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Abstract

Introduction: This study addresses the lack of systematic investigation into the prog-
nostic value of hand-crafted radiomic features derived from diffusion tensor imaging
(DTI) in isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM), as well as the
limited understanding of the biological interpretation of individual DTI radiomic fea-
tures and metrics.

Aims: To develop and validate a DTI-based radiomic model for predicting prognosis in
patients with IDH wild-type GBM and reveal the biological underpinning of individual
DTI radiomic features and metrics.

Results: The DTl-based radiomic signature was an independent prognostic factor
(p<0.001). Incorporating the radiomic signature into a clinical model resulted in a
radiomic-clinical nomogram that predicted survival better than either the radiomic
model or clinical model alone, with a better calibration and classification accuracy.
Four categories of pathways (synapse, proliferation, DNA damage response, and com-
plex cellular functions) were significantly correlated with the DTI-based radiomic fea-
tures and DTI metrics.

Conclusion: The prognostic radiomic features derived from DTI are driven by distinct
pathways involved in synapse, proliferation, DNA damage response, and complex cel-
lular functions of GBM.
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1 | BACKGROUND

Glioblastoma (GBM) is the most common malignant tumor occur-
ring in the brain, with a median survival of 12-15months despite
treatment comprising surgery followed by concurrent radiochem-
otherapy and temozolomide chemotherapy.! Previous studies have
demonstrated that isocitrate dehydrogenase (IDH) mutations have a
considerable impact on the prognosis of patients with GBM,%? and
the role of IDH mutations has been reinforced in classifying IDH
wild-type GBM in the 2021 World Health Organization classification
of tumors of the central nervous system.* Nonetheless, evidence has
shown that survival outcomes and treatment responses are hetero-
geneous among patients with IDH wild-type GBM.>” Thus, preop-
erative prognostic markers that stratify patients with IDH wild-type
GBM may be useful for improving disease management and guiding
individualized therapy.

Radiomics has provided a noninvasive method for characteriz-
ing tumors by extracting quantitative features from imaging data.
It is hypothesized that medical images reflect the underlying patho-
physiological characteristics of cancer, and radiomic features may,
therefore function as a surrogate biomarker of the tumor.® Several
studies have shown that radiomic features have incremental prog-
nostic value over clinicopathological factors in gliomas.” ! Recently,
radiogenomic studies have demonstrated that prognostic radiomic
features derived from conventional magnetic resonance (MR) se-
quences are correlated with specific biological pathways.!%1%13
Notably, these studies used either gene set enrichment analysis
(GSEA) or weighted gene co-expression network analysis (WGCNA)
to identify biological pathways in radiogenomic analysis.*2® In RNA
sequencing (RNA-seq) data analysis, GSEA focused on differentially
expressed genes, whereas WGCNA focused on interactions be-
tween the genes.**'> Therefore, combining GSEA and WGCNA in
radiogenomic analysis may reinforce the reproducibility of the bio-
logical underpinning underlying radiomic phenotypes.

Diffusion tensor imaging (DTI) is an advanced MR sequence that
detects microstructural tissue changes by assessing water diffusion
in vivo.1%Y Over the past few years, DTI has been increasingly used
to study brain tumors.*®*? It contains four main metrics: mean diffu-
sivity (MD), fractional anisotropy (FA), axial diffusivity (AD), and ra-
dial diffusivity (RD).2° MD is the average of the tensor's eigenvalues,
which is sensitive to the initial cellular swelling (cytotoxic edema)
which restricts diffusion. This characteristic makes it useful in iden-
tifying early strokes.?! As the most widely used anisotropy measure,
FA measures the fraction of the diffusion that is anisotropic, which
is often considered a measure of “white matter integrity” though
changes in FA may be caused by many factors.?2 AD, also called the
parallel diffusivity, is equal to the largest eigenvalue. The perpen-
dicular diffusivity measure, also called RD, is equal to the average
of the two smaller eigenvalues. These measures are interpreted as
diffusivity parallel to and perpendicular to a white matter fiber tract,
so they make the most sense in regions of coherently oriented axons
with no fiber crossings. These metrics have been previously demon-

