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Abstract

Background: Bats harbor various viruses without severe symptoms and act as their natural reservoirs. The tolerance of bats against
viral infections is assumed to originate from the uniqueness of their immune system. However, how immune responses vary between
primates and bats remains unclear. Here, we characterized differences in the immune responses by peripheral blood mononuclear
cells to various pathogenic stimuli between primates (humans, chimpanzees, and macaques) and bats (Egyptian fruit bats) using
single-cell RNA sequencing.

Results: We show that the induction patterns of key cytosolic DNA/RNA sensors and antiviral genes differed between primates and
bats. A novel subset of monocytes induced by pathogenic stimuli specifically in bats was identified. Furthermore, bats robustly respond
to DNA virus infection even though major DNA sensors are dampened in bats.

Conclusions: Overall, our data suggest that immune responses are substantially different between primates and bats, presumably

underlying the difference in viral pathogenicity among the mammalian species tested.
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Background

Although a virus can infect various animal species, the
pathogenicity of the infection can differ among host species. For
example, Old World monkeys, including rhesus macaques (Macaca
mulatta), are naturally infected with Cercopithecine herpesvirus 1
(also known as B virus) without any observable disorders, while
humans (Homo sapiens) exhibit severe disorders after infection [1].
Bat species are naturally infected with a variety of viruses and
behave as natural reservoirs of human pathogenic viruses [2]. For
example, Marburg virus infection causes severe symptoms in hu-
mans but not in Egyptian fruit bats (Rousettus aegyptiacus), a pu-
tative natural host of this virus [3]. One possible factor that could
define the differences in viral pathogenicity among host species
is the difference in innate immune responses. For example, a pre-
vious study reported that Egyptian fruit bats lack the induction of
proinflammatory cytokines, including CCL8, FAS, and IL6, which
are related to disease severity in humans, upon Marburg virus in-

fection, suggesting that the lack of cytokine induction is one of
the reasons why Egyptian fruit bats exhibit asymptomatic infec-
tion with Marburg virus [4].

Pathogen sensing is the initial step in triggering innate im-
mune signaling. In a broad range of animals, including ver-
tebrates, pathogen-associated molecular patterns (PAMPs) are
recognized by pattern recognition receptors (PRRs) to induce sub-
sequent immune responses [5-8]. In humans and mice (Mus mus-
culus), double-stranded RNAs (dsRNAs), a PAMP for RNA viruses,
are recognized by RNA sensors, such as RIG-I, MDAS, LGP2, TLR3,
and TLR7/8 [5, 6]. Extrachromosomal DNAs, a PAMP for DNA
viruses, are recognized by cytosolic DNA sensors (e.g., cGAS, AIM2,
and IFI16) and endosomal DNA sensors (e.g., TLR9) [5, 6, 9].
Lipopolysaccharide (LPS), a PAMP for bacteria, is recognized by
TLR4 [5, 6, 10]. Once PAMPs are recognized by PRRs, type I in-
terferons (IFNs) are produced, leading to the induction of IFN-
stimulated genes (ISGs), which include many antiviral genes [5, 6].
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Figure 1: scRNA-seq analysis of PBMCs from 4 animal species inoculated with pathogenic stimuli. (A) Schematic of the experimental design. See also
Supplementary Fig. S1. (B) Uniform manifold approximation and projection (UMAP) plots representing the gene expression patterns of the cells from
the 4 species. Each dot is colored according to the cell type. Gray dots indicate cells unassigned into any cell type. See also Supplementary Fig. S2. (C)
Comparison of identified cell types among the species. Dot: detected, question mark: undetected. The definitions of 6 species-common cell types are
shown on the right side. See also Supplementary Fig. S2H. (D) The cellular compositions of PBMC samples. The compositions according to the 6
common cell types are shown. (E) Hierarchical clustering analysis of 48 pseudobulk datapoints (4 animal species x 3 stimuli x 4 cell types = 48
conditions) based on PC1-30 calculated from the fold-change values (respective stimulus versus unstimulated) for gene expression.

In contrast to the similarities in the immune system between
humans and mice, the immune system of bats is assumed to be
quite different from that of humans in various aspects [11-13].
Genome analysis of Egyptian fruit bats showed expansion and di-
versification of immune-related genes, including type I IFN genes
[14]. Transcriptome analysis showed that type I IFNs in the Aus-
tralian black flying fox (Pteropus alecto) are constitutively expressed
in unstimulated tissues, leading to the constitutive expression of
ISGs [15]. These observations suggest that immunity in bats may
be stronger than thatin other mammals. In contrast, some studies
have proposed that immune responses in bats are dampened, re-
sulting in bats exhibiting stronger tolerance to various viruses [12,
14, 16]. In particular, it is known that critical molecules involved in
viral DNA sensing, such as cGAS, AIM2, and IFI16, are dampened
or genetically lost in some bat species, including Egyptian fruit
bats [16, 17]. These differences in innate immunity between hu-
mans and bats could be one of the reasons why viral pathogenicity
differs between these 2 mammals.

Previous works have highlighted the uniqueness of the bat
immune system using genomic analysis [14, 15, 17], transcrip-
tome analysis [4, 18-20], and molecular biological experiments
that reconstituted a part of the bat immune system in cell cul-
ture systems [16, 21, 22]. However, it remains unclear how and to
what extent the innate immune response to pathogenic stimuli

varies among mammals. Particularly, it is unclear how different
innate immune responses are elicited by viral infections in differ-
ent cell types in each mammal. Here, we used peripheral blood
mononuclear cells (PBMCs) from 4 mammalian species including
the abovementioned Egyptian fruit bats and 3 pathogenic stimuli
and conducted single-cell RNA sequencing (scRNA-seq) analysis
to elucidate the differences in innate immune responses against
pathogenic stimuli.

Results
Experimental design

To illuminate the differences in immune responses to infectious
pathogens among mammalian species, we isolated PBMCs from
4 mammals, including humans (H. sapiens, Hs), chimpanzees (Pan
troglodytes, Pt), rhesus macaques (M. mulatta, Mm), and Egyptian
fruit bats (R. aegyptiacus, Ra) (Fig. 1A). In this study, the Egyptian
fruit bat was used as a representative model organism for bat
species because this bat species is bred and available in captivity
and is known to be a natural host of human pathogenic viruses,
such as Marburg virus [3]. These PBMCs were inoculated with her-
pes simplex virus type 1 (HSV-1; a DNA virus), Sendai virus (SeV;
an RNA virus), or LPS (a proxy for bacterial infection). We verified
that these PBMCs could be infected with and/or respond to these
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viruses and LPS stimulation by quantifying viral RNAs and the up-
regulation of proinflammatory cytokines (e.g., IL1B and IL6), ISGs
(e.g., EIF2AK2 and DDX58), and IFNB1 (Fig. SIA-C) at the level of
messenger RNA (mRNA) transcripts.

To analyze immune responses to stimuli at single-cell resolu-
tion, we performed scRNA-seq analysis of 16 types of PBMC sam-
ples: 4 mammalian species (Hs, Pt, Mm, and Ra) versus 4 condi-
tions (mock infection/stimulation, HSV-1 infection, SeV infection,
and LPS stimulation) using the 10X Genomics Chromium platform
at 1 day postinfection. Next, quality control (QC) was performed to
exclude both cells with lower data quality and cells not targeted
in this study (Supplementary Fig. S1ID-G) (see Methods). Before
QC, there was a group of cells with low genes per cell and counts
per cell in PBMCs of SeV-infected bats (Supplementary Fig. S1D-E).
Although 1 possible interpretation of this could be that SeV infec-
tion may have suppressed the gene expression in these cells, these
cells were excluded to ensure the integrity of the downstream
quantitative analysis. After filtering low-quality cells, a total of
40,717 cells from the 16 samples were used in the following anal-
ysis.

