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Highlights
Evidence generated from malaria mo-
lecular surveillance (MMS) can inform
decision making by malaria control pro-
grams, that is, early detection of genetic
variants that confer partial resistance
to malaria therapy drugs (pfkeltch13),
identifying transmission sources, and
characterizing malaria transmission
dynamics.

Clear and accessible guidance
for appropriately designing and
Strategic use of Plasmodium falciparum genetic variation has great potential to
inform public health actions for malaria control and elimination. Malaria molecular
surveillance (MMS) begins with a strategy to identify and collect parasite samples,
guided by public-health priorities. In this review we discuss sampling design prac-
tices for MMS and point out epidemiological, biological, and statistical factors that
need to be considered. We present examples for different use cases, including de-
tecting emergence and spread of rare variants, establishing transmission sources
and inferring changes in malaria transmission intensity. This review will potentially
guide the collection of samples and data, serve as a starting point for further
methodological innovation, and enhance utilization of MMS to support malaria
elimination.
powering MMS use-cases does not
yet exist.

Designing MMS and studies for each
use-case requires defining the target
population, the sampling technique,
the sampling period and frequency,
and the appropriate sample size re-
quired to draw valid and unbiassed
conclusions.

Sample size calculations require
defining assumptions about the ex-
pected prevalence of the outcome of
interest, its heterogeneity in the popu-
lation, the desired confidence, and
the design effect in cluster-based
sampling.
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The importance of adequate sampling for MMS
Malaria molecular surveillance (MMS) (see Glossary) is increasingly becoming a primary
goal of public health surveillance efforts by National Malaria Control Programmes (NMCPs) in
Africa [1–3]. Genomic data provide a fundamentally different type of information that can supple-
ment traditional metrics like prevalence and incidence, which, when leveraged correctly, can
answer key questions relevant for malaria control/elimination. In recent years, Plasmodium
genomic data have been used to determine the evolution and spread of molecular markers
for drug-resistantmalaria [4,5], measure connectivity and importation [6–9], estimate changes
in transmission intensity [1–3,10–12], quantify variation in vaccine effectiveness [13], and disen-
tangle relapse from reinfection events [14] among other applications.

The first step in any MMS study is sample collection, which is generally followed by sequencing,
bioinformatic analysis, statistical analysis, reporting, and communication with public health
agencies to inform data-driven responses. Sampling approaches and sample size calculations
are a critical step in this pipeline, however, there is a lack of clear and accessible guidance for
appropriately designing and powering MMS studies. Many MMS efforts to date have been
conducted using convenience samples collected at health facilities, schools and antenatal care
clinics [15–18], or in the context of studies designed for other purposes (malaria indicator or
demographic and health surveys). As these convenience-based approaches often contain
sampling biases and cannot be treated as truly random samples [19], molecular data might
not be representative of the temporal and geographic heterogeneity of the marker of interests
(i.e., drug resistance markers), and likely do not represent their true spatially dependent distribu-
tion [20]. Another major issue is statistical power and choosing the appropriate sample size. An
insufficient sample size may lead to large uncertainty in estimated outcomes and a low probability
of demonstrating the desired difference, while on the other end of the spectrum a very large
sample size may reach diminishing returns in terms of statistical power. Both situations have
negative implications in terms of cost, logistics, and the ethics of recruiting individuals for only
marginal gains or for studies that are unlikely to succeed. There is also an opportunity cost to
running under- or over-powered studies, which potentially take resources away from other
important questions and delay the dissemination of key findings for public health action.
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Without clear and standardized guidance, it is difficult to design studies in a way that maximizes
the chance of success. Moreover, harmonization of sampling approaches can increase the
comparability of results and inform regional approaches in a more systematic way. Here, we
explore this issue by reviewing sampling approaches used for malaria surveillance, including
factors (epidemiological, biological, and statistical) that need to be considered for robust study
design and by providing specific examples for various MMS use cases. While we focus on the
predominant P. falciparum species in Africa and next generation sequencing, principals of
MMS and design concepts addressed here are expected to be similar for the surveillance of
non-falciparum species and other molecular approaches [21].

First step: the purpose of sequencing efforts
Designing a pathogen surveillance systemmust begin with identifying the primary purpose or key
questions to be answered [11], as different goals require different sampling approaches and
sample sizes in order to obtain reliable results. For MMS these goals may include (Figure 1):

Early warning of biological threats to ensure a timely response
One of the primary use-cases for MMS is the detection of genetic variants of concern (VOC) that
can compromise available therapeutic, preventive, and diagnostic tools [13,22–28], and therefore
constitute biological threats of surveillance interest. Broadly speaking, there are three main types
of surveillance goals: (i) early detection of emerging VOC, for example pfkelch13mutations that confer
TrendsTrends inin ParasitologyParasitology