strated to be capable of predicting survival outcomes in GBM.2%24

However, these studies leveraged semiquantitative DTI metrics to
perform histogram analysis, and there is a lack of studies that have
systematically investigated the prognostic values of hand-crafted
radiomic features derived from DTl in GBM. In addition, the bio-
logical interpretation of individual DTI radiomic feature and metrics
remains elusive, posing a barrier to the clinical application of DTI-
based radiomics.

This radiogenomic study aimed to (a) develop and validate a
DTl-based radiomic model for predicting the overall survival (OS) of
patients with IDH wild-type GBM and (b) investigate the biological
underpinning of the prognostic radiomic features by identifying un-
derlying biological pathways using paired DTl and RNA sequencing
data.

2 | MATERIALS AND METHODS

2.1 | Study design

The study procedures are illustrated in Figure 1 and consisted of
radiomic model building, radiogenomic analysis, radiomic-related
pathway identification, and biological interpretation of radiomic fea-
tures. First, we developed and validated a DTI-based radiomic model
to predict the prognosis of patients with GBM. We then used GSEA
and WGCNA to identify the biological pathways associated with ra-
diomic features. Third, the intersection of the pathways identified
using the two approaches was selected as the final pathways. Finally,
the underlying biological underpinning of the individual radiomic
features and DTI metrics was revealed using Pearson correlation
analysis and the Mantel test.

2.2 | Study cohorts

A total of 258 adult patients pathologically diagnosed with IDH wild-
type GBM at the First Affiliated Hospital of Zhengzhou University
during 2014-2021 were enrolled in this study as the radiomic data-
set. The inclusion and exclusion criteria are shown in Figure S1. The
radiomic dataset was divided into a training set (N=134) and valida-
tion set (N=124) using random sampling at an approximate ratio of
1:1 with balanced clinical parameters. Additionally, 53 patients from
the radiomic dataset with RNA-seq data of fresh frozen tumor tis-

sues were designated as the radiogenomic set.

2.3 | Image preprocessing, tumor delineation, and
radiomic features extraction

We used a MATLAB toolbox named “PANDA" for fully automated
processing of the original brain DTI images, including three main
parts: stripping the skull, correcting for the eddy-current effect,
and calculating diffusion tensor metrics.?’> Consequently, we ob-
tained four types of images: AD, RD, MD, and FA maps. Moreover,
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FIGURE 1 Workflow of this study. (A) Radiomic model construction and validation. (B) Radiogenomic analysis: the RNA-seq data were
analyzed using both GSEA and WGCNA approaches according to the conclusions of radiomic analysis. (C) Categories of intersective
pathways. (D) Annotating individual prognostic radiomic feature.

all images were pre-processed in the following four steps: (a)
N4ITK-based bias field distortion correction, (b) voxels resampling
into 1x1x1mm?, (c) rigid image alignment with fluid-attenuated
inversion recovery (FLAIR) as a template, and (d) histogram match-
ing. The region of interest (ROI) was manually outlined layer-by-
layer on the FLAIR images by a neuroradiologist with 12years of

images were randomly

experience (J Yan) using the ITK-SNAP software (http://www.
itksnap.org/pmwiki/pmwiki.php). Meanwhile, 15% (N=39) of the

selected by a neurosurgeon with 12years

of experience (ZY Zhang) to repeat the ROI delineation process,
yielding an inter-rater test set. An open-source Python package
named “PyRadiomic” was used to extract the radiomic features
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and visual maps from the AD, RD, MD, and FA images.26 Next,
the visual maps were visualized using the ITK-SNAP software with
the HSV (hue, saturation, and value) colormap.27 Detailed informa-
tion on the image acquisition and feature extraction is provided
in Supplementary A1l and Supplementary A2. This study obeyed
image biomarker standardization initiative (IBSI) guidelines.?%2®
More details are presented in Supplementary A3 to ensure the ro-

bustness of the radiomics features.

