,
simpleaf can serve as an entry point and main interface to
the alevin-fry ecosystem for most users. We also envision
that our workflow feature can encourage those in the commu-
nity to create and share their workflows and, thus, can help
simpleaf to provide increasingly reusable building blocks
to enable more varied and sophisticated single-cell data analy-
sis pipelines.

While simpleaf provides a simple and flexible framework
for single-cell data processing, the current implementation still
has limitations, which motivate future work. For example, al-
though the fragment geometry parser can parse barcodes with
variable length and floating position, it currently lacks the
ability to perform certain kinds of preprocessing, like the bar-
code substitution scheme required by the split-seq (Rosenberg
et al. 2018) technology. This can be solved by expanding the
current geometry specification to describe and enable this
kind of preprocessing. Moreover, simpleaf workflow is
still under active development. Current efforts are underway
to improve its generality, expand its library of standard func-
tions, and develop more useful and sophisticated workflows
for different purposes.

Supplementary data

Supplementary data are available at Bioinformatics online.
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