Figure 1. Steps for designing a malaria molecular surveillance (MMS) approach. To draw valid conclusions fromMMS efforts, it is key to carefully decide how to
select a sample that is representative of the target population. The surveillance purpose, and therefore the programmatic action expected from those efforts, will inform the
relevant population to be sampled (which should be driven by the intervention target), the sampling method and the periodicity. All these parameters, which should be
specific to the pre-defined population of interest as well as reflective of the logistical and biological sources of bias at the time of sampling, together with assumptions
about the distribution of the marker of interest in the study population, need to be considered to calculate the appropriate sample size. Here we exemplify the different
steps for three specific surveillance objectives: the detection of emerging variants of concern (such as mutations in pfkelch13 associated with artemisinin resistance),
the classification of cases as local or imported, and the detection of changes in transmission.
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Glossary
Biological threats tomalaria control
and elimination: antimalarial and
insecticide resistance, diagnostic failure
(pfhrp2/3 gene deletions) and the
emergence of invasive vector species.
Clonal propagation: the transmission
of identical parasite strains from one
infection to the next.
Cluster sampling: groups rather than
individuals of the target population are
selected at random.
Complexity of infection: the number
of genetically distinct parasite strains
coinfecting a single host.
Cotransmission: a single mosquito
bearing multiple genetically distinct
parasites bites an uninfected individual.
Deep sampling: a sampling strategy in
which a large number of samples are
taken from a small number of
populations (e.g., geographic sites).
Genetic diversity: genetic variability
present within a given
population.
Genetic relatedness: a measure of
recent shared ancestry between two
individuals, ranging from zero between
two unrelated individuals to one
between clones.
Finite population correction: a term
that can be added to some sample size
formulae to make them more correct in
cases where the population size is not
vastly greater than the sample size.
Identity by descent (IBD): two copies
of genetic material are identical by
descent if they are descended from a
common ancestor with no intervening
mutations.
Malaria molecular surveillance
(MMS): the use of molecular biology
approaches (i.e., serology, genotyping,
whole genome sequencing) to derive
epidemiologically actionable information
for malaria control and elimination.
Molecular markers for drug-
resistant malaria: genetic changes
that confer parasite resistance to
drugs used to treat and prevent
malaria. Molecular markers do not
necessarily reflect
therapeutic and chemoprevention
efficacy, which also depends on fac-
tors other than intrinsic parasite sus-
ceptibility, such as patient-acquired
immunity,
initial parasite biomass, treatment
adherence, dosing, drug quality and
pharmacokinetics.
Nonprobability sampling: nonrandom
selection based on convenience or other
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partial resistance to front-line artemisinin-based drugs [4,29,30]; (ii) measuring the prevalence of al-
ready existing variants and tracking their spread over space and time, as is the case for mutations
in the pfdhps, pfdhfr, and pfcrt genes that confer resistance to sulfadoxine and pyrimethamine
(used for preventive chemotherapy) and chloroquine respectively [22,31], as well as pfcsp haplo-
types that may increase in frequency after the implementation of RTS,S/AS01 vaccine [13,28], po-
tentially leading to vaccine breakthrough infections; and (iii) comparing the prevalence of VOC
against thresholds that motivate the immediate need for changes in control practices, for example,
deletions of the P. falciparum histidine-rich protein 2 and 3 (pfhrp2/3) gene [24–27] causing false-
negative rapid diagnostic test (RDT) results that, when present at frequencies above a defined
threshold (currently 5%), warrant a change in RDTs [23].

Characterize transmission sources
A better understanding of key drivers of malaria transmission can inform where and how to imple-
ment interventions for maximizing impact through tailored approaches. Genomic tools can increase
the power to identify imported cases in elimination settings and their impact on local transmission
[6,7], confirm linkages between locally transmitted cases in outbreak investigations [32,33], identify
transmission sources [32,34], and determine cross-border connectivity of parasites for a coordi-
nated response between countries. While existing surveillance measures (e.g., parasite rate, case
incidence, and reported travel histories) are fundamental to answering some of these questions,
they are often limited by consistency and accuracy, particularly in areas with highly mobile and
migrant populations.

Inform transmission dynamics
The ability to accurately estimate the intensity and trends in transmission from malaria genomic
surveillance data can provide NMCPs with an important and complementary set of indicators
alongside routine surveillance data to stratify regions according to transmission characteristics
and monitor the impact of interventions [1–3,10,11]. Genetic diversity measures such as the
complexity of infection have been suggested as a proxy for local transmission intensity
[1,12]. These genetic measures may be especially important in near-elimination settings to
identify point outbreaks versus sustained local transmission [35]. However, more evidence is
needed to validate genomic data with respect to traditional epidemiology.