2.4 | Statistical analysis

Radiomic model construction and validation: We used a three-step
process for image features screening of the training set. Screening
began by excluding low repeatability radiomic features. Intraclass
correlation coefficients (ICCs) were calculated for each radiomic
feature using the inter-rater test set, and the radiomic features were
deleted with an ICC<0.9. Next, we calculated the univariate con-
cordance index (C-index) of the remaining features to reflect the
relationship between the radiomic features and OS. Radiomic fea-
tures with a p-value <0.05 and univariate C-index 20.55 (positive
association) or <0.45 (negative association) were retained for fur-
ther analysis. Finally, least absolute shrinkage and selection operator
(LASSO) penalized Cox proportional hazards regression analysis was
used to select dependable radiomic features and build the radiomic
model. The radiomic risk score (Radscore) was calculated as a lin-
ear combination of features with their nonzero coefficients gener-
ated by LASSO. The R package survminer was used to calculate the
Radscore cutoff value for the training set. Then, the cutoff value was
applied to the validation set.

The association between the Radscore and OS was evalu-
ated using Kaplan-Meier analysis. A log-rank test was used to
assess the survival difference, where a p-value <0.05 indicated
a significant difference. Calibration curves were plotted to as-
sess the agreement between predicted and observed survival.
Decision curves were plotted to evaluate the clinical usefulness
of the radiomic-clinical model (R-CM). The C-index was calcu-
lated using the R package “survival” to measure the discrimination
performance of the model. The net reclassification improvement
(NRI) was calculated using the R package “survIDINRI” to assess
the practicality improvement added by the radiomic model. The
Akaike information criterion (AIC) was computed using R pack-
age “stats” to assess the risk of model overfitting. Decision curve
analysis was performed using the R package “rmda” to confirm the
clinical usefulness of the R-CM.

Radiogenomic analysis and radiomic-related pathways identifica-
tion: We used two radiogenomic methods (GSEA and WGCNA) to
enhance the reproducibility of the biological pathways. Detailed
information on RNA-seq and the detection of IDH mutations is pro-
vided in Supplementary A4 and Supplementary A5.

GSEA: First, Log2FoldChange values for each gene were ob-
tained from differential gene expression analysis between high-
risk and low-risk groups stratified based on the radiomic model.

All genes sorted by Log2FoldChange value from high to low were
subjected to GSEA, and pathways with a false discovery rate (FDR)-
adjusted hypergeometric p-value <0.05 indicated significant enrich-
ment. Pearson correlation analysis of the gene set variation analysis
(GSVA) value of the significantly enriched pathways and Radscore
was performed, and the pathways with an FDR <0.05 were retained.
Differential analysis was performed using the R package “DESeqg2.”
GSEA was performed using the R package “clusterProfiler,” query-
ing the following annotated gene set databases: Kyoto Encyclopedia
of Genes and Genomes, Hallmark, Reactome, BioCarta, Pathway
Interaction Database, WikiPathways.?’

WGCNA: Cluster analysis with the “complete” method was used
to delete outlier samples. Then, we used the R package “WGCNA" to
perform WGCNA on the radiogenomic set. A -value of 8 (scale-free
R?=0.85) was screened as soft thresholding shown in Figure S8.
Five gene modules were also identified. Next, Radscores were sub-
jected to Pearson correlation analysis with the principal components
of the modules obtained from WGCNA, and the modules with an
FDR<0.05 were retained. The genes in the retained modules were
subjected to gene enrichment analysis, and the pathways with an
FDR<0.05 were retained. Enrichment analysis was performed as
described in the GSEA section.