The cellular composition of PBMCs from
primates and bats

We characterized the cellular composition of PBMCs from each
mammalian species by annotating the cell type of individual sin-
gle cells using tools available in Seurat [23, 24] and Azimuth [25]
(see Methods). To establish a common classification system for the
cells from the different mammalian species, we first identified cell
types present in multiple species (Fig. 1B, C). As cell types detected
in multiple species, naive B cells, nonnaive B cells (including mem-
ory B cells and intermediate B cells), naive CD4" T cells, nonnaive
CD4" T cells (including central memory CD4" T cells, effector
memory CD4" T cells, proliferating CD4* T cells, and regulatory T
cells), naive CD8* T cells, nonnaive CD8" T cells (including central
memory CD8" T cells, effector memory CD8" T cells, and prolifer-
ating CD8" T cells), natural killer (NK) cells, mucosal-associated
invariant T cells (MAITs), monocytes (Monos), conventional den-
dritic cells (cDCs), and plasmacytoid DCs (pDCs) were identified
(Fig. 1C). Known marker genes for each cell type in humans were
detected in the corresponding cell type in the unstimulated sam-
ples from the other animal species (Supplementary Fig. S2G). Al-
though most cell types were detected in all 4 species investi-
gated, naive CD8" T cells and MAITs were undetectable in bat
PBMCs, presumably because the cell numbers of these popula-
tions were relatively low in bats and/or the transcriptomic sig-
natures of naive CD4" T cells and nonnaive CD8% T cells were
too similar in bats (hereafter we simply referred to Egyptian fruit
bats as “bats”) (Fig. 1C). This result was consistent with a previ-
ous study, in which clear clusters of naive CD8" T cells and MAITs
were not detected [26]. To establish a cellular classification system
for the comparative transcriptome analysis, we defined 6 species-
common cell types—namely, B cells, naive T cells, killer TNK cells,
Monos, cDCs, and pDCs—according to similarities in expression
patterns (Supplementary Fig. S2H).

The ratio of the 6 cell types exhibited different changes upon
exposure to the stimuli in the different species (Fig. 1D). The fre-
quency of monocytes decreased after stimulation in all 4 species,
whereas the frequency of B cells and killer TNK cells changed dif-
ferently within and across the animal species. Upon stimulation,
there was generally a notable increase in B cells and a decrease
of killer TNK cells in the bat (and nonhuman primates) samples,
but not in the human samples.
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Immune response differs largely among animal
species

To describe the differences in immune responses to various stim-
uli in specific cell types among animal species, we first calculated
the average expression levels of appropriate genes in each con-
dition (4 animal species x 4 stimuli x 6 cell types = 96 condi-
tions). Using this “pseudobulk” transcriptome dataset, we first in-
vestigated which axis (i.e., animal species, stimulus, and cell type)
was the most impactful element in shaping the expression pat-
terns of immune cells. Thereby, we calculated the fold-change
(FC) values of gene expression levels between unstimulated and
corresponding stimulated conditions and performed principal
component analysis (PCA) on the FC values. Hierarchical cluster-
ing analysis was subsequently performed according to principal
components (PCs) 1-30. The transcriptome data branch accord-
ing to the animal species and then branch according to the cell
type followed finally by the stimulus (Fig. 1E). This suggests the
difference in host species is the more impactful element in shap-
ing the immune system, having a greater impact than the type of
stimulus and cell type. In particular, bat PBMCs exhibited differ-
ent transcriptomic patterns irrespective of the type of stimulus
and cell type compared to the PBMCs from the other 3 species
used. These results suggest that bats respond to pathogens in a
different manner than primates.

Extraction of species-specific immune responses

We next characterized the differences in the immune responses
to pathogenic stimuli among animal species. The FC values of
our pseudobulk transcriptome dataset were represented by a 4-
mode tensor (4 animal species x 3 stimuli x 6 cell types x
7,557 orthologous genes). To characterize this extraordinary high-
dimensionality transcriptome dataset, we utilized Tucker decom-
position, a method of tensor decomposition (Fig. 2A). In this anal-
ysis, we excluded cDC and pDC data due to many missing val-
ues. Tucker decomposition generated a core tensor and 4-factor
matrices (A1-A4) related to the 4 axes (animal species, stimu-
lus, cell type, and gene). For example, the factor matrix Al (for
host species) included 3 latent factors (L1_1, L1 2, and L1_3),
which could be regarded to represent common, bat-specific, and
macaque-specific expression patterns, respectively (Fig. 2B).

To characterize species-specific immune responses, we devel-
oped a gene classification system according to the pattern of
the species-associated latent factor in the tensor decomposition
framework. First, we calculated the product of a core tensor and
the 3-factor matrices A2 (for stimulus), A3 (for cell type), and A4
(for gene) (Fig. 2C and Supplementary Fig. S3A, B). Consequently,
we obtained 3 cubic datasets with 3 axes—stimulus, cell type, and
gene. These cubic data were related to L1_1 (for the common fac-
tor), L1_2 (for the bat-specific factor), or L1_3 (for the macaque-
specific factor). Subsequently, we classified the genes into 10 cate-
gories according to their expression patterns in each cubic dataset
(the results for the bat-specific [L1_2] and other factors [L1_1
and L1_3] are shown in Fig. 2D, Supplementary Fig. S3G, and
Supplementary Fig. S3I, respectively). In the factor matrix A2 (for
stimulus), the values for the latent factors related to HSV-1 and
SeV were similar (Supplementary Fig. S3A). Therefore, these 2 cat-
egories were integrated into the category “Virus”in the gene classi-
fication. Additionally, 2 cell type categories, NaiveT and KillerTNK,
were integrated into the category “TNK” (Supplementary Fig. S3B).
The pattern for raw FC values supported that the gene classi-
fication by the tensor decomposition framework succeeded in
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Figure 2: Characterization of species-specific immune responses using a tensor decomposition framework. (A) Tensor decomposition of the
fold-change values for pseudobulk transcriptome data. (B) Heatmap representing a latent factor matrix relating to species. Columns indicate the
animal species, and rows indicate the latent factors representing species-common (L1_1), bat-specific (L1_2), and macaque-specific (L1_3) factors. See

also Supplementary Fig. S3A, B. (C) Classification of genes according to the differential patterns of the latent factors related to species. For each of the

species-common (L1_1), bat-specific (L1_2), and macaque-specific (L1_3) factors, the product of the core tensor and 3 latent factor matrices related to

stimulus, cell type, and gene was calculated (left), and the genes were classified into 11 categories according to the binary patterns for each calculated
product (right). See also Supplementary Fig. S3C-F. (D) Heatmap representing the values of the products calculated in Fig. 2C. From the 3 products, the

data related to the bat-specific factor (L1_2) are shown. Each row indicates the respective gene. The color keys shown on the right of the heatmap
indicate gene categories. See also Supplementary Fig. S3G-L. (E) GO terms enriched in each gene category relating to the bat-specific factor. GO terms
with a false discovery rate (FDR) < 0.1 and an odds ratio >1 are shown. (F) Heatmap representing the induction levels of ALL_high genes for the

bat-specific factor. Additional classification according to the gene classification of the species-common factors is shown to the right of the heatmap.