Second step: the target population
Once the relevant question is identified, the next step is to define the population from which to
draw conclusions (Figure 1). The sampling population will be dependent on the programmatic
action expected from surveillance efforts: symptomatic individuals most affected by malaria
disease (i.e., children) if the surveillance purpose is to ensure appropriate diagnostic and treat-
ment of clinical cases, asymptomatic children or pregnant women if the purpose is to guide
chemoprotective approaches [36], and all infections emerging in a given area, irrespectively of
age, when the aim is to inform the contribution of imported cases to local transmission. However,
the accessible population (the portion of the population to which the surveillance system has rea-
sonable access) may not always coincide with the ideal target population. For example, sampling
asymptomatic individuals tends to require logistically complex and costly household surveys, and
low parasite densities in these infections [37] may reduce the success of sequencing efforts [38].
Instead, clinical cases or pregnant women at first antenatal care visit [18,39] might be targeted for
sustainable MMS approaches as long as the potential bias can be quantified or acknowledged.
Also, targeting adults for surveillance of pfhrp2 deletions may impose a high cost in term of
secondary lactate dehydrogenase-based RDTs [23] due to the lower risk of detectable
P. falciparum infections compared to children. It is important to note that any prospective study
design that is collecting private and confidential data from individuals should adhere to the ethical
956 Trends in Parasitology, November 2023, Vol. 39, No. 11
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criteria, allowing the easy collection of
data. However, not every individual has
the same chance of being included,
therefore increasing the risk of sampling
bias.
Preventive chemotherapy: the use of
medicines, either alone or in
combination, to prevent malaria infection
and its consequences.
Probability (or random) sampling:
randomization is used instead of
deliberate choice, allowing strong
statistical inferences to be made about
the whole group.
Risk-based sampling: a sampling
strategy that involves identifying
subpopulations at greater risk of the
outcome of interest and ensuring that
these are represented in a proportion
greater than in the general population.
Sampling: the process of using a
subset of a population to represent the
whole population in a given area, thereby
allowing valid conclusions to be drawn
from the results.
Sampling bias: a phenomenon that
occurs when a surveillance design fails
to collect a representative sample of a
target population, therefore limiting the
generalizability and external validity.
Sentinel site sampling: a surveillance
strategy that is conducted (at specific
sites selected) based on convenience
criteria.
Simple random sampling: a type of
probability sampling in which every
member of the target population has the
same probability of being included in the
sample.
Superinfection: an individual is bitten
by two mosquitoes, each bearing a
single parasite genotype.
Targeted amplicon sequencing: any
sequencing technology that involves
selective amplification and sequencing
of specifically chosen genomic regions.
Variants of concern (VOC): genetic
variants of the parasite that require a
programmatic reaction due to their
higher risk of resistance to antimalarials,
diagnostic failure or other clinical
outcomes of interest.
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standards required by the institutions and countries to ensure consent and data privacy. Also,
special attention is required to select the appropriate samples for subsequent molecular analysis
(such as whole blood, dried blood spot, or discarded RDTs), as this decision may impact the
feasibility of the sampling approach (blood drawing and storage) and the yield of the molecular
assay (which will be dependent on the amount of blood from which parasite DNA will be
extracted). Further studies are needed to assess the similarity of parasites collected from different
human subgroups, the impact of immunity and comorbidities (e.g., HIV infection) [40] on parasite
genetic patterns, and the effect that difference sample types can have on the performance of the
molecular assays.

Third step: the sampling approach
With the target population defined, the next question is how to sample from this population in an
unbiased manner. The most straightforward approach from a purely statistical perspective is
simple random sampling, a probability sampling where every member of the target popula-
tion has the same chance of being included in the sample. However, this approach is almost
always infeasible when performing surveillance over large geographic areas. For example, a
national-level study under simple random sampling would involve choosing individuals at random
from the entire country. From a logistical perspective it makes more sense to sample multiple
individuals from the same location; however, previous reports have found high levels of spatial
heterogeneity in markers of drug resistance down to the subnational level [4,20,41,42], meaning
that a single spatial location may be at risk of grossly over- or under-estimating prevalence. For
this reason, cluster sampling is often used as a middle ground between these two approaches.
In cluster sampling pre-existing units (clusters) such as health clinics or households are randomly
selected, typically followed by sampling individuals at random within each cluster (multistage
sampling). For this approach, a systematic random sample of clusters should be selected from
a complete list of all available (i.e., all health facilities in a province or region) with probabilities pro-
portional to the estimated numbers of individuals that they service (probability proportional to size
sampling) [23]. The composition of the clusters and how well they represent the larger population
determines the validity of the results, while the number of clusters determines the precision and
the length of time needed to meet enrolment targets. As cluster sampling usually requires many
resources and intensive logistic planning, sentinel site sampling at predefined health facilities
may represent a pragmatic alternative when a truly representative sample of the whole of the
territory is difficult to obtain [43,44]. Although problematic from a statistical perspective, as it
generates the possibility of bias, a careful selection based on geographical size, population distri-
bution and density, and malaria epidemiology may effectively answer the surveillance objectives
and avoid suboptimal use of resources or even inaccurate results [45]. Finally, nonrandom or
purposive (nonprobability) sampling can be used for investigating particular cases of public
health interesti. Similarly, targeted [46] or risk-based sampling [47], which considers clinical
(e.g., immunocompromised patients, severe malaria cases), geographic (e.g., outbreak investi-
gations or incoming travelers returning from specific destination) or demographic risk factors
might be used to increase the probability of finding certain variants of interest.

