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Abstract 

Bac kgr ound: Katae gis refers to the occurrence of regional genomic hypermutation in cancer and is a phenomenon that has been 

observed in a wide range of malignancies. A kataegis locus constitutes a genomic region with a high mutation rate (i.e., a higher 
frequency of closely interspersed somatic variants than the overall mutational background). It has been shown that kataegis is of 
biological significance and possib l y clinicall y r elev ant. Ther efor e , an accur ate and robust workflow for kataegis detection is paramount. 

F indings: Here w e present Katdetectr, an open-source R/Bioconductor-based package for the robust yet flexible and fast detection 

of kataegis loci in genomic data. In addition, Katdetectr houses functionalities to c har acterize and visualize kataegis and provides 
results in a standardized format useful for subsequent analysis. In brief, Katdetectr imports industry-standard formats (MAF , VCF , 
and VRanges), determines the intermutation distance of the genomic variants, and performs unsupervised changepoint analysis 
utilizing the Pruned Exact Linear Time sear c h algorithm followed by kataegis calling according to user-defined parameters. 
We used synthetic data and an a priori labeled pan-cancer dataset of whole-genome sequenced malignancies for the performance 
evaluation of Katdetectr and 5 publicly available kataegis detection packages. Our performance evaluation shows that Katdetectr is 
r obust r egarding tumor m utational bur den and sho ws the fastest mean computation time. Additionall y, Katdetectr r ev eals the highest 
accuracy (0.99, 0.99) and normalized Matthews correlation coefficient (0.98, 0.92) of all evaluated tools for both datasets. 

Conclusions: Katdetectr is a robust workflow for the detection, characterization, and visualization of kataegis and is av aila b le on 

Bioconductor: https://doi.org/doi:10.18129/B9.bioc.katdetectr . 

Ke yw or ds: katae gis, R-pac kage, Bioconductor, change point anal ysis, cancer 
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Introduction 

Lar ge-scale next-gener ation sequencing of malignancies has re- 
vealed that a myriad of mutational mechanisms and mutational 
r ates ar e at play within e v en a single tumor genome . Moreo ver, it 
has been shown that mutations can cluster together, that is, the 
acquir ed m utations ar e found in pr oximity to one another, m uc h 

closer than expected if each base pair had an equal probability 
of being mutated. This phenomenon was termed kataegis and its 
r espectiv e genomic location was termed a kataegis locus [ 1 , 2 ]. 

Kataegis , Greek for thunderstorm or sho w er, w as first observed 

and visualized in whole-genome sequencing (WGS) data of 21 
primary breast cancers [ 1 ]. Alexandrov and colleagues [ 2 ] subse- 
quently detected 873 kataegis loci in a pan-cancer dataset con- 
taining 507 WGS samples from primary malignancies. 

Extensiv e explor ation of the etiology of kataegis r e v ealed a sig- 
nificant positive association between kataegis and 2 distinct mu- 
tational signatur es (COSMIC signatur es SBS2 and SBS13) both at- 
tributed to the APOBEC enzyme family [ 3 , 4 ]. Subsequently, mul- 
tiple studies confirmed the importance of the APOBEC enzymes 
in cancer, showing that APOBEC enzymes are a major cause of 
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 uta genesis, gr ouped in clusters, dispersed throughout the can-
er genome and in extr ac hr omosomal DNA [ 5–7 ]. Additionall y,
ataegis has been ascribed in lymphomas to 2 other mutational
ignatur es (COSMIC signatur es SBS84 and SBS85) related to the
POBEC family member activation-induced cytidine deaminase 

AID) enzyme [ 8 ]. 
Mor eov er, the locations of kataegis loci have been associated

ith locations of somatic structural variant breakpoints. Kataegis 
oci have been observed most frequently within the proximity of
eletions and complex r earr angement br eakpoints [ 3 , 9 ]. Further-
ore, kataegis can occur within known cancer driver genes, in-

luding TP53 , EGFR , and BRAF , which are associated with over-
ll survival in some cancer types [ 5 , 18 ]. Ho w e v er, the clinical
 ele v ance of kataegis remains to be validated and ther efor e ob-
uscates kataegis as a clinical biomarker for pr ognosis. Mor eov er,
uture insight into kataegis etiology and clinical applications re- 
uir es accur ate and r obust detection of kataegis. 