Genes categorized as ALL_high in both the species-common factor and the bat-specific factor are shown on the right side. The colored circle indicates

the functional category of the gene. (G) Heatmap representing the relative expression levels (bats versus humans) of the genes shown in Fig. 2F.
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Figure 3: Robust immune responses to a DNA virus in bats. (A) Boxplot of the expression levels of core™®™™ [SGs in every single cell. The y-axis
indicates the global expression level (GSVA score) of the core™*™™ [SGs. (B) Heatmap representing the mean expression levels of sensor genes. The

mean values were calculated without using the information for the stimulus.

extracting the characteristic patterns of gene expression alter-
ations upon pathogenic stimuli (Supplementary Fig. S3J-L).

Differential dynamics of pathogen sensing and
immune responses

To highlight the uniqueness of immunity in bats compared to that
in primates, we focused on the expression pattern represented
by the bat-specific factor (L1_2) and performed Gene Ontology
(GO) analysis on the 10 gene categories (Fig. 2E). In the gene cat-
egory “ALL_high,” which included genes upregulated particularly
in bats regardless of the stimulus and cell type, GO terms related
to innate immune responses, such as IFN signaling, DDX58/IFIH1-
mediated induction of IFN, RIG-I-like receptor (RLR) signaling
pathways, and the antiviral mechanism by ISGs, were overrepre-
sented.

To dissect the “ALL_high” genes in the bat-specific factor,
we further extracted the genes that belonged not only to the
“ALL_high” category in the bat-specific factor but also to that in
the common factor (L1_1). This fraction represented genes that
were upregulated by stimuli in all species but whose induction
levels were highest in bats. These genes included various PPRs,
such as RLRs (RIG-I, LGP2, and MDAS) and cGAS, a DNA sensor,
suggesting that these genes were upregulated to higher levels in
bats than in the other species across the cell types and stimuli
(Fig. 2F). There are 2 possible scenarios that could potentially ex-
plain these higher FC values observed in bats. One possibility is
that expression levels of these genes after stimulation are higher
than in primates. The second possibility is that basal expression
levels of these genes in bats are lower than those in primates.
Therefore, we calculated the relative expression levels of these
genes in bats compared to humans and showed that the basal
expression levels of these genes were lower in bats than in hu-
mans (Fig. 2G). These results suggest that the induction dynamics
of these PRRs in bats are likely different from those in primates,
possibly leading to the differences in the induction of immune re-
sponses.

Robust immune responses to a DNA virus in bats

As critical DNA sensors, such as cGAS, AIM2, IFI16, and TLR9, are
dampened or genetically lostin bat species [16, 17, 27],it has been
hypothesized that bats, including Egyptian fruit bats, cannot effi-
ciently activate innate immune responses against DNA viruses.
To test this hypothesis, we analyzed the IFN response upon HSV-1
(a DNA virus) infection. However, the expression levels of IFN-«
genes were not examined because they were not annotated in the
transcript model for the Egyptian fruit bat used in this study, and
the expression of IFN-g genes was too low. Thus, even though the
expression level of IFN-I is the primary factor to examine the ac-
tivity of the IFN response, we instead analyzed the induced levels
of “core™@™m [SGs"—a set of genes that are commonly induced by
type I IFNs across mammals that were defined in a previous study
[28]. Intriguingly, we found that the core™™™ ISGs were upregu-
lated upon HSV-1 infection in most cell types in bats (Fig. 3A). The
induced levels were comparable to those induced by SeV (an RNA
virus) infection and higher than those induced by LPS stimulation.
Furthermore, the induced levels in bats were comparable to those
in primates. This suggests that immune cells in bats can sense
and respond to HSV-1 infection even though critical DNA sensors
are dampened.

To address the possibility that pathogen sensors other than
DNA sensors contribute to the sensing of HSV-1 infection in bats,
we examined the expression levels of various PRRs (Fig. 3B). The
expression of some PRRs, including TLR3, a dsRNA sensor associ-
ated with HSV-1 sensing in humans and mice [29], was detected
not only in primates but also in bats, suggesting the possibility
that these PRRs compensate in the response to HSV-1 infection in
bats (see Discussion).

Identification of bat-specific subsets of
monocytes

Next, we investigated cellular subsets within the cell types
that are characteristic in bats to explain the differences in im-
mune responses among the species. We particularly searched for
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Figure 4: Identification of bat-specific subsets of monocytes. (A) UMAP plots representing the gene expression patterns of monocytes from the 4
species. The dots are colored according to the cell cluster defined for each animal species. See also Supplementary Fig. S4A. (B, C) UMAP plots
representing the average expression levels of marker genes for cluster 5 [C5markers] (B) and cluster 7 [C7markers] (C). See also

Supplementary Fig. S4B. (D) The cellular composition of bat monocytes. The composition is shown according to the cluster. The black frame indicates
clusters 5 and 7 in stimulated samples. (E) Heatmap representing the mean expression levels of differentially expressed genes (DEGs) in cluster 5 of
bat monocytes. (F) Summary of the GO terms enriched in DEGs in cluster 5. GO terms enriched in up- and downregulated genes are shown in red and
blue, respectively. (G) Heatmap representing the mean expression levels of differentially expressed genes (DEGs) in cluster 7 of bat monocytes. (H)
Summary of the GO terms enriched in DEGs in cluster 7. GO terms enriched in up- and downregulated genes are shown in red and blue, respectively.

cellular subsets that specifically appeared after pathogenic stim-
ulus exposure in each species according to the dimensionality re-
duction analysis of transcriptome data. In humans, chimpanzees,
and macaques, no subset appeared in any cell type after stimu-
lation (Supplementary Fig. S4A). Similarly, such subsets were not
identified in T/NK or B cells in bats. In contrast, we found that 2
subsets of bat monocytes (referred to as clusters 5 and 7) specif-
ically appeared after stimulation (Fig. 4A). To validate whether
these subsets (clusters 5 and 7) are unique in bats, we identi-
fied marker genes for these clusters and subsequently examined
whether the marker genes were expressed in monocytes from the
other animal species. The marker genes for cluster 5 (referred to
as C5 markers) were not highly expressed in any cluster of mono-
cytes from primates (Fig. 4B). Furthermore, high expression levels
of C5 markers in bat monocytes were found only after stimulation.
This suggested that cluster 5 was not only bat specific but also
specifically induced by pathogenic stimuli. Unlike the C5 markers,
the marker genes for cluster 7 (C7 markers) were highly expressed
not only in bat cluster 7 but also in some monocytes in primates
(Fig. 4C). Although cells with higher expression of C7 markers were
induced upon stimulation in both bats and primates, these cells in
primates did not form a separate cluster similar to cluster 7 in bats

(Supplementary Fig. S4B). Furthermore, the proportions of clus-
ters 5 and 7 differed depending on the stimulus: HSV-1-infected
and LPS-stimulated samples showed the highest frequencies of
clusters 5 and 7, respectively (Fig. 4D).

To characterize these 2 clusters, we identified differentially ex-
pressed genes (DEGs) in clusters 5 and 7 compared to the other
clusters of bat monocytes. According to GO analysis, cluster 5 is
characterized by lower expression of ISGs (Fig. 4E, F). Additionally,
cluster 5 highly expresses known suppressors of the inflammatory
response, such as DUSP1, DUSP5, and SOCS2 [30-32]. On the other
hand, cluster 7 can be characterized by a higher expression of var-
ious cytokines related to chemotaxis (Fig. 4G), including CXCL6,
IL18BP, CXCL8, CCL2, CCL8, CCL13, CCL5, CXCL10, IL15, and IL4I1
(MSigDB [33]: GO:0060326) (Fig. 4G, H). Overall, we established that
there are 2 unique subsets of bat monocytes with different char-
acteristics (see Discussion).