Fourth step: the sampling period and frequency
In addition to the size and distribution of the population surveyed, it is important to decide when
and with what periodicity the surveillance will be implemented. Malaria seasonality is an important
consideration in these decisions, especially for regions with highly seasonal transmission, multiple
peaks within a season, and interventions deployed across the season. It will determine the time
required to achieve the target sample size and may affect genetic outcomes that are of interest
in some cases, such as genetic complexity or the fraction of polygenomic infections [48,49]. If
the purpose is to quantify the frequencies of drug-resistance alleles in the parasite population,
Trends in Parasitology, November 2023, Vol. 39, No. 11 957
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then it would be necessary to sample parasites before treatment, or a considerable time after
chemopreventive interventions to avoid the short-term temporal changes in allele frequencies
while antimalarials are present in blood [50,51]. Other than the timing of the sampling, the
frequency needs to be decided depending on the surveillance purpose. Surveys range from
cross-sectional, if the aim is to gather information on a population at a single point in time [52],
to longitudinal, if the aim is to detect temporal changes in the outcome of interest [53]. More
complex designs are also available, such as pseudo-longitudinal sampling in which a cross-
sectional design is applied repeatedly but sampling differently in each wave [54]. Sampling
frequency will influence how sample size is defined and what targets must be specified to calcu-
late the appropriate sample size.

Fifth step: the sample size
Once we have a firm idea of the sampling approach and frequency, we can begin to ask
specific questions about the minimum number of participants required to arrive at statistically
sound conclusions. Sample size calculation is a mature field in its own right, complete with
its own language and terminology (Table 1). We give some examples for MMS specific use
cases here.

Drug and diagnostic resistance studies
From a purely statistical point of view, both drug and diagnostic resistance studies aim to do the
same thing: to estimate the prevalence of a genetic marker in a population. This can be made
more or less complex as we see fit, for example establishing whether prevalence is above a
Table 1. Parameters to be considered in the calculation of a sample size

Parameter Description

Population size • Total population size from which the sample will be drawn and about which researchers will make conclusions.
• If the target population is small (less than 10 times the sample size) then a finite population correction may be required.

Expected prevalence • Information regarding expected prevalence should be obtained from the literature, from expert knowledge or by carrying out a
pilot-study.

• When this information is not available, the value that maximizes sample size can be used (usually 50% prevalence).

Intracluster correlation
coefficient (ICC)

• For a clustered study design, the level to which individuals from the same cluster have correlated outcomes, due to (i) similar
behaviors and risk factors, (ii) the cluster itself introducing correlations, or (iii) the process of disease transmission introducing
correlations.

• Leads to diminishing returns when sampling more people from the same cluster, and favors instead larger numbers of clusters.
• Reasonable estimates of the ICC can be obtained from the literature or from expert knowledge. Pilot studies will often be
underpowered to estimate the ICC.

Design effect (Deff ) • Ratio of the variance of a statistic with a complex sample design to the variance under simple random sampling. Larger values
represent less efficient designs, with 1 representing perfect efficiency.

• A large design effect needs to be compensated by an increase in sample size.
• In general, a design effect of 1.5 or 2 is considered reasonable. However, much larger values are plausible in practice, and
values should be tailored to the study where possible.

• For clustered surveys, the design effect can be calculated from the ICC through the formula Deff ¼ 1þ n � 1ð Þ � ICC, where n
is the per cluster sample size.

Significance level (Alpha) • A predetermined threshold that determines the strength of evidence required to reject the null hypothesis.
• Represents the maximum acceptable probability of making a type I error (false positive).
• A value of α ¼ 5% is often used. Smaller values need to be compensated by larger sample sizes.

Statistical power (1-Beta) • The probability of correctly rejecting the null hypothesis when it is indeed false.
• A value between 80% and 90% is usually used.
• The greater the power, the larger the sample size required.

Margin of error (MOE) • A measure of the amount of sampling error we expect in the results of our survey.
• Can be used to select sample sizes in cases where no hypothesis test is being performed.
• The smaller the MOE, the larger the sample size required.
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given threshold or comparing prevalence from one year to the next. Here, we give two examples
of how statistical considerations can guide study design for cross-sectional prevalence surveys.

Testing for a single copy of a rare variant
Imagine that we are planning to conduct a study to establish if the pfkelch13mutation R561H [4]
is present in our target population (but not to estimate its prevalence). We can phrase this as a
hypothesis test in which the null hypothesis is that the prevalence of the mutation is 0%. We
will reject this claim if we see a single copy of the R561H mutation in our sample. The question
becomes: what is the probability of rejecting the null hypothesis? Using the formula in Box 1
(Question A), we find that n ¼ 161 samples are required to reach 80% power if the variant is
present at 1% prevalence. This is a well powered study, but it is important to recognize that we
still have a 20% chance of seeing no variants and therefore failing to reject the null hypothesis.
Unfortunately, there is no way around this, as to be 100% confident we would need to survey
the entire population. The aim of power analysis is not to achieve 100% power, rather it provides
a framework that can be used to relate the chance of success of an experiment to other factors
that cannot be controlled. Importantly, it requires assuming a particular prevalence in order to
calculate sample size. There are no hard rules on how to do this, and the best approach is
often to be pragmatic. For example, we can ask whether a prevalence of 0.1% pfkelch13 muta-
tions would actually result in a programmatic change in the way drugs are delivered. If the answer
is no, then arguably we do not need to be powered to detect this low-level prevalence.
Conversely, a prevalence of 20%may by unlikely a priori as it would already be apparent in clinical
failure rates, and so we can safely rule out such high values. When comparing across assump-
tions, it can also be useful to consult tables such as Table I in Box 1, which givesminimum sample
sizes across a range of prevalence assumptions.