Biological interpretation of radiomic features: First, we investi-
gated the biological pathways underlying the individual radiomic
feature. Pearson correlation analysis was performed between the
prognostic radiomic features and GSVA scores of the intersective
pathways. The pathways with an FDR<0.05 were selected to clar-
ify the biological explanation of the individual prognostic radiomic
feature. Second, we investigated the relationship between the DTI
metrics and biological pathway categories. The top five most cor-
related pathways in each pathway category were analyzed using the
Mantel test, which was conducted using the R package “vegan” for
measuring the correlation between DTl metrics and the categories

of intersectional pathways.

3 | RESULTS

3.1 | Patient characteristics

The demographic and clinical characteristics of the 258 patients are
summarized in Table S1. Shapiro-Wilk test was used to analyze the
distribution of training and validation sets. Results of the normality
test revealed that none of the continuous variables (Age, KPS, and
OS) conform to a normal distribution (p <0.05). As a result, we em-
ployed the Wilcoxon rank sum test to compare the distribution dif-
ferences of these variables (Age, KPS, and OS) between the training
and validation sets. Test results showed no significant differences in
age, Karnofsky performance score (KPS), and OS between the train-
ing and validation sets. The Chi-square test demonstrated no sig-
nificant differences in sex, extent of resection (Resection), radiation
therapy (Radiation), chemotherapy, and survival status between the
training and validation sets.
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3.2 | Radiomic model construction, validation, and
its incremental prognostic value

Radiomic model construction: A three-step process for
image feature screening was performed. After the inter-
rater robustness was tested, 3173 of 4788 features re-
mained. Univariate selection retained 496 features. Finally,
14 features, RF1-RF14 selected by LASSO were used to
calculate the Radscore as follows: Radscore=0.0746297 x RF1-
0.2063085x RF2+0.0820216 x RF3-0.1122932 x RF4 + 0.0748
861 x RF5+0.1218078 x RF6 +0.0708374 x RF7-0.0464313 xR
F8-0.1663953 xRF9-0.0845328 x RF10-0.0131809 x RF11+ 0.0
209224 xRF12+0.0172892 x RF13-0.0176537 x RF14. Details of
the LASSO Cox model are shown in Figure S3 and Figure S4. The
features of RF1-RF14 are shown in Figure S2. According to a radi-
omic training set-based cutoff value determined by using R pack-
age “survminer,” patients were stratified into low-risk (Radscore
< -0.2679513) and high-risk (Radscore = -0.2679513) groups, as
shown in Figure Sé6.

Radiomic model validation: As shown by Kaplan-Meier curves
in Figure 2A and Figure S7A, the Radscore was significantly asso-
ciated with OS in the training set (log-rank p <0.0001; hazard ratio
[HR]=6.632, 95% Cl: 3.953, 11.130) and validation set (log-rank
p=0.0018; HR=3.024, 95% Cl: 1.798, 5.086). Multivariate Cox anal-
ysis demonstrated that the Radscore was an independent risk factor
in the training set (HR=5.07; 95% Cl: 3.01, 8.53; p<0.001) and vali-
dation set (HR=3.74; 95% Cl: 2.08, 6.74; p<0.001).

Assessment of the incremental value of the radiomic signature: The
nomograms incorporating the clinical model (CM), or R-CM for OS
prediction are shown in Figure 2C,D, respectively. The calibration
curves of the CM and R-CM nomograms for the probability of 1-,
2-, and 3-year deaths are shown in Figure 2E and Figure 2F, respec-
tively. Compared with the CM nomogram, the R-CM nomogram
showed significantly better agreement. Table S2 demonstrates the
C-index and AIC values for the radiomic model, CM and R-CM in the
training and validation sets. The combination also yielded®: The NRI
value for OS prediction on the training set is 0.333 (95% Cl: 0.121,
0.556, p=0.004) for OS prediction?; The NRI value for OS prediction
on the validation set is 0.509 (95% Cl: 0.224, 0.635, p=0.004) for
OS prediction. More details about the incremental value of radiomic
model are shown in Figure S5. The decision curves of the validation
set, illustrated in Figure 2B and Figure S7B show the clinical useful-
ness of the R-CM.