Discussion

Differences in viral pathogenicity among host species are thought
to be attributed to differences in immune responses against vi-
ral infections among the species [34]. However, it remains unclear
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how immune responses, particularly innate immunity against vi-
ral infections, differ among host species. In the present study,
we performed scRNA-seq on 16 types of PBMC samples, derived
from a combination of 4 host species and 4 infection conditions
(Fig. 1A), and showed that the differences in the immune re-
sponses among the host species were more impactful than those
among both the stimuli and the cell types (Fig. 1E). In particu-
lar, the transcriptomic changes resulting from pathogenic stimu-
lation in bats differed from those in primates. It is also noteworthy
that poststimuli changes in the ratio of cell types differed between
humans and bats (Fig. 1D). For further analysis, we established
a bioinformatic pipeline to characterize species-specific immune
responses from transcriptome profiles with extraordinarily high
dimensions (4 animal species x 3 stimuli x 4 cell types x 7,557
orthologous genes) (Fig. 2A). We illuminate differences in innate
immune systems among mammalian species that partly explain
the differences in viral pathogenicity among host species.

It is known that 2 DNA-sensing pathways mediated by the
cGAS-STING pathway [16] and PYHIN proteins, including AIM2
and IFI16 [17], are dampened in bats, including Egyptian fruit bats.
In addition, a previous study using a cell line derived from big
brown bats (Eptesicus fuscus) suggested that the TLR9-mediated
DNA-sensing pathway is also weakened in bats [27]. Based on
these observations, it was hypothesized that the ability to sense
DNA virus infection is weakened in bats [12, 13]. However, we
showed that bat PBMCs robustly induced IFN responses upon in-
fection with the DNA virus HSV-1 (Fig. 3A). This suggests that bats
can initiate an innate immune response after infection with DNA
viruses (at least HSV-1) and that bats have another pathway to
sense DNA viruses. An alternative possibility is that the IFN re-
sponse in response to HSV-1 infection was triggered by sensing
viral molecules other than DNAs. It is known that, in humans and
mice, dsRNA sensing by TLR3 plays an important role in respond-
ing to HSV-1 infection [29, 35]. Additionally, the Egyptian fruit bat
genome encodes an intact TLR3 gene (NCBI Gene ID: 107510436),
and bat immune cells express TLR3 (Fig. 3B). Furthermore, other
RNA sensors, such as RIG-I, LGP2, and MDAS, were upregulated
in bat cells similarly as in primate cells upon HSV-1 infection
(Fig. 3B). These data suggest that TLR3 or other RNA sensors in
bats may compensate for weakened DNA-sensing pathways, lead-
ing to IFN responses to HSV-1 infection.

To characterize the bat-specific innate immune responses
based on ultrahigh-dimensionality transcriptome data (4 animal
species x 4 stimuli x 6 cell types x 7,557 orthologous genes), we
established an analytical framework utilizing tensor deconvolu-
tion (Fig. 2A). This framework could (i) extract a species-specific
effect on gene expression changes, (ii) compare the effects among
the cell types and the stimuli, and (iii) classify genes according to
the differential pattern of a species-specific effect among the cell
types and the stimuli. Using this framework, we found that the ex-
pression levels of key DNA and RNA sensors, including cGAS, RIG-
I, MDAS, and LGP2, were highly induced in bats compared with
primates, regardless of the cell type or stimulus (Fig. 2F). Further-
more, the basal expression levels of these PRRs in bats were lower
than those in humans (Fig. 2G). On the other hand, after stimula-
tion, the expression levels of these PRRs in bats were comparable
to those in humans. These results suggest that the induction dy-
namics of these PRRs in bats are likely different from those in pri-
mates, leading to the differences in the induction of immune re-
sponses. Indeed, several antiviral ISGs, such as IFI6 and IFIT3, ex-
hibited expression dynamics similar to those of these PRRs (Fig. 2F,
G). These differences could be one of the reasons why immune re-
sponses differ between bats and primates.
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Another factor that can explain the differences in immune re-
sponses among host species is the presence of species-specific cel-
lular subsets. In bat monocytes, we identified 2 subsets that were
specifically induced by stimuli (i.e., clusters 5 and 7) (Fig. 4A). Clus-
ter 5 was a bat-specific subset induced preferentially by HSV-1
infection (Fig. 4B, D). Interestingly, even though cluster 5 was in-
duced after stimulation, cluster 5 exhibited lower expression of
ISGs and higher expression of immunosuppressive genes (DUSP1,
DUSP5, and SOCS2) [30-32] (Fig. 4E, F). This observation suggests
that the immune responses in cluster 5 are downregulated pre-
sumably by negative feedback signaling and that cluster 5 may
contribute to controlling excessive immune activation in bats. On
the other hand, cluster 7 was identified as a monocyte subset
that was mainly induced by LPS stimulation (Fig. 4C, D). Clus-
ter 7 highly expressed several proinflammatory cytokines and
chemokines (CXCL6, IL18BP, CXCL8, CCL2, CCL8, CCL13, CCL5,
CXCL10, IL15, and IL411) (Fig. 4G, H). Cluster 7 may contribute to
the recruitment of leukocytes since these cytokines are associated
with the chemotaxis of neutrophils (CCL8, CXCL6, and CXCL3),
basophils (CXCL8, CCL2, CCL5, CCL8, and CCL13), eosinophils
(CCL5, CCL8, and CCL13), monocytes (CCLS, CCL8, and CCL13),
T cells (CCL5, CCL8, CCL13, CXCL8, and CXCL10), and NK cells
(CCLS and CCL8) in humans and mice [36, 37]. Based on the ex-
pression pattern of the marker genes for cluster 7 (Fig. 4C and
Supplementary Fig. S4B), cellular subsets corresponding to cluster
7 were also present in primate monocytes. However, these primate
cells did not form a separate cluster in the dimensionality reduc-
tion analysis based on the transcriptome profile (Fig. 4A). These
results suggest that the monocyte subset represented by cluster 7
exhibits unique gene expression and thus may exert unique func-
tions in bats. Although the specific functions of these monocyte
subsets (clusters 5 and 7) in immune responses in bats are still
unclear, these unique subsets may contribute to bat-specific host
immune responses.

Limitations of the study

In the present study, we elucidated differences in innate immune
responses among host species from various aspects. However, we
did not address differences in the outcomes of the innate immune
responses, such as differences in viral pathogenicity. Another lim-
itation is that the bioinformatic resources we used, such as gene
annotation, gene ontology, and cellular annotation, have been de-
veloped in a human-centric way. Therefore, there is the possibil-
ity that immune responses induced by species-specific genes and
cell types were overlooked. Moreover, because the results of this
study rely on an analysis using a single bat species, the Egyptian
fruit bat, it is unclear whether the observed bat-specific charac-
teristics are conserved across bat species. Furthermore, we did
not perform biological replicates of scRNA-seq in this study. De-
spite these limitations, we present valuable resources to illumi-
nate differences in immune responses among host species, in-
cluding Egyptian fruit bats, and clues to elucidate differences in
viral pathogenicity among species. Further study to elucidate the
functional consequences of these differences is needed to reveal
the mechanisms by which bats can tolerate infections with vari-
ous viruses.