Estimating prevalence of a variant within a margin of error
In some cases, we may be confident that a variant is present but want to estimate its prevalence.
We can still make sample size recommendations, this time based on precision arguments rather
than statistical power. For example, imagine that we are planning a large, multicluster survey
to estimate the prevalence of the pfdhps K540E mutation at the province or regional level, com-
bining information over multiple health facilities (clusters). As before, we have to start by assuming
a particular prevalence of the variant when performing our sample size calculation. This time we
also need to specify the level of variation between clusters, which may be quite large if we expect
a high degree of spatial heterogeneity in our study region. In our case, let us assume that
the prevalence is 30% at the province or regional level and that the intra-cluster correlation is
0.005. We can then use the formula in Box 1 (Question B) to calculate the sample size required
in each cluster to estimate prevalence to within a defined margin of error. For example, if we re-
cruit 10 clusters and want to estimate prevalence to within ±5% margin of error then we need
39 samples per cluster (390 total). Table II in Box 1 gives these sample sizes for a range of as-
sumptions. Notice that the total sample size (the per-cluster value multiplied by the number of
clusters) decreases as the number of clusters increases, meaning that it is more statistically
efficient to survey many clusters than it is to intensively collect samples from a few. This is due
to intra-cluster correlation, which means we reach diminishing returns when we continue to
sample from the same sub-population [55] (Table 1). Also notice that sample sizes for large
numbers of clusters are more robust to different assumptions about intra-cluster correlation,
which is another argument for recruiting large numbers of clusters where possible.

Importation and spatial connectivity
Genetic relatedness-based approaches have recently been shown to be a powerful tool for
identifying geographic regions that are linked by transmission [8]. The raw data for thesemethods
Trends in Parasitology, November 2023, Vol. 39, No. 11 959
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ranges from biallelic single-nucleotide polymorphism (SNP) data as produced in whole-genome
sequencing [56], to unlinked multiallelic data such as microsatellites [57]. However, analytical
tools to translate genetic connectivity to demographic connectivity (e.g., the number of parasites
imported from one location to the other) are still missing. This is a major problem in most areas of
sub-Saharan Africa where human connectivity and parasite flow occurs between genetically
Box 1. Sample size estimates for cross-sectional prevalence surveys

Question A: is a variant present in the population?

Assume that the true prevalence of a variant in the population is given by p, and we intend to take a cross-sectional purely
random sample of size n. If sampling is independent, then the probability that all n samples are negative for the variant is
given by the formula:

Pr Zero variants found in sample of size nð Þ ¼ 1 � pð Þn ½I�

We can rephrase this in terms of statistical power, defined as the probability of correctly rejecting the null hypothesis. Here,
power would be the probability of correctly concluding that the variant is present in the population, which is the inverse of
the formula above:

Power ¼ 1 � 1 � pð Þn ½II�

For example, if the prevalence of the variant is 1% andwe take a sample of size n ¼ 50 then our study has a power of 39%,
meaning we are more likely than not to fail to disprove the null hypothesis, that is, to come to a false-negative conclusion.
We can rearrange equation II to give us the sample size required to achieve a target power:

n ¼ log 1 � Powerð Þ
log 1 � pð Þ ½III�

Table I uses this formula to calculate theminimum sample size for a range of prevalence assumptions and target power levels.
Note, this calculation applies to the question of detecting a variant in a specific site only; if the aim is tomake conclusions at a
higher geographic level (e.g., province) then a multi-cluster approach is required (see later).

Table I. Minimum sample size required to detect at least one copy of a variant for a range of prevalence and
power assumptions

Power Prevalence of variant in population

0.1% 0.2% 0.5% 1% 2% 5% 10%

70% 1204 602 241 120 60 24 12

80% 1609 804 322 161 80 32 16

90% 2302 1151 460 230 114 45 22

Question B: what is the prevalence of a variant in the population?

Assume that we are conducting a multicluster survey to estimate the prevalence of a variant at the province level. The study
consists of c clusters each containing n samples. Our analysis plan is to estimate prevalence in each cluster and then to take
the mean of these values to obtain the overall estimate bp for the province. The expected margin of error (d) of this estimator is
given by:

d ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1 � pð Þ

nc
1þ n � 1ð Þrð Þ

r
½IV

where p is the true prevalence at the province level, r is intra-cluster correlation coefficient and z is the critical value of the nor-
mal distribution (z ¼ 1:96 for a two-sided interval at 95% confidence). In other words, if the true prevalence is p then we ex-
pect bp to fall within p� d around 95% of the time. We can rephrase this as a sample size calculation by rearranging equation
IV in terms of n:

n ¼ z2p 1 � pð Þð1� rÞ
cd2 � z2p 1 � pð Þr

½V

Using this formula, we can decide on a tolerable margin of error (d) and then choose the sample size that achieves this
precision. Table II gives the sample sizes required to achieve a margin of error of d ¼ 5%. Values give the sample size per clus-
ter, which can be multiplied by the number of clusters to obtain the total sample size of the study.
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Table II. Minimum sample size required per cluster to estimate prevalence to within amargin of error of 5% in
a multcluster survey

Number of
clusters

Prevalence of variant in population

10% 20% 30% 40% 50% 60% 70% 80% 90%

Intra-cluster correlation of 0.005 (low)