Since the discovery of kataegis, different computational 
etection tools using genomic variant data have been de- 
eloped and are publicly a vailable , including MafTools [ 10 ],
 Open Access article distributed under the terms of the Cr eati v e Commons 
unrestricted reuse, distribution, and reproduction in any medium, provided 
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Figure 1: Ov ervie w of the Katdetectr w orkflo w, intermutation distance, and rainfall plots. (A) General w orkflo w of Katdetectr from data import to data 
visualization r epr esented by arr ows . (B) T he interm utation distance (IMD) is determined for all genomic v ariants in eac h c hr omosome, and r ainfall 
plots are used to visualize the IMDs. Single-nucleotide variant (SNV), multinucleotide variant (MNV). (C) Rainfall plot of WGS breast cancer sample 
PD7049a as interrogated by Katdetectr with IMDcutoff = 1,000 and minSizeKataegis = 6 [ 2 ]. Y -axis: IMD , x-axis: v ariant ID order ed on genomic location, 
light blue rectangles: kataegis loci with genomic variants within kataegis loci shown in bold. The color depicts the mutational type . T he vertical lines 
r epr esent detected changepoints, while black horizontal solid lines show the mean IMD of each segment. 
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o  
lusteredMutations [ 11 ], kataegis [ 12 ], SeqKat [ 13 ], and SigPro-
lerClusters [ 14 ]. These pac ka ges employ distinct statistical
ethods for kataegis detection and differ in their ease of use

nd computational feasibility. Ther efor e, a comparison of their
erformances is curr entl y needed. 

Her e, we intr oduce Katdetectr, an R-based Bioconductor pac k-
ge that contains a suite for the detection, c har acterization, and
isualization of kataegis. Additionally, we hav e e v aluated and
ompared the performance of Katdetectr to the 5 commonly used
nd publicly available kataegis detection packages. 

esults 

he principle of Katdetectr is to assess the variation in the muta-
ion rate of a cancer genome. To ac hie v e this, Katdetectr starts
y importing and pr epr ocessing industry-standard v ariant call-

ng formats (VCF , MAF , VRanges) (Fig. 1 A). Next, the intermuta-
ion distance (IMD) is determined, which denotes the distance be-
ween variants in base pairs (Fig. 1 B; see Methods). Unsupervised
 hangepoint anal ysis is performed, using the IMD as input, which
esults in detected changepoints . T he changepoints , which denote
he points at which the distribution of the IMD c hanges, ar e used
o segment the genomic sequence. Finally, segments are anno-
ated and labeled as a putative kataegis locus if a segment fits the
ser-defined settings: the mean IMD of the segment ≤ IMDcutoff
nd the number of variants in the segment ≥ minSizeKataegis . The
MD, segmentation, and detected kataegis loci can be visualized
y Katdetectr in a rainfall plot (Fig. 1 C) . 

a tdetectr searc h algorithm selection 

o optimize Katdetectr for kataegis detection, we generated a syn-
hetic dataset to test 4 changepoint search algorithms: pruned
xact linear time (PELT) [ 15 ], binary segmentation (BinSeg) [ 15 ],
egment neighborhoods (SegNeigh) [ 17 ], and at most one change
AMOC). The synthetic dataset contains 1,024 samples with a
arying number of kataegis loci and tumor mutational burden
TMB) (see Methods). All variants in this dataset were binary la-
eled for kataegis, as a variant either lies within a kataegis lo-
us (TRUE) or not (FALSE). This dataset was considered ground
ruth and was used for computing performance metrics. We ana-
yzed the synthetic dataset separately for each search algorithm
howing that the PELT algorithm outperformed the alternatives
 Supplementary Table 1, Supplementary Figs. S1, S2 ). Ther efor e,
e set PELT as the default search algorithm in Katdetectr. 

erformance Ev alua tion 

e utilized the synthetic dataset to e v aluate the performances
f Katdetectr and 5 publicly available kataegis detection pack-
 ges: MafTools, Cluster edMutations, Kataegis, SeqKat, and Sig-
rofilerClusters (Table 1 , Supplementary Table S1 ). Katdetectr re-
ealed the highest overall accuracy (0.99), normalized Matthews
orrelation coefficient (nMCC: 0.98), and F1 score (0.97), whereas
lusteredMutations sho w ed the highest true-positiv e r ate (TPR:
.99) and Kataegis sho w ed the highest true-negativ e r ate (TNR:
.99). Most pac ka ges sho w ed a high nMCC for samples with a
MB r anging fr om 0.1 to 50. Ho w e v er, the performance of all
ac ka ges dr opped for samples with a TMB ≥100 (Fig. 2 A). More
pecifically, for Katdetectr and Kataegis, this is due to an in-
rease in false negatives . For SeqKat, MafTools , ClusteredMuta-
ions , and SigProfilerClusters , this performance drop is due to an
ncrease in false positives in samples with a TMB of 100 and 500
 Supplementary Fig. S1 ). 