3.3 | Radiogenomic analysis: GSEA

First, 649 pathways were identified using GSEA. Second, the GSVA
score of these pathways and Radscore were subjected to Pearson
correlation analysis, and 232 pathways with an FDR<0.05 were
subsequently screened. The top enriched pathway in each gene

set is shown in Figure 3A. A heatmap of the GSVA score of the

GSEA pathways in the radiogenomic set is shown in Figure 3B and
Table S3. The top enriched pathways in each gene set are shown
in Figure 3C and Figure 3D. The exact data points of Figure 3C are
shown in Table S8.

3.4 | Radiogenomic analysis: WGCNA

WGCNA vyielded 5 gene modules: turquoise (3149 genes), blue
(2535 genes), brown (1806 genes), yellow (1804 genes), and green
(562 genes), as illustrated in Figure 4B. Correlations between the
Radscore and first principal component of these modules were
evaluated by Pearson correlation analysis, and the modules with an
FDR<0.05 were selected for further pathway enrichment analysis.
The Pearson FDR of the modules and paired Pearson correlation co-
efficients are shown in Figure 4C. Finally, 3 modules (blue, yellow,
and green) of the 5 modules were correlated with the Radscore (blue
module: Pearson correlation r=-0.52, FDR=0.000; yellow module:
Pearson correlation r=0.46, FDR=0.001; green module: Pearson
correlation r=-0.34, FDR=0.022). Genes in the 3 Radscore-related
modules are shown in Table S4. After performing pathway enrich-
ment analysis of the 3 modules, 449 pathways with an FDR<0.05
were obtained, as illustrated in Table S5. A heatmap of the GSVA
score of the WGCNA pathways in the radiogenomic set is shown in
Figure 4D. The top enriched pathways in each gene set are shown
in Figure 4E and Figure 4F. The exact data points of Figure 4E are
shown in Table S9.

3.5 | Intersective pathways of GSEA and WGCNA

By comparing the selected pathways from the previous GSEA and
WGCNA approaches, 142 intersectional pathways were identi-
fied as the final result of the radiogenomic analysis, as illustrated
in Figure 5A. These intersectional pathways were then classified
into 4 categories: synapse, proliferation, DNA damage response, and
complex cellular functions, as shown in Figure 5B and Table Sé. A
heatmap of the GSVA score of the intersectional pathways in the

radiogenomic set is shown in Figure 5C.

3.6 | Biological interpretation of the
radiomic features

Biological interpretation of the radiomic features was performed
from 2 perspectives (individual radiomic feature and DTI metrics).
First, the correlation between the individual prognostic radio-
mic feature (N=14) and 142 intersective pathways was evaluated
using Pearson correlation analysis. As a result, 11 prognostic radio-
mic features were significantly associated with the intersectional
pathways. The exact numbers of pathways that significantly cor-

related with the individual radiomic feature are shown in Figure 5D
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and Table S7. Representative pathways that were significantly
correlated with the prognostic radiomic features are presented in
Figure 5E. A heatmap of the individual prognostic radiomic fea-
ture with top pathways in 2 representative patients from the high-
and low-risk groups in the radiogenomic set is shown in Figure 6.

Radiogenomic analysis showed that 6 radiomic features (i.e., RF1,
RF3, RF5 RF8, RF11, and RF12) were mainly associated with the
proliferation pathways, whereas the other 3 features (i.e., RF2, RF7,
and RF13) were mainly associated with the synapse pathways. RF9
is mainly associated with synapses and complex cellular function



WANG ET AL.