1 447 – – – – – – – 447

2 106 318 831 2352 4827 2352 831 318 106

3 60 139 232 318 355 318 232 139 60

4 42 89 135 171 184 171 135 89 42

5 32 65 95 117 125 117 95 65 32

6 26 52 74 89 94 89 74 52 26

7 22 43 60 72 76 72 60 43 22

8 19 37 51 60 63 60 51 37 19

9 17 32 44 52 54 52 44 32 17

10 15 28 39 45 48 45 39 28 15

Intra-cluster correlation of 0.02 (moderate)

1 – – – – – – – – –

2 – – – – – – – – –

3 580 – – – – – – – 580

4 110 – – – – – – – 110

5 61 2912 – – – – – 2912 61

6 42 223 – – – – – 223 42

7 33 116 580 – – – 580 116 33

8 26 79 205 580 1189 580 205 79 26

9 22 60 125 223 286 223 125 60 22

10 19 48 90 138 163 138 90 48 19

Blank cells indicate that the required precision cannot be reached (in which case equation V returns a negative value).
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intermixed populations. Tracking of infections using this approach is based on the genetic
similarity between the ensemble of parasites present in each of a pair of infections representing
a potential transmission event [9]. This is a nascent area of genomic surveillance, and the tools
do not currently exist for performing exact power and sample size calculations for this use-
case. However, some basic arguments can be useful when considering study design, which
include the type of sequencing and the overall population diversity (Box 2). For a sample of size
n there are n-choose-two pairs, which is equal to ½ × n × (n – 1). So, for a sample of size of 10
there are 45 pairs, but for a sample of size of 20 there are 190 pairs. By doubling the sample
size, we more than quadruple the number of possible pairwise links we are exploring. A similar
argument can be made when comparing between distinct locations. Now, if we have n1 samples
from the first location and n2 samples from the second, then the number of possible links between
areas is n1 � n2. Going from a sample size of 10 in each location to 20 increases the number of
possible links from 100 to 400. For these reasons, deep sampling in a local area is recom-
mended when the aim is to detect pairs of samples that form recent transmission chains.

Trends in malaria transmission
Several studies highlight the associations between malaria burden and parasite genetic
measures, such as the fraction of samples that are classified as having multiple infections,
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Box 2. Sample size considerations for parasite connectivity

A major factor in our ability to detect connectivity is what proportion of sample pairs in the population carry highly related parasites (Figure I). This is influenced by
multiple factors, but a very important one is transmission intensity. In high-transmission settings, overall relatedness will tend to be lower due to increased
recombination, and for this reason, the ability to infer networks of transmission from genetic data tends to be highest at low transmission. At very low transmis-
sion, however, samples become scarce to reach the desired sample size and increasingly clonal, meaning genetic data ceases to be informative of transmission
links.

The sequencing approach also influences the ability to detect this high relatedness from the genetic data and therefore the power of the study. The most powerful
methods are based on the use of identity by descent (IBD), a probabilistic measure of the fraction of the genome that a pair of parasites inherited from a recent com-
mon ancestor. For targeted amplicon sequencingmethods, our ability to reliably detect IBD is highest when using a large number of loci, and when they are diverse
(ideally multiallelic) and distributed throughout the genome. Accordingly, previous studies [56] have found that larger sample sizes are required when fewer loci are
included in the analysis [9]. When looking for spatial trends in relatedness, it has been estimated that for whole-genome data approximately 147 single-infection samples
were required, whereas for samples sequenced at 93 single-nucleotide polymorphisms (SNPs) or at 24 SNPs, 222 and 344 single-infection samples, respectively,
would have been required for the same power [8]. Similarly, previous studies [58] and simulated data [56] have shown a rapidly decreasing accuracy in the expected
IBD fraction with fewer SNPs. Moreover, 24 and 93 SNP barcodes have not been recommended for IBD-based analyses of individual parasite sample pairs due to large
expected error in that application [56].
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Figure I. Factors that determine the ability to detect parasite connectivity.
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the proportion of unique strains, and the amount of persistent clonal propagation in a popu-
lation [1,2,58–62]. This empirical evidence supports the underlying hypothesis that the biolog-
ical mechanisms of superinfection and cotransmission are linked to different transmission
intensities and are visible in measures of within-host and population-level parasite diversity.
However, estimating a single sample size to assess transmission characteristics across a
broad set of geographies remains an open challenge. One of the difficulties stems from the
962 Trends in Parasitology, November 2023, Vol. 39, No. 11
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complex and dynamic interplay between the number of samples collected each year, at what
time the samples are collected during that year [59], the genetic resolution of the sequencing
technology [63,64], the underlying genetic population diversity [64], the modes and magnitude
of transmission in the region, especially in highly seasonal regions with an unknown amount of
imported infections [60,64], and non-linear, region-specific relationships between genetic
and transmission measures [2,65]. Previous studies exhibit limitations associated with a con-
venience sampling approach [58,59], and an incomplete characterization of local transmission
due to a lack of prevalence or entomological inoculation rate measurements [58] and varying
levels of health seeking [66]. Mathematical malaria genomic models have been developed, in-
corporating biological mechanisms such as superinfection and co-transmission at varying
levels of complexity, to help mitigate some of these challenges and to assess the link between
specific genetic measures and a true modeled transmission rate. Here, models can be used as
a tool to investigate the conditions under which certain observations could arise and generate
sample size estimates for different use cases [12,58,59] (Box 3). However, additional evidence
and investigations are required to systematically link parasite genetic data and diversity mea-
sures to more traditional measurements of parasite transmission [10,11].
Box 3. Sampling factors to infer levels and changes in malaria transmission