Next to the synthetic dataset, we e v aluated the performance
f the kataegis detection pac ka ges on a dataset containing 507 a

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad081#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad081#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad081#supplementary-data
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riori labeled WGS samples fr om Alexandr ov et al. [ 2 ] (see Meth-
ds). Katdetectr r e v ealed the highest ov er all accur acy (0.99),
MCC (0.92), and F1 score (0.83), whereas ClusteredMutations 
ho w ed the highest TPR (0.99) and SigProfilerClusters sho w ed the
ighest TNR (0.99) (Table 1 , Supplementary Fig. S1 ). Katdetectr,
lusteredMutations, and MafTools sho w ed a high nMCC ( > 0.92)
n the samples with a low or middle TMB. Howe v er , the perfor -
ance of all pac ka ges dr ops for samples with a TMB > 10 ( n = 20)

Fig. 2 A). This is due to an increase in false negatives by Kataegis
nd SeqKat and false positives by Katdetectr, MafTools, Clustered- 
utations , and SigProfilerClusters . 
We visualized the concordance regarding per sample kataegis 

lassification and kataegis locus between Katdetectr , SigProfiler - 
lusters , ClusteredMutations , MafTools , and the original authors
f the WGS dataset: Alexandrov et al. [ 2 ] (Fig. 2 B). In total, 451
ataegis loci were detected in 127 WGS samples by all the pack-
ges and the original publication. Interestingly, Katdetectr, SigPro- 
lerClusters , ClusteredMutations , and MafTools concordantly de- 
ected 102 pr e viousl y unannotated kataegis loci within the origi-
al publication. 

The runtimes of all pac ka ges wer e r ecorded to give insight
nto the computational feasibility of these pac ka ges. Katdetectr
ho w ed the lo w est mean runtime on both the synthetic and the

GS datasets (Fig. 2 C). 

atdetectr examples with different TMBs 

e highlight 4 samples from the datasets that illustrate how
atdetectr accur atel y detects kataegis loci r egardless of the
MB of the r espectiv e sample (Fig. 3 ). The synthetic sample
24625_1_50_100 (TMB: 500) harbors 1 kataegis locus, containing 
7 v ariants, whic h is detected by Katdetectr (Fig. 3 A). This kataegis
ocus is also detected by SeqKat, MafTools, ClusteredMutations,
nd SigProfilerClusters, in addition to numerous false positives.
he pac ka ge Kataegis did not detect an y kataegis loci in this syn-
hetic sample. 

In lung adenocarcinoma sample LUAD-E01014 (TMB: 7.6),
atdetectr detected 37 kataegis loci containing 449 variants 

Fig. 3 B). MafTools , ClusteredMutations , and SeqKat detected sim-
lar kataegis loci in this sample, whereas Kataegis and SigProfiler- 
lusters did not detect any kataegis loci in this sample. In breast
ancer sample PD7207a (TMB: 0.8), 2 kataegis loci were detected
y Katdetectr MafTools , ClusteredMutations , and SigProfilerClus- 
ers (Fig. 3 C). Kataegis and SeqKat did not detect any kataegis
oci in this sample. Lastly, in the breast cancer sample PD4086a
TMB: 0.6), 1 kataegis locus was detected by all pac ka ges except
or Kataegis (Fig. 3 D). 