(A)

Top one enriched pathway of each gene set

1.0+

0.5 -

Term Name

~— Kegg Spliceosome

— Reactome Cellular Senescence

~—— Pid Foxm1 Pathway

— Hallmark Unfolded Protein Response
— Wp Atm Signaling Pathway

-0.5-

Running Enrichment Score

-2.24
212
-2.51
212
242

179

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

Pvalue Ajusted Pvalue

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

~—

— Biocarta Flumazenil Pathway

_W[ LEY&

CN S Neuroscience & Therapeutics
12

)]

Pathway GSVA heatmap (GSEA)

I ELE I NEm . _ -.-status

Radscore

Status

=5 l - Dead
i Alive

Radscore
0.5

Pathway GSVA scores

I ] -1.5
| W A N Y MM AT T T O]
I 1l I T HH [ 11 Group
[ | | | Ll ] L iah ri
I L 00 HH High IISk
11| | Low risk

Rank in Ordered Dataset

Enriched pathways bar plot
of each gene set

KEGG_SPLICEOSOME
KEGG_PHOSPHATIDYLINOSITOL _
SIGNALING_SYSTEM

KEGG_HOMOLOGOUS_RECOMBINATION

KEGG_RNA_DEGRADATION

©)

REACTOME_CELLULAR_SENESCENCE

REACTOME BILE_ACID, AND
ILE SALT_METABOLISI
REACTOME _! SVNTHESI'S OF _BILE_ACIDS_/ AND
BILE SALTS_VIA 27 HYDROXYCHOLESTEROL
REACTOME_SYNTHESIS_ OF_BILE_ACIDS_AND_

BILE_SALTS_VIA_7ALPHA_HYDROXYCHOLESTEROL
PID_FOXM1_PATHWAY

KEGG RNA DEGRADATION
PID_MYC_ACTIV_PATHWAY Gene Set
PID AURORA A PATHWAY A
PID_ATR_PATHWAY B KEGG p . adj ust
PID_AURORA_A_PATHWAY B REACTOME HALLMARK DNA REPAIR
- = WP H19 ACTION RBE2F1 SIGNALING AND
HALLMARK_UNFOLDED_PROTEIN_RESPONSE B rD CDKBETACATENIN ACTIVITY 001
B HALLMARK WP NUCLEOTIDE EXCISION REPAIR IN
HALLMARK_KRAS_SIGNALING_DN XERODERMA PIGMENTOSUI 0.02
B wp BIOCARTA EFP PATHWAY .
HALLMARK_DNA_REPAIR B BIOCARTA
HALLMARK UNFOLDED PROTEIN RESPONSE 0.03

HALLMARK_MYC_TARGETS_V2

WP_ATM_SIGNALING_PATHWAY
WP_METAPATHWAY_BIOTRANSFORMATION_
PHASE_I_AND_Il

WP_ NUCLEOTIDE EXCISIDN REPAIR_IN_

XERODERMA PIGMENTOS|
ACTION_| RBE2F1 SIGNALING

AND CDKBETACATENIN _ACTIVITY
BIOCARTA_FLUMAZENIL_PATHWAY

BIOCARTA_PTC1_PATHWAY
BIOCARTA_EFP_PATHWAY
BIOCARTA_G2_PATHWAY

o

2 4
-log10(p.adjust)

o

Patients

(D)

Enriched pathways ridgeline plot

of each gene set

KEGG PHOSPHATIDYLINOSITOL
SIGNALING SYSTEM
BIOCARTA FLUMAZENIL PATHWAY

REACTOME BILE ACID
AND BILE SALT METABOLISM
HALLMARK KRAS SIGNALING DN
WP METAPATHWAY BIOTRANSFORMATION

PHASE | AND Il
REACTOME SYNTHESIS OF BILE ACIDS AND BILE
SALTS VIA 7ALPHA HYDROXYCHOLESTEROL
REACTOME SYNTHESIS OF BILE ACIDS AND
BILE SALTS VIA 27 HYDROXYCHOLESTEROL
BIOCARTA G2 PATHWAY