The use of MMS data to understand levels and changes in malaria transmission is viewed as confirmatory, or as an augmentation to traditional epidemiologic data, either
because data is sparse due to limited surveillance infrastructure or where traditional metrics are insensitive to relevant changes in transmission [58]. Previous studies
have identified associations of population diversity and routine measures of transmission using relatively small sets of single nucleotide polymorphisms (SNPs), typically
between 24 and 100 SNPs, with approximately 100 or more samples per year [58,60–62]. Increasing the genetic resolution to 100 SNPs can provide more dynamic
range for population measures such as identifying higher resolution connectivity between samples in low-intensity and low-diversity regions, but also increases fidelity
of within-host diversity measures, such as measures of heterozygosity and estimates of complexity of infection that have been linked to changes in transmission [60].
Watson et al. [12] estimated that no more than 350 samples are required to detect a 20% decrease in malaria prevalence by nucleic acid amplification tests over five
years for every genetic measure considered; however, for smaller decreases or lower starting prevalence, sample sizes need to be increased and genetic measures
may not be equally predictive [12]. Moreover, the ability to resolve within-host diversity measures becomes more challenging as the intensity of transmission and the
genetic complexity of infections increase in the population [60,61]. In these contexts, either a broader coverage of the parasite genome or next-generation sequencing
of ampliconsmay be required from a similar number of samples. Lower intensity regions may require more samples and higher resolution genetic data to detect declines
in transmission and fragmentation of transmission chains.

What should a gold standard prospective study consider? The design of prospective studies to assess the link between genetic features and transmission should
leverage standard measurements of transmission including prevalence, incidence, entomological inoculation rates, health seeking rates, and programmatic activity
and coverage. The sample collection protocol should consider the timing of collection relative to these measurements of transmission, the transmission season, the
within season transmission dynamics, intervention deployments, and across regions (Figure I). Also, studies should aim to collect standard epidemiological metadata
about every individual and their household as well as information regarding any recent travel in their household, always following ethical requirements to guarantee
informed consent and data privacy. A holistic approach to the design of prospective studies will be essential in generating the next wave of evidence to support this
malaria genomic surveillance use-case.
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Figure I. Factors that determine the ability to infer malaria transmission.
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Further considerations for malaria molecular sampling
Sample sizes must always consider that a certain number of individuals and samples will not
accept to participate in the study or will not produce high quality sequences due to technical
issues, respectively. The study designer should estimate dropout based on past experience
and inflate sample sizes accordingly. For example, if we expect 80% of samples to be of high
sequence quality then sample sizes should be inflated by dividing by 0.8. This should
be done in a context-specific way, for example low density infections obtained from
asymptomatic individuals or the use of positive RDTs as source of parasite DNA may have
lower sequencing efficiency than other infections or biological samples (e.g., dried blood
spots), respectively.

Sample size estimates assume that the pool of parasites available for sequencing is a represen-
tative random sample of the total parasite population. However, if a variant of interest has differing
biological or epidemiological properties (i.e., transmissibility, fitness cost or virulence) that affect
parasite abundance in infected hosts (i.e., testing sensitivity and the probability of meeting
sequencing quality thresholds) then calculations should be adjusted to account for the likely
over or underrepresentation of this variant in the sampling pool.

In certain scenarios, surveillance efforts may encompass the simultaneous sampling of multiple
markers, capturing both rare variants and those occurring at high frequencies. In this case, it
becomes necessary to adequately power the study for each specific scenario and select the
highest required sample size. In other cases, it may be more convenient to study the entire target
population, rather than a study based on a sample of the population. This applies especially to low
transmission settings, where antimalarial resistance has been hypothesized to emerge [67,68]
and the number of parasite positive cases is low. In these settings, analysing all malaria cases
may be crucial for the classification of malaria cases as local or imported. Therefore, sampling
efforts in such settings may need to be intensified when the objective is to detect the emergence
of novel resistance variants.
Box 4. Other sampling approaches

We have not covered all theMMS use cases and designs in this review. Several other fields, including veterinary and survey
strategies to substantiate freedom from disease for a certain territory [72], are developingmore sophisticated, effective and
labor-efficient sampling methods that could eventually be applied for malaria genomic surveillance:

• Adaptive sampling approaches (also called response-adaptive designs) in which the procedure for selecting sites or units
to include in the sample can depend on values of the variable of interest observed during the survey, allowing a refinement
of data as it becomes available [73,74]. This sampling approaches take advantage of patterns not discovered prior to the
survey, and may add samples from neighboring sites (or a larger proportion of samples in that area) whenever a variant is
encountered. For example, adaptive geostatistical designs sequentially select sampling sites based on observations from
previous iterations, and use spatial autocorrelation in the observed data to improve prediction and inference [75,76].