ethods 

mplementation of Katdetectr 
atdetectr (v1.2.0, git commit 5a6e5d04109eb082cbea040049dca3 
237b6c8f5) was de v eloped in the R statistical pr ogr amming lan-
uage (v4.2.0) [ 23 ]. Katdetectr imports genomic variants through
eneric, standardized file formats for variant calling: MAF , VCF ,
r Bioconductor-standard VRanges objects. Within Katdetectr, the 
mported variants are preprocessed such that, per chromosome,
ll variants (all rows in variant file, including indels or structural
 ariations) ar e sorted in ascending order based on their genomic
osition. Ov erla pping v ariants ar e mer ged into a single record as
hasing and clonality are not considered b y katdetectr. Follo w-

ng, per chro mo so me j , the intermutation distance ( IMD i, j ) of each

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad081#supplementary-data
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A

B

C

F igure 2: P erformance e v aluation of kataegis detection tools . (A) T he normalized Matthe ws corr elation coefficient (nMCC) per pac ka ge and tumor 
mutational burden (TMB) class are depicted by individual data points connected with a dashed line (colored per package). (B) Venn diagrams showing 
the concordance between Katdetectr, SigProfilerClusters, MafTools, ClusteredMutations, and Alexandrov et al. regarding kataegis classification per 
sample (i.e., does a sample contain 1 or more kataegis loci) and per kataegis loci (i.e., does a detected kataegis locus ov erla p with a kataegis locus 
detected by another pac ka ge). (C) Boxplots with individual data points r epr esent the per sample runtimes of kataegis detection pac ka ges on the 
synthetic and whole-genome sequence datasets. Boxplots were sorted in ascending order based on mean runtime (depicted in the text below the 
boxplot). Y-axis is log 10 -scaled. Boxplots depict the interquartile range, with the median as a black horizontal line. 
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 arian t i, j and its closest upstream variant i − 1 , j is calculated ac-
ording to 

IMD i, j = 

{ 

i = 1 s i, j 

i > 1 s i, j − s i −1 , j 
i = 

{
1 , 2 , . . . , k j 

}
(1) 

ith i as the variant number, j as the c hr omosome number, s as
he genomic location of the first base pair of a variant i, j , and k j as
he total number of variants in chro mo so me j (Fig. 1 B). Additionally,
or each chro mo so me j one pseudo-IMD, IMD p, j , is added such that 

n j = I MD p, j + 

∑ k j 

i = 1 I MD i, j (2)

ith n j as the total number of base pairs in chro mo so me j . 
Katdetectr aims to identify genomic regions characterized

y specific mutation rates. An unsupervised technique called
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A B

C D

Figure 3: Rainfall plots constructed by Katdetectr and confusion matrices, accuracy, and nMCC for 4 samples. (A) Synthetic sample 124625_1_50_100 
with tumor mutational burden (TMB): 500. (B) Lung adenocarcinoma whole-genome sequenced (WGS) sample LUAD-E01014 with TMB: 7.6. (C) Breast 
cancer WGS sample PD7207a with TMB: 2.5. (D) Breast cancer WGS sample PD4086a with TMB: 0.62. The WGS samples were collected and labeled for 
kataegis by Alexandrov et al. [ 2 ]; their results were used as ground truth to construct the confusion matrices and performance metrics. Rainfall plot: 
y-axis: IMD, x-axis: variant ID ordered on genomic location, light blue rectangles: kataegis loci with genomic variants within kataegis loci shown in 
bold. The color depicts the mutational type. The vertical lines represent detected changepoints, while black horizontal solid lines show the mean IMD 

of each segment. Confusion matrix: true positive (TP), false positive (FP), true negative (TN), false negative (FN), accuracy, and normalized Matthews 
correlation coefficient (nMCC). 



6 | GigaScience , 2023, Vol. 12, No. 1 

c  

t  

s  

p  

e  

t  

s  

s
 

m  

u  

s  

t  

p
 

r  

t  

d  

m  

d  

s  

c  

t

w  

n  

o  

t  

o
 

2  

m  

(  

g  

f  

t  

A  

m

w  

t  

t  

n

 

r  

p  

a
 

D  

t  

(  

(  

(  

j

 

s  

t  

i  

o  

f
 

p  

a  

k  

a  

p  

t
 

s  

V

P
A  

a  

t  

P  

h  

c  

a
 

A  

s  

t  

p  

a  

t  

w

P
O  

k  

d  

F  

(  

r  

p  

i

 

 

c  

F

 

 

 hangepoint anal ysis is performed per c hr omosome on the IMDs
o assess the variability in mutation rate across each chromo-
ome. Changepoint anal ysis r efers to the pr ocess of detecting
oints in a sequence of observations where the statistical prop-
rties of the sequence significantly change. Subsequently, the de-
ected c hangepoints ar e used to segment the input sequence into
egments. For a detailed description of the changepoint analysis,
ee the work of Killick et al. [ 15 ] 

We implemented the cpt.meanvar() function from the com-
only used R changepoint package (v2.2.3) in Katdetectr for the

nsupervised segmentation of IMDs, as detailed by [ 15, 24, 25 ]. We
et the following parameter settings as default settings in Katde-
ectr: method, PELT; minimal segment length, 2; test statistic, ex-
onential; and penalty, Bayesian information criterion (BIC). 