Methods
Cells

Vero cells (obtained from the Laboratory of Bernard Roizman, Uni-
versity of Chicago, USA).
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LLC-MK2 cells (thesus macaque kidney epithelial cells) (CCL-7,
ATCC).

PBMC collection

Human peripheral blood was obtained from the arm vein. To
obtain chimpanzee peripheral blood, a chimpanzee was anes-
thetized for a regular health examination. Anesthesia was in-
duced with intramuscular administration of the combination
of 0.012 mg/kg medetomidine (Meiji Seika Pharma Co., Ltd.),
0.12 mg/kg midazolam (Sand Co., Ltd.), and 3.5 mg/kg ketamine
(Fujita Pharm) and maintained with constant rate infusion (4-
10 mg/kg/h) of propofol (1% Diprivan;, Sand Co., Ltd.). Periph-
eral blood was obtained from the femoral vein. To obtain rhesus
macaque peripheral blood, a rhesus macaque was anesthetized.
Anesthesia was induced with intramuscular administration of
8 mg/kg ketamine followed by deep anesthetization using an in-
travenous injection of sodium pentobarbital (30 mg/kg) (Kyoritsu
Seiyaku). Peripheral blood was obtained by cardiac puncture be-
fore exsanguination and perfusion. Bat peripheral blood was ob-
tained from the cephalic vein in the patagium. PBMCs were iso-
lated from peripheral blood by density gradient centrifugation us-
ing Ficoll-Paque Plus (Cytiva, cat. 17144003).

HSV-1 preparation and titration

HSV-1 (strain F; GenBank accession number: GU734771) [38] was
prepared as previously described [29] and kindly provided by Dr.
Yasushi Kawaguchi (The Institute of Medical Science, The Uni-
versity of Tokyo, Japan). Briefly, Vero cells were infected with
HSV-1 and the supernatant was collected and used without pu-
rification. To titrate viral infectivity, prepared virus was diluted
10-fold in Medium 199 (Thermo Fisher Scientific, cat. 11825015)
containing 1% fetal calf serum (FCS) (Nichirei Biosciences, cat.
175012), and Vero cells were infected with dilutions of the virus
at 37°C. At 1 hour postinfection, the culture medium was replaced
with Medium 199 containing 160 ug/mL human y-globulin (Sigma
Aldrich, G4386-25 G), and the cells were cultured at 37°C for 2 to
3 days. To calculate the viral titer (plaque-forming unit [PFU]), the
number of plaques per well was counted.

SeV preparation and titration

SeV (strain Cantrell, clone cCdi; GenBank accession number:
ABB855654) was prepared as previously described [39] and kindly
provided by Dr. Takashi Irie (Hiroshima University, Japan). Briefly,
LLC-MK2 cells were infected with SeV and the supernatant was
collected and used without purification. To titrate viral infectiv-
ity, prepared virus was diluted 10-fold in Dulbecco’s modified Ea-
gle’s medium (DMEM) (Sigma-Aldrich, cat. D6046-500ML) contain-
ing 10% FCS, and LLC-MK2 cells were infected with dilutions of the
virus at 37°C. At 1 hour postinfection, the cells were washed with
phosphate-buffered saline (PBS) and cultured with DMEM con-
taining 10% FCS at 37°C. At 1 day postinfection, the infected cells
were fixed with acetone (Nacalai Tesque, cat. 21914-03)/methanol
(Nacalai Tesque, cat. 00310-95). To calculate the viral titer (cell in-
fectious unit [CIU]), the fixed cells were stained with a rabbit anti-
SeV polyclonal antibody [40] as the primary antibody and an Alexa
488-conjugated goat anti-rabbit IgG antibody (Thermo Fisher Sci-
entific, cat. A-11008) as the secondary antibody, and the number
of fluorescent foci per well was counted.

Infection and stimulation

One million PBMCs were maintained in 500 uL. RPMI 1640 medium
(Sigma-Aldrich, cat. R8758-500ML) and infected with HSV-1 or SeV

at a multiplicity of infection of 0.1. To mimic microbial infection,
LPS (Sigma-Aldrich, cat. L5024-10MG) was added at a final con-
centration of 200 ng/mL. At 1 day postinfection, all types of in-
fected/stimulated PBMCs were centrifuged, resuspended in PBS,
and used for bulk quantitative reverse transcription polymeraes
chain reaction (RT-gPCR) and scRNA-seq (see below).

RT-qPCR

RT-qPCR was performed as previously described [41]. Briefly, cel-
lular RNA was extracted using the QIAamp RNA Blood Mini Kit
(Qiagen, cat. 52304) and then treated with an RNase-free DNase
set (Qiagen, cat. 79254). Complementary DNA (cDNA) was synthe-
sized using SuperScript III reverse transcriptase (Thermo Fisher
Scientific, cat. 18080044) and random primers (Thermo Fisher Sci-
entific, cat. 48190011). RT-qPCR was performed using Power SYBR
Green PCR Master Mix (Thermo Fisher Scientific, cat. 4367659) and
the primers listed in Supplementary Table S1. For RT-qPCR, the
CFX Connect Real-Time PCR Detection System (Bio-Rad) was used.

Sequencing of scRNA-seq libraries

scRNA-seq libraries were constructed using the Chromium Next
GEM Single Cell 3’ Kit according to the manufacturer’s instruc-
tions (10X Genomics). Briefly, cells, gel beads, and oil were loaded
onto the Chromium platform to generate single-cell gel beads-in-
emulsion (GEMs). Before loading, cell numbers and viability were
confirmed. To acquire 5,000 cells recovery, 8,000 cells were loaded.
Barcoded cDNAs were pooled for amplification, and adaptors and
indices for sequencing were added. The evaluation was conducted
using a BioAnalyzer (Agilent Technologies). The libraries were se-
quenced with paired-end reads using the Illumina NovaSeq6000
platform (RRID:SCR_016387).

Genome sequence dataset

Genome sequences of the animal species, including humans
(GRCh38.p13, RefSeq accession: GCF_000001405.39), chim-
panzees (Clint_PTRv2, RefSeq accession: GCF_002880755.1), rhe-
sus macaques (Mmul_10, RefSeq accession: GCF_003339765.1),
and Egyptian fruit bats (mRouAegl.p, RefSeq accession:
GCF_014176215.1), were obtained from NCBI RefSeq [42]. From
the genome sequences, ALT contig sequences were excluded.
The genome sequences of viruses including HSV-1 (strain: F,
accession: GU734771.1) and SeV (strain: Cantell clone cCdi,
accession: AB855654.1) were also obtained from NCBI RefSeq. A
custom reference genome sequence for each animal species was
generated by adding the genome sequences of HSV-1 and SeV to
the genome sequence of the animal species.

Gene annotation and ortholog information

Gene annotations of humans (GRCh38.p13, Release
109.20200228), chimpanzees (Clint_PTRv2, Release 105), rhe-
sus macaques (Mmul 10, Release 103), and Egyptian fruit
bats (mRouAegl.p, Release 101) were obtained from NCBI
RefSeq. From the gene annotations, only the records for
protein_coding,  transcribed_pseudogene, IncRNA, pseu-
dogene, antisense_RNA, ncRNA_pseudogene, V_segment,
V_segment_pseudogene, C_region, C_region_pseudogene,
J_segment, J_segment pseudogene, and D_segment were ex-
tracted according to the CellRanger tutorial [43]. In addition,
to quantify viral RNA abundance, the records for viruses were
added. The whole viral genome was treated as a single exon, and
a total of 4 lines (the positive and negative strands of HSV-1 and
SeV) were added.
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A list of orthologous genes between humans and the other
animal species (chimpanzees, rhesus macaques, and Egyptian
fruit bats) was obtained from NCBI on 26 July 2021 [44]. From the
file, the records for orthologs between humans (taxonomy ID:
9606) and chimpanzees (taxonomy ID: 9598), rhesus macaques
(taxonomy ID: 9544), or Egyptian fruit bats (taxonomy ID: 9407)
were extracted.