• Continuous sampling approaches that inform the current estimate using a rolling window approach, with larger weight
given to more recent data, which might better reflect current prevalence. This approach can reduce the number of se-
quences required at each time step as compared to a cross-sectional sampling design [77].

• Sequential sampling, which involves the evaluation of each sample taken from a population to see if it fits a desired
conclusion and stopping further sampling as soon as there is sufficient support for the conclusion [78]. This sampling
method is best used in situations where the classification of the prevalence of a condition into categories or classes
(for example, high and low prevalence) provides sufficient information on which to base decisions to take specific actions
[79]. One classification approach is lot quality assurance sampling (LQAS), a methodology developed in the manufactur-
ing industry to assess the quality of a batch (lot) [80] that has been used for surveillance of drug resistant tuberculosis [81]
and HIV [78].

• Xeno-monitoring of parasite molecular markers in malaria vectors [82,83], potentially allowing a timelier surveillance as
mosquitoes can be collected throughout the year without a long planning phase of obtaining ethical approval.
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Outstanding questions
What is the economic impact of
integrating genomic sequencing into
malaria surveillance, and what sample
approaches can be used to minimize
expenditures?

What are the prevalence thresholds
for molecular markers of antimalarial
resistance above which use of a drug
is no longer justified?

What are the spatial and temporal scales
over which parasite heterogeneity can be
observed and what are the implications
for MMS sampling to provide compre-
hensive information on the population-
level prevalence of variants of concern?

Which factors (i.e., geographical size,
population distribution and density,
and malaria epidemiology) should be
considered when selecting the number
and location of sentinel sites?

What is the similarity of parasites collected
from different human subgroups
(symptomatic, asymptomatic, pregnant
women, children, adults), as well as the
impact that immunity and comorbidities
(i.e., HIV infection) have on parasite
genetic patterns?

What is the impact of seasonality
on molecular markers of surveillance
interest? Can bottlenecks that occur
during low transmission season also
affect the prevalence of genetic variants
in the next transmission season?

Which are the relatedness and diversity
key markers and analysis tools that
can guide sample size calculations for
assessing spatial connectivity and
intensity of malaria transmission?

What is the impact of sample type on
the success of MMS in addressing
the use cases of interest? What is
the difference in the level of genetic
information generated from different
sample types (e.g., dried blood spot
versus a small whole-blood sample
versus discarded RDTs or mosquito
blood meal)?
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Samples should be selected as randomly as possible, however, true random sampling is difficult
to achieve. Therefore, it is recommended to systematically test for potential sampling biases
which, if detected, may be considered in the calculations to provide less biased prevalence
estimates. This can be achieved by looking at descriptive statistics (i.e., demographic variables)
of the sampled and represented populations [69,70] and using statistical techniques to correct
these effects during study analysis [70]. To make this possible, it is essential that the sampling
strategy is well-documented and taken into consideration during further data analysis and
interpretation, so that bias is minimized and, where present, considered in the analysis and
interpretation of data.

If the minimum sample size cannot be reached then we should not switch to a convenience-
based approach, rather we should ask if we can change our study design to improve power.
For example, in a study of rare variants we could focus on high-risk regions, thereby changing
our prevalence assumptions and reducing the sample size required. We could also consider
making an argument for a pilot study at 70% power, to be followed up later by more detailed
investigation. Alternatively, we could consider reactive surveillance approaches that may require
smaller sample sizes, such as lot quality assurance sampling, that allow pinpointing areas where
warning signals are detected for subsequent follow-up (Box 4). Finally, sampling units
(i.e., provinces) could be rotated during subsequent years to overall produce a full sampling
cycle covering the whole country every 2–3 years [71]. All these designs are preferable to going
ahead with a study using sample sizes based purely on logistical arguments and ignoring the
statistical implications. Finally, it is important to include national malaria control programs in the
design of these studies to understand their current programmatic questions, integrate their direct
experience into the study design, and regularly communicate data and insights generated from
the study for their decision-making. There is also a robust scientific community for sharingmalaria
parasite genetics data; where ethically appropriate and with the appropriate consent, actively
sharing anonymized study data can help support other country programs in their study design
and data collection efforts.

Concluding remarks
A good sampling strategy is critical to the success of a surveillance study. However, study design
and optimal sample sizes are not purely statistical considerations, as they depend on many
factors including logistic, budgetary, ethical and social considerations, and these factors must
be balanced when coming up with final numbers. For example, it may be statistically desirable
to sample a large number of spatial clusters, but at the same time this may be infeasible from a
logistical or budgetary perspective. When budgets are tight, we may be tempted to abandon
statistical arguments altogether in favor of purely programmatic decision-making, however, we
should be wary of this approach. A study will be subject to the same degree of randomness
whether we quantify it beforehand or not, so we are always better off armed with this information.
When used in conjunction with other information, and acknowledging gaps in knowledge still
required to be addressed (see Outstanding questions), statistical arguments can be seen as a
guide to direct us towards study designs that have a good chance of success. Critical applica-
tions of this approach in the near future include designing studies to detect the presence of
mutations that confer partial resistance to Artemisinin, and to measure the changing prevalence
of these mutations in space and time, and similarly for pfhrp2/3 gene deletions to estimate
prevalence of deletions relative to defined thresholds.
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