Y S
AAA

By VS

- -
M,
-

REACTOME CELLULAR SENESCENCE
BIOCARTA PTC1 PATHWAY
KEGG HOMOLOGOUS RECOMBINATION

0.04

HALLMARK MYC TARGETS V2

KEGG SPLICEOSOME
PID MYC ACTIV PATHWAY
PID ATR PATHWAY

WP ATM SIGNALING PATHWAY
PID FOXM1 PATHWAY

-5.0 -2.5

0.0 25 5.0

FIGURE 3 Results of gene set enrichment analysis. (A) Top enriched pathway in Kyoto Encyclopedia of Genes and Genomes (KEGG),

Hallmark, Reactome, BioCarta, Pathway Interaction Database (PID), WikiPathways. (B) A heatmap of the gene set variation analysis (GSVA)
score of GSEA pathways significantly correlated with the radiomic signature. (C) Bar plot of the top enriched pathways in each gene set. (D)

Ridgeline plot of the top enriched pathways in each gene set.

pathways, whereas RF14 is mainly associated with synapse and
proliferation pathways.

Second, there was a significant difference in the mean value
of DTI metrics between the high- and low-risk groups, as shown
in Figure 5F. Correlations between the DTI metrics and pathway
categories were investigated using the Mantel test, as shown in
Figure 5G. The results suggest that AD is associated with DNA dam-
age response, proliferation, synapse, and complex cellular function
pathways; MD is mainly associated with DNA damage response
and proliferation pathways; RD is mainly associated with synapse

pathways; and no significant correlation was observed between FA

and the categories of intersective pathways.

4 | DISCUSSION

This study differs from previous radiogenomic studies in several re-
spects. First, previous studies used either GSEA or WGCNA to identify
biological pathways in radiogenomic analysis.u*13 Instead of using a sin-
gle genetic analysis method for pathway identification, we used both
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GSEA and WGCNA to acquire intersectional pathways for biological
interpretation, which enhanced radiogenomic reproducibility. Second,
individual radiomic features may be associated with multiple biological
pathway categories instead of a single pathway or pathway category.
Our study systematically investigated the categories of biological
pathways underlying individual radiomic feature and their correspond-
ing distributions. Third, previous studies have shown the significant
value of DTI metrics in predicting prognosis in gliomas.30 However, the
biological meaning of DTI metrics is poorly understood.?>*° Herein,
the biological underpinning of DTl metrics was investigated.

Studies have suggested that radiomic features are related to bio-
logical pathways in central nervous system tumors.*233 A radioge-
nomic study based on WGCNA revealed that the pathways of tumor
proliferation, immunity, and treatment response are associated with

prognostic radiomic features in histologically diagnosed GBM.B®
Another study revealed a strong association between the radiomic
signature and pathways such as WNT signaling, the P53 pathway,
and the PIBK/AKT pathway by differentially expressed gene anal-
ysis.3! Moreover, a radiogenomic study on histologically diagnosed
GBM revealed associations between radiomic features and signal-
ing pathways related to cell differentiation, cell adhesion, and an-
giogenesis.12 Collectively, these studies focus on conventional MR
sequences-based radiomic models and their biological interpreta-
tion, and the biological meaning underlying hand-crafted radiomic
features derived from advanced sequences such as DTI, remains
elusive.

Our study elaborated on the biological interpretation of a DTI-
based radiomic model from the perspectives of individual radiomic
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feature and DTI metrics. For individual radiomic feature, we re-
vealed the categories and number of biological pathways behind
each feature. Our findings suggest that the biological pathways
underlying individual prognostic radiomic feature are complex.
For example, multiple biological processes may be involved in
the individual feature. Our radiogenomic analysis revealed that
8 prognostic radiomic features (i.e.,, RF1-RF3, RF7, RF9, and
RF12-RF14) were associated with DNA damage response, prolifer-
ation, synapse, and complex cellular function pathways, whereas
the other 3 radiomic features (i.e., RF5, RF8, and RF11) were as-
sociated with DNA damage response, proliferation, and complex
cellular function pathways. We also found a relationship between
the prognostic value (C-index of univariate Cox regression anal-
ysis) of radiomic features and the number of related pathways.
The greater the prognostic value of a radiomic feature, the more
biological pathways are related to it. More details about the re-
lationship are shown in Figure S9. However, this does not apply
to RF5-RF7, which all belong to FA. A previous study suggested
that FA reflects the integrity of nerve fibers and the degree of
alignment of cellular structures.®? It has been demonstrated that