The ortholog list from NCBI lacked information on some criti-
cal immune-related genes of Egyptian fruit bats, such as CD4 and
IRF1. Therefore, we retrieved information from the Bat1K gene an-
notation [45, 46] downloaded from the UCSC genome browser [47]:
first, we made a custom gene annotation for Egyptian fruit bats by
adding information from the Bat1K gene annotation to the RefSeq
gene annotation. Second, we extracted exons in the BatlK gene
annotation that overlapped with exons in the RefSeq gene annota-
tion by using the bedtools intersect command with the wao option
(v2.30.0) [48]. In this step, the exons in the Bat1K gene annotation
that did not overlap with the exons in the RefSeq gene annota-
tion were also extracted and added to custom gene annotations
as additional genes. Next, the exons that contained overlaps and
had the same gene name (the same symbol or known to be an or-
tholog) were added to custom gene annotations as an alternative
splicing variant of the gene. Then, the remaining overlapping ex-
ons were processed by determining which information (RefSeq or
Bat1K) should be used preferentially. The criteria were as follows:
(i) genes whose symbols are not prefixed with “LOC” were given
priority, (ii) genes whose symbols are included in the human gene
list were given priority, and (iii) information from RefSeq was given
priority otherwise. According to these criteria, the annotation with
the higher priority (RefSeq or Bat1K) was selected and used in the
custom gene annotation.

As a result of the integration of gene annotations, the number
of orthologous genes in the custom gene annotation of bats in-
creased from 16,374 to 16,903. Importantly, immune-related genes
that were not defined in the RefSeq gene annotation, such as TLR1,
IRF1, and CD4, were added to the custom gene annotation.

Considering the orthologous relationships, we prepared 3 types
of gene sets for each animal species: (i) “all genes,” including all
genes in the animal species; (i) “genes shared with humans,”
including genes with orthologs in humans; and (iii) “common
genes,” genes shared among the 4 analyzed animal species. Un-
less otherwise noted, “all genes” were used up to cell annotation,
and “common genes” were used after cell annotation.

Processing scRNA-seq data for generating count
matrices

Gene expression count matrices for scRNA-seq data were gener-
ated using CellRanger (RRID:SCR_023221) (v6.0.1) (10X Genomics)
(49, 50]. First, we built a custom reference for each animal species
from the custom reference genome sequence and custom gene
annotation using the “cellranger mkref” command. Subsequently,
we generated unique molecular identifier (UMI)-based count ma-
trices from the raw scRNA-seq data and custom references using
the “cellranger count” command with default settings.

QC of scRNA-seq data

First, we removed cells with abnormal genes per cell (genes/cell)
and counts per cell (counts/cell) values using the Seurat pack-
age (RRID:SCR_016341) (v4.0.4) [23, 24]: cells with 800 to 5,000
genes/cell or 1,200 to 25,000 counts/cell were extracted. The
thresholds were determined based on the distributions of
genes/cell and counts/cell before QC (Supplementary Fig. S1D, E).
Second, we annotated the cell type of individual cells using Az-
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imuth (v0.4.3) [25], a reference-based cell annotation prediction
program, and then, cells annotated as erythrocytes, platelets,
hematopoietic stem cells, or innate lymphoid cells were excluded
as nontargeted cells in the present study. This is because ery-
throcytes and platelets are probably residuals after experimental
PBMC extraction, and hematopoietic stem cells and innate lym-
phoid cells are not the major cell types in the analysis of innate
immune responses using PBMCs. In this step, the gene annotation
“genes shared with humans” (see Gene annotation and ortholog
information) for each animal species was used. Finally, regarding
genes/cell and counts/cell values, cells with >3 |z score| were ex-
cluded as outliers.

Data integration, visualization, and cell
clustering

Data integration, visualization, and cell clustering for each ani-
mal species were performed using the Seurat package. In these
processes, the expression levels of HSV-1 and SeV were not used.

Data integration is a method merging the gene expression
count matrices obtained from different experimental conditions
while removing batch effects. We integrated the count matrices
from the 4 different conditions for each animal species. In the data
integration, SCTransform (RRID:SCR_022146) (a modeling frame-
work for the normalization and variance stabilization of molecu-
lar count data from scRNA-seq data) was performed using the SC-
Transform function for each count matrix. Next, to extract 2,000
genes with higher variance and thus greater information for in-
tegration, the 4 count matrices were processed using the Select-
IntegrationFeatures function. Next, we used the PrepSCTIntegra-
tion function to transform normalized counts into counts per
10,000 counts in the cell (CP10k). After that, we used the FindInte-
grationAnchors function with the setting Mock as a reference to
find “Integration anchors.” Finally, we integrated the 4 normalized
count matrices using the IntegrateData function with the option
normalization.method="SCT".

For visualization, we first performed PCA using the RunPCA
function. Then, UMAP (RRID:SCR_018217) [S51] was performed with
the RunUMAP function. In this step, PCs 1 to 50 were used, and
the parameter “n.neighbors” was set individually for each animal
species (Hs: 20, Pt: 20, Mm: 50, and Ra: 40).

To define cell clusters in each animal species, we performed
graph-based unsupervised clustering (Supplementary Fig. S2A).
First, the FindNeighbors function was used, and then, the Find-
Clusters function was used. In these steps, the parameter
“k.param” for FindNeighbors was set individually for each animal
species (Hs: 12, Pt: 10, Mm: 10, and Ra: 20). The parameter ‘reso-
lution” for FindClusters was also set individually for each animal
species (Hs: 2.0, Pt: 2.2, Mm: 1.7, Ra: 1.2).

Cell annotation

Regarding each cluster identified by graph-based unsupervised
clustering in the section “Data integration, visualization, and
cell clustering” (Supplementary Fig. S2A), 11 cell types were
manually annotated according to (i) the predicted cell type by
Azimuth (Supplementary Fig. S2B), (ii) the distances between
each cluster (Supplementary Fig. S2C), and (iii) the correspon-
dence of clusters between animal species (Supplementary Fig.
S2D-F). First, reference-based cell type prediction was performed
using Azimuth for the mock data from each animal species
(Supplementary Fig. S2B). In this step, the gene annotation “genes
shared with humans” (see Gene annotation and ortholog infor-
mation) for each animal species was used. We checked the en-
richment of each predicted cell type in each cluster by Azimuth.
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Second, we checked the similarities between clusters by hierar-
chical clustering (Supplementary Fig. S2C) using the mean val-
ues of PCs 1 to 50 among the individual cells (see Data integra-
tion, visualization, and cell clustering) in each cluster. Notably,
PCA was performed using the expression levels of “all genes” (see
Gene annotation and ortholog information). The Euclidean dis-
tance was used for clustering by Ward’s method. Third, to check
the correspondence between clusters in each animal species, we
performed data integration, clustering, and visualization for mock
data from all 4 animal species (Supplementary Fig. S2D-F). In the
integration, the mock data from humans were used as reference
data. In this step, the gene annotation “common genes” (see Gene
annotation and ortholog information) was used.