After changepoint analysis, each segment is annotated with its
 espectiv e genomic start and end positions, its mean IMD, and the
otal number of included variants. Since we use an exponential
istribution as the test statistic in changepoint analysis, each seg-
ent has a corresponding rate parameter of the fitted exponential

istribution. Wher eas eac h segment is annotated with its corr e-
ponding m utation r ate, the m utation r ate of an entir e sample
an be expressed as the weighted arithmetic mean of the muta-
ion rate of the segments: 

λt = 

k t 
n t 

= 

∑ m 

s = 1 
λs n s 

n t 
(3) 

ith λt as the mutation rate of the entire sample, k t as the total
umber of variants present in the sample, n t as the total number
f base pairs in the genome, m as the total number of segments in
he sample, and λs and n s as the mutation rate and the number
f base pairs in segment s . 

To call a segment a putative kataegis locus, it has to adhere to
 user-defined parameters: the maximum mean IMD of the seg-
ent ( IMDcutoff ) and the minimum number of included variants

 minSizeKataegis ). These parameters can be provided as static inte-
er values or as a custom R function determining the IMD cutoff
or each segment. For example, the following function for anno-
ation of kataegis e v ents, as used by the ICGC/TCGA Pan-Cancer
nalysis of Whole Genomes Consortium, can be easily imple-
ented in Katdetectr [ 3 ]: 

IMDcuto f f ≤ −log 
(
1 − k s −1 

√ 
0 . 01 
L s 

)
λmed 

wit h ; [ IMDcut o f f ] = 1000 

(4) 

ith IMDcuto f f s as the IMD cutoff value , k s as the number of mu-
ations, and L s as the length of segment s in base pairs. For this func-
ion, the rate of the whole sample is modeled assuming an expo-
ential distribution with 

λmed = 

log ( 2 ) 
med ian ( I MD ) 

(5) 

Henceforth, all segments satisfying these user-specified pa-
 ameters ar e consider ed putativ e kataegis loci and stored appro-
riatel y. Two or mor e adjacent kataegis loci ar e mer ged and stor ed
s a single record. 

The output of Katdetectr consists of an S4 object of class “Kat-
etect” that stores all relevant information regarding kataegis de-

ection and c har acterization. A KatDetect object contains 4 slots:
i) the putative kataegis loci (Granges), (ii) the detected segments
Granges), (iii) the inputted genomic variants with annotation
Vranges), and (iv) the parameters settings (List). These data ob-
ects can be accessed using accessor functions. 
In addition, we implemented 3 methods for the KatDetect class:
ummary , show , and rainfallPlot . In concordance with R standards,
he summary function prints a synopsis of the performed analysis,
ncluding the number of detected kataegis loci, and the number
f variants inside a kataegis loci. The show function displays in-
ormation regarding the S4 class and the synopsis. 

The method rainfallPlot is a function for generating rainfall
lots . T hese rainfall plots display the genomic ordered IMDs (from
ll genomic variants) within a sample and highlight putative
ataegis loci and associated genomic variants . T his function has
dditional ar guments: showSequence , whic h allows the user to dis-
lay specific c hr omosomes, and showSegmentation , for displaying
he changepoints and the mean IMD of all segments. 