FA could predict the prognosis of patients with GBM.?*33 previous
studies have yielded contradictory results indicating that FA may
not directly correlate with tumor cellularity.3*3> We speculate
that this may partly explain why FA has a high prognostic value,
although it does not have potent biological significance.

For DTI metrics, we found a significant difference in the mean
value of DTI metrics between the high- and low-risk groups. A previ-
ous study also suggested that DTI metrics could predict the progno-
sis of patients with GBM.33 We further investigated the relationship
between the DTI metrics and biological pathway categories. These
results suggest that AD has a broad biological underpinning, con-
sisting of multiple biological pathway categories. MD and RD were
associated with specific biological categories, such as DNA damage
response, proliferation, and synapse pathways. Unlike other DTI
metrics, FA did not demonstrate significant biological significance in
this study, which is consistent with previous radiogenomic findings
of individual radiomic feature.

Our findings suggest the potential of a biologically explainable ra-
diomic model for therapeutic applications. For example, the high-risk
group identified by the radiomic model was significantly correlated
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with distinct malignant tumor processes, such as DNA damage re-
sponse, proliferation, and complex cellular functions, whereas the
low-risk group was significantly associated with synapse-related
processes. In recent years, studies have found that glioma cells can
also exhibit synaptic activity and interact with neurons in the brain
to promote tumor growth.>¢%” Glioma cells can express synaptic
proteins and neurotransmitter receptors, which allow them to in-
teract with neurons and modulate synaptic activity.*®%? In addition
to expressing synaptic proteins and neurotransmitter receptors,
glioma cells can also release neurotransmitters themselves.*® This
process can lead to increased neuronal activity, which in turn can
stimulate glioma growth and invasion. Furthermore, glutamate re-
leased by glioma cells can also promote angiogenesis, which is the
formation of new blood vessels that supply the tumor with nutrients
and oxygen.41 Given the role of synaptic activity in glioma growth,
invasion, and treatment resistance, targeting this process may rep-
resent a novel therapeutic strategy for the treatment of gliomas,42
Therefore, anti-cellular proliferation therapies are suggested for pa-
tients with high radiomic risk scores, whereas therapies inhibiting
neuron-to-tumor synaptic communication may be more effective in
patients with low-risk GBM defined by the radiomic model 4344

Our study has several limitations. First, this was a retrospective
study, so future prospective multicenter studies are required to fur-
ther corroborate our radiogenomic findings. Second, the current
cohort included IDH wild-type histologically diagnosed GBMs but
lacked IDH wild-type astrocytomas that were positive for TERT pro-
moter mutations, EGFR amplification, or+7/-10 chromosome copy
number changes.* Future studies including IDH wild-type astrocy-
tomas with molecular markers equal to GBM are needed to fully
reflect the intratumor heterogeneity of IDH wild-type GBM (inte-
grated diagnosis of histology and molecular markers) according to
the CNS5.# Last, although the current study revealed the biological
underpinning of DTI-based radiomic features, future experiments at
the protein and in vivo levels are required to confirm these findings.

In summary, this radiogenomic study demonstrated that prog-
nostic radiomic features derived from DTI are driven by distinct
pathways involved in synapse, proliferation, DNA damage response,
and complex cellular functions. The proposed biologically explain-
able radiomic model may have the potential to inform therapeutic
strategies for IDH wild-type GBM.
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