After categorizing cells into 11 cell types, the 11 cell types were
coarse-grained into 6 cell types based on the results of hierar-
chical clustering analysis (see Hierarchical clustering). The 6 cell
types were used in the subsequent analysis.

Hierarchical clustering

To examine the similarities in expression patterns among the con-
ditions (4 animal species x 4 stimuli x 6 cell types = 96 con-
ditions), hierarchical clustering analysis was performed. In this
analysis, the 5,000 genes with the highest median absolute devi-
ation (mad) values were used (Supplementary Fig. S2H). First, the
average expression levels of the respective genes in each condi-
tion were calculated. Next, PCA was performed using the average
expression profiles. Third, using PCs 1 to 30, the distance matrix
for the 96 conditions was generated using 1 — Pearson’s correla-
tion coefficient. Finally, hierarchical clustering by Ward’s method
was performed using the distance matrix.

To determine which factor (e.g., animal species, stimulus,
or cell type) was the most impactful on the gene expression
in immune cells, hierarchical clustering was performed using
induction patterns upon stimulation (Fig. 1E). Unlike for the
results shown in Supplementary Fig. S2H, FC values were used to
perform PCA. This analysis used 7,557 genes, the union of the top
6,000 genes related to total expression levels in the expression
profiles of each animal species. The FC expression values (stimu-
lated vs. unstimulated conditions) of those genes were calculated
for each cell type in each animal species. To avoid generating
infinite FC values, the data for genes with zero expression in
mock data were set at the minimum nonzero expression level
in the mock data. Finally, hierarchical clustering was performed
using the method described above.

Tensor decomposition

To extract species-specific/common induction patterns upon
stimulation from transcriptome data with complex structures (4
animal species x 3 stimuli x 4 cell types x 7,557 orthologous
genes), we used tensor decomposition (Fig. 2A). As the input data
for tensor decomposition, the FC values of 7,557 genes, the union
of the top 6,000 genes related to total expression levels in the
expression profiles of each animal, were used. The calculation
method for FC values is described in the section “Hierarchical
clustering.” The standardized FC values for each condition were
represented as a 4-mode tensor (animal species x stimulus x cell
type x orthologous gene). To perform Tucker decomposition (TD),
a method of tensor decomposition, we used TensorLy (v0.6.0) [52].
We performed TD via higher-order orthogonal iteration (HOI) with
the parameterinit="svd”. In HOI, the size of the core tensor (ranks)
was set as [animal species: 3, stimulus: 2, cell type: 3, gene: 15].
The number of iterations was set as 100.

Gene classification using the tensor
decomposition results

A schematic of the gene classification using tensor decomposi-
tion is shown in Fig. 2C and Supplementary Fig. S3C-F. Briefly,
we selected the candidate gene categories that had patterns of
values (high, mid, or low) (Supplementary Fig. S3C) that matched
the ideal pattern (Supplementary Fig. S3D) and then selected the
gene category with the best “similarity score” (Supplementary
Fig. S3E) from the candidates as the gene category for that gene
(Supplementary Fig. S3F).

Initially, the product of the core tensor and the 3 factor-
matrices, A2 (for stimulus), A3 (for cell type), and A4 (for gene),
was calculated to obtain 3 cubic data with 3 axes, stimulus, cell
type, and gene, using the ttl function of rTensor (v1.4.8) [53].
Each cubic data point indicated information related to species-
common, bat-specific, and macaque-specific factors (Fig. 2B).
Next, since the values of latent factors related to HSV-1 and SeV
were similar (Supplementary Fig. S3A), these 2 categories were
integrated into the category “Virus” by calculating mean values.
Additionally, since the values of latent factors related to NaiveT
and KillerTNK were similar (Supplementary Fig. S3B), these 2
categories of cell types were integrated into the category “TNK” by
calculating mean values. Thus, hereafter, the category of stimuli
included virus and LPS, and the category of cell types included B
cells, TNK cells, and Monos.

Then, in each cubic data, genes were classified into 11 cate-
gories (Fig. 2C) through the following 3 steps. Briefly, from the
candidate gene categories that had patterns of values (high, mid,
or low) (Supplementary Fig. S3C) that matched the ideal pattern
(Supplementary Fig. S3D), the gene category with the lowest “sim-
ilarity score” (Supplementary Fig. S3E) was selected as the gene
category for that gene (Supplementary Fig. S3F).

In the first step (Supplementary Fig. S3C), the values in each
cubic data were normalized, and the genes were classified into
3 classes (high, mid, and low) according to the ranking of values
in each condition (stimulus x cell type). First, 6 column vectors
in the TD results for the 6 conditions (2 stimuli x 3 cell types)
were normalized by dividing them by the 90th percentile for
the individual vectors. After the division step, to suppress the
effect of abnormally high or low values, data with >1 or <—1
were assigned as 1 and —1, respectively. Next, the genes were
categorized into 3 classes based on the rule that if the rank of a
value was greater than the 80th percentile or smaller than the
20th percentile, it was categorized as “high” or “low,” respectively;
otherwise, it was categorized as “mid.”

In the second step (Supplementary Fig. S3E), a “similarity
score” was calculated to represent the similarity between the ge-
newise pattern of the TD results and the “ideal patterns” for each
gene category. The “ideal patterns” were defined as vectors com-
posed of 1, 0, and —1 for 16 gene categories (Virus_high, LPS_low,
Virus_low, LPS_high, B_high, TNKM_low, B_low, TNKM_high,
TNK_high, BM_low, TNK_low, BM_high, M_high, BTNK_low, M_low,
and BTNK_high) (Supplementary Fig. S3D). The “similarity score”
was defined as the sum of the residual squares between the 2 vec-
tors, the genewise vector of normalized values from the TD results
(Supplementary Fig. S3C) and the “ideal patterns” (Supplementary
Fig. S3D). According to the definition, the “similarity scores” for
every combination of genes and gene categories were calculated.
After calculating all similarity scores, to obtain the threshold for
checking if a gene should be recognized as a gene in that cate-
gory, the 20th percentile of the similarity score in the vector for
each gene category was calculated.
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In the third step (Supplementary Fig. S3F), the gene category for
each gene was determined. First, the candidate gene categories for
each gene were filtered according to the pattern assigned in the
first step (Supplementary Fig. S3C). If the pattern (high/mid/low)
of all 6 conditions was high or low, the gene was categorized
as ALL_high or ALL_low, respectively. If the pattern of a gene
matched the “ideal pattern” of a gene category, the gene category
was added as a candidate gene category for the gene. For exam-
ple, if the pattern of gene A was (Virus_B: high, Virus_TNK: high,
Virus_M: high, LPS_B: high, LPS_TNK: low, LPS_M: mid), the candi-
date gene category for gene A was “Virus_high” and “B_high” be-
cause all virus-infected data were assigned as “high” and all B-cell
data were assigned as “high” (Supplementary Fig. S3D). Second,
the gene category with the lowest “similarity score” among the
candidate gene categories was selected as the tentative gene cat-
egory. In this selection, if the “similarity score” was higher than the
threshold of the gene category (Supplementary Fig. S3E), the gene
was categorized as “Others” (see gene B in Supplementary Fig. S3F)
because the pattern for the gene was recognized as being too dif-
ferent from the “ideal pattern.” If no candidate gene category was
available, the gene was also classified as “Others” (see gene C in
Supplementary Fig. S3F). Finally, the final gene category was deter-
mined by integrating similar gene categories (Supplementary Fig.
S3F). For instance, the categories Virus_high and LPS_low were in-
tegrated into the category Virus_high because both categories in-
dicated that virus-infected data were higher than LPS-stimulated
data (see gene D in Supplementary Fig. S3F). As a result of the
gene classification process, genes were categorized into one of 11
categories (Fig. 2C and Supplementary Fig. S3D).