For additional examples and more hands-on technical in-
tructions, we refer to the accompanying vignette ( Supplemental
ignette ) or the online Bioconductor repository [ 21 ]. 

erformance e v alua tion 

s m ultiple pac ka ges for kataegis detection ar e publicl y av ail-
ble, we compared Katdetectr against MafTools (v2.13.0), Clus-
eredMutations (v1.0.1), kataegis (v0.99.2), SeqKat (v0.0.8), and Sig-
rofilerClusters (v1.0.11) [ 6–10 ]. For benchmarking, we used an in-
ouse generated synthetic dataset and an a priori labeled pan-
ancer dataset of whole-genome sequenced malignancies. As not
ll e v aluated pac ka ges accepted indels 

We used the following definition of kataegis as postulated by
lexandrov and colleagues [ 2 ]: a kataegis locus is (i) a continuous
egment harboring ≥6 variants and (ii) the ca ptur ed IMDs within
he segment have a mean IMD of ≤1,000 bp. To quantify and com-
are performances, the task of kataegis detection was reduced to
 binary classification problem. The task of the kataegis detec-
ion pac ka ges was to corr ectl y label eac h v ariant for kataegis (i.e.,
hether or not a genomic variant lies within a kataegis locus). 

erformance metrics 

nly a small fraction of all observed variants is located within
ataegis loci, which results in a large class imbalance that ren-
ers the inter pr etation of performance metrics, such as accuracy,
1, TPR, and TNR, counterintuitive and possibly unre presentati ve
Equation 3 ). Ther efor e, the nMCC was used as the primary met-
ic for performance e v aluation. The nMCC considers performance
r oportionall y to both the size of positive and negative elements

n a dataset [ 26 ]. 

Accuracy = 

T P + T N 
TP + FP + TN + FN 

MCC = 

T P·T N − F P·F N √ 

( TP+ FP ) ·( TP+ FN ) ·( TN+ FP ) ·( TN+ FN ) 

nMCC = 

MCC + 1 
2 

F 1 = 

TP 
TP + 1 

2 ( FP + FN ) 

T PR = 

TP 
TP + FN 

T NR = 

TN 
TN + FP 

. (6)

P erformance metrics. Accurac y, Matthews correlation coeffi-
ient (MCC), normalized Matthews correlation coefficient (nMCC),
1 scor e, true-positiv e r ate (TPR), and true-negativ e r ate (TNR). 

1. True positive (TP): Predicted: variant in kataegis locus. Truth
set: variant in kataegis locus. 

2. False positive (FP): Predicted: variant in kataegis locus. Truth
set: variant not in kataegis locus. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad081#supplementary-data
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3. True negative (TN): Predicted: variant not in kataegis locus.
Truth set: variant not in kataegis locus. 

4. False negative (FN): Predicted: variant not in kataegis locus.
Truth set: variant in kataegis locus. 

W e utilized V enn dia gr ams to display the concordance of the 
kataegis detection pac ka ges. We sho w ed in which samples the 
pac ka ges detected 1 or more kataegis loci and which kataegis loci 
w ere detected b y the pac ka ges. Two pac ka ges ar e said to detect 
the same kataegis locus if the genomic locations of their respec- 
tive kataegis locus overlap by at least 1 base pair. 

To give insight into the package’s computation time, the pack- 
age’s runtime performance w as recor ded using the proc.time() 
function from the base R pac ka ge. All pac ka ges and comparisons 
were run on the same server utilizing an AMD EPYC 7742 64-Core 
Pr ocessor. The pac ka ges Katdetectr and SigPr ofilerClusters con- 
tained options for parallel processing and used at most 4 cores 
per sample during the analyses. All other packages used a single 
pr ocessing cor e per sample. 

All scripts necessary for running and visualizing the perfor- 
mance e v aluation of all e v aluated pac ka ges ar e av ailable on 

GitHub [ 22 ]. All data used for the performance e v aluation ar e 
available at Zenodo [ 27 ]. 

Synthetic data generation 

The synthetic dataset was generated using the generateSyn- 
theticData() function within the Katdetectr pac ka ge. Mutations 
wer e r andoml y sampled on a r efer ence genome suc h that eac h 

base has an equal probability, p , of being mutated (except for N 

bases for which p = 0). This reduces the occurrence of mutations 
on the r efer ence genome to a sequence of X 1 , X 2 , …, X n , indepen- 
dent Bernoulli trials , X i (i.e ., a Bernoulli pr ocess), wher e 

P ( X i = 1 ) = P ( Mutation at i th base ) = p 

P ( X i = 0 ) = P ( No mutation at i th base ) = 1 − p 
(7) 

with probability mass function (PMF), expectation, and variance: 

p s ( k ) = 

( 

n 
k 

) 

p k ( 1 − p ) n −k 
, k = 0 , 1 , ...., n 

E ( S ) = np 

var ( S ) = np ( 1 − p ) 