GO term enrichment analysis

GO analysis was performed with Fisher's exact test. This analysis
used the GO canonical pathways and GO biological processes de-
fined by MSigDB (RRID:SCR_022870) (v7.3) [30]. Adjusted P values
were calculated using the Benjamini—Hochberg (BH) method.

Calculation of gene set variation analysis (GSVA)
scores

The gene set-wise expression scores used in Fig. 3A, Fig. 4B, C, and
Supplementary Fig. S4B were calculated using GSVA (RRID:SCR_
021058) (v1.38.2) [54, 55] with the algorithm “ssgsea.”

Identification of DEGs and marker genes

In bat monocytes, DEGs were identified in cluster 5 or cluster 7
compared to the other clusters using the FindMarkers function
of Seurat packages. A gene that met the following 3 criteria was
considered a DEG: (i) the false discovery rate (FDR) calculated us-
ing the BH method was less than 0.05, (ii) the average log2FC was
greater than 1 or less than —1, and (iii) the proportion of express-
ing cells was greater than 0.2.

The marker genes of cluster 5 and cluster 7 of bat monocytes
(RaC5marker and RaC7marker, respectively) were defined as up-
regulated DEGs in cluster 5 (Fig. 4E) and cluster 7 (Fig. 4G), respec-
tively.

Availability of Source Code and
Requirements
Project name: scRNA-seq_PBMC_Animals_Aso_et_al

Project homepage: https://github.com/TheSatoLab/scRNA-
seq_PBMC_Animals_Aso_et_al [56]

Operating system: Linux
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Programming languages: bash, R, Python
License: CC0-1.0

Additional Files

Supplementary Fig. S1. Validation of viral infectivity and the in-
nate immune response (related to Fig. 1). (A) Heatmap of the in-
duction levels of genes related to the IFN response and inflam-
mation. The rows indicate genes, and the columns indicate com-
binations of species, stimulus, and dose. The color represents the
log2 fold change of ddCt upon stimulation measured by gRT-PCR.
“rep. 1”and “rep. 2" indicate biological replicates. (B, C) Heatmap of
the expression levels of viral genes (B: HSV-1; C: SeV) measured by
gRT-PCR. The rows indicate viral genes, and the columns indicate
combinations of species and doses. “rep. 1” and “rep. 2” indicate bi-
ological replicates. The color represents the ddCt values based on
the expression levels of GAPDH. (D-G) Violin plots of (D) the num-
bers of detected genes per cell before QC, (E) numbers of counted
reads per cell before QC, (F) numbers of detected genes per cell
after QC, and (G) numbers of counted reads per cell after QC.

Supplementary Fig. S2. Heterogeneous expression patterns in the
4 animal species (related to Fig. 1). (A, B) UMAP plots representing
the gene expression patterns of PBMCs from the 4 species. Each
dot is colored according to the results of unsupervised clustering
(A) and reference-based label transfer (B). (C) Heatmaps showing
pairwise Euclid distances representing the gene expression differ-
ences among clusters. The distances were calculated using PCs
1 to 50 of the gene expression data. (D, E) UMAP plots represent-
ing the gene expression patterns of PBMCs from the mock sam-
ples for the 4 species. Each dot is colored according to the re-
sults of unsupervised clustering using the integrated data for the
4 mock samples (D) or the 4 samples from each animal shown in
Supplementary Fig. S2A (E). (F) Heatmaps showing pairwise Euclid
distances representing the gene expression differences among
clusters shown in Supplementary Fig. S2D. The distances were
calculated using PCs 1 to 30 of the gene expression data. (G) Dot
plots representing the expression patterns of marker genes for
each cell type defined by Azimuth [57]. (H) Hierarchical cluster-
ing analysis of 48 pseudobulked FC gene expression datapoints (4
animal species x 4 stimuli x 11 cell types = 176 conditions).

Supplementary Fig. S3. Classification of genes according to
species-specific expression patterns (related to Fig. 2). (A)
Heatmap representing a latent factor matrix related to stimuli.
The columns indicate stimuli, and the rows indicate latent fac-
tors representing stimulus-common (L2_1) and virus vs. LPS (L2_2)
factors. (B) Heatmap representing a latent factor matrix related to
cell types. The columns indicate cell types, and the rows indicate
latent factors representing cell type-common (L3_1), monocyte-
specific (L3_2), and B-cell-specific (L1_3) factors. (C) Summary of
the normalization of values and patterning according to the rank-
ing of the values. First, 6 column vectors (2 stimuli x 3 cell types)
in the TD results were normalized by dividing them by the 90th
percentile of the individual vectors. Then, data with >1 or <—1
were assigned as 1 and —1, respectively. Next, the genes were cat-
egorized into 3 classes (high, mid, and low) based on the rule
that if the rank of a value was greater than the 80th percentile
or smaller than the 20th percentile, it was categorized as “high”
or “low,” respectively; otherwise, it was categorized as “mid.” (D)
Summary of the ideal patterns for each gene category used in the
gene classification in Fig. 2C. (E) Summary of the calculation of the
similarity score and establishment of the threshold for the gene
classification in Supplementary Fig. S3F. The sum of the resid-
ual squares between 2 vectors, the genewise vector of normal-
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ized values from the TD results (Supplementary Fig. S3C), and the
“ideal patterns” (Supplementary Fig. S3D) were calculated. Then,
the threshold used in Supplementary Fig. S3F was obtained by
calculating the 20th percentile of the similarity score for the vec-
tor for each gene category. (F) Summary of gene classification. By
comparing patterns from the TD results (Supplementary Fig. S3C)
and the ideal patterns (Supplementary Fig. S3D), candidate gene
categories were selected. Next, the gene category with the lowest
“similarity score” among the candidate gene categories was se-
lected as the tentative gene category. In this selection, if the “sim-
ilarity score” was higher than the threshold of the gene category
(Supplementary Fig. S3E), the gene was categorized as “Others”
(gene B). If no candidate gene category was available, the gene
was also classified as “Others” (gene C). Finally, the final gene
category was determined by integrating similar gene categories
(genes A and D). (G-I) Heatmap representing the values of the
products calculated in Fig. 2C. The data relating to (G) the species-
common factor (L1_1), (H) the bat-specific factor (L1_2), and (I) the
macaque-specific factor (L1_3) are shown. Each row indicates the
respective gene. The color keys shown on the right of the heatmap
indicate gene categories. (J-L) Heatmap representing the FC val-
ues in the input tensor. The orders of the rows are the same as
in (J) Supplementary Fig. S3G, (K) Supplementary Fig. S3H, and (L)
Supplementary Fig. S3I. Each row indicates the respective gene.
The color keys shown on the right of the heatmap indicate gene
categories.

Supplementary Fig. S4. Identification of species-specific cell types
(related to Fig. 4). (A) UMAP plots representing the expression pat-
terns of every single cell. Dimensionality reduction was performed
for each combination of the 4 species and 3 cell types. (B) UMAP
plots representing the average expression levels of marker genes
for cluster 7 [C7markers].

Supplementary Table S1. Primers used for RT-qPCR (related to
the Methods). The sequences of the primers used for RT-qPCR are
listed.
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T cells; Mm: Macaca mulatta; Monos: monocytes; NK: natural
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