(8) 

with p as the probability of success (i.e., mutation), n as the num- 
ber of independent trials (i.e., length of the genome in base pairs),
and k as the number of successes (i.e., number of occurred muta- 
tions). The IMD now reduces to geometric random variable T , with 

PMF, expectation, and variance: 

p T ( t ) = ( 1 − p ) − 1 p 

E ( T ) = 

1 
p 

var ( T ) = 

1 − p 
p 2 

(9) 

The genomic start location of a kataegis locus was sampled 

as an independent Bernoulli trial. The genomic end location of 
a kataegis locus was calculated using 

end i = start i + E ( T ) i ( k i + 1 ) − 1 (10) 

Synthetic dataset description 

The synthetic data consist of 1,024 samples with a total of 
21,299,360 SNVs (Table 2 ). All mutations were generated on chro- 
osome 1 on the human r efer ence genome hg19. These samples
er e gener ated suc h that 8 differ ent TMB classes (0.1, 0.5, 1, 5, 10,
0, 100, 500) were considered. 

T MB = 

t ot al number o f variant s in sample 
l engt h o f genome in bp 

∗ 10 6 (11) 

For each TMB class, a sample was generated for all combina-
ions of the following parameters: the number of kataegis loci
1, 2, 3, 5), the number of variants within each kataegis loci (6,
0, 25, 50), and the expected IMD of the variants in kataegis loci
100, 250, 500, 750). This resulted in 64 kataegis samples per TMB
lass. To balance the dataset, 64 samples without kataegis loci
er e gener ated for eac h TMB class . T he synthetic dataset con-

ained 1,232 kataegis loci and 33,245 variants within kataegis 
oci. 

GS dataset description 

he WGS dataset (as used in this study; Table 3 ) is publicly avail-
ble in .txt format [ 2 ]. This dataset contained 7,042 primary can-
er samples from 30 different tissues, of which 507 originated
rom WGS and 6,535 from whole-exome sequencing (WES). Only 
he WGS samples ( n = 507) were originally labeled using a piece-
ise constant fit (PCF) model and manually curated for kataegis 
resence (or absence) by the original study. Only the respec-
ive WGS samples, with a total of 3,382,751 SNVs, were rein-
errogated within our performance evaluation. Additionally, we 
inned this dataset into 3 TMB classes (low: TMB < 0.1, middle:
.1 ≥ TMB < 10, high: TMB ≥10) and filtered it such that it only
ontained SNVs. 

reprocessing and parameter settings of 
lternati v e kataegis detection packages 

oth the synthetic and the Alexandrov et al. [ 2 ] datasets were con-
erted to MAF format for use in MafTools [ 10 ] ClusteredMutations
 11 ], and kataegis [ 12 ] and to BED format for use in SeqKat [ 13 ].
ll other parameter settings for MafTools , kataegis , ClusteredMu-

ations, and SeqKat were set to the default values as specified in
heir r espectiv e manuals and vignettes. 

For SigProfilerClusters [ 14 ], both the synthetic and the
lexandrov et al. [ 2 ] datasets were converted to a .txt file
ith column names as specified in the manual of Sig-
rofilerClusters. We set the following parameters for Sig- 
r ofilerSim ulator(): genome = “GRCh37,” contexts = [“288”],
im ulations = 100, ov erla p = True. For subsequent cluster
etection, we set the following parameters for SigProfil- 
rClusters.analysis(): genome = “GRCh37, ” contexts = “96, ”
imContext = [“288”], analysis = “all,” sortSims = True,
ubClassify = T rue, correction = T rue, calculateIMD = T rue,
ax_cpu = 4, includedVAFs = False. 
From the output of SigProfilerClusters, we selected the class 2

kataegis) clusters for further analysis . T he definition of kataegis
sed by SigProfilerClusters differs from the one used in our perfor-
ance e v aluation. SigPr ofilerClusters defines kataegis as a clus-

er of ≥4 genomic variants, of which the mean IMD is statisti-
all y differ ent fr om the sample specific IMD cutoff. To include
igProfilerClusters in our performance evaluation, we only se- 
ected clusters detected by SigProfilerClusters that fit the defi- 
ition of kataegis we used for the performance e v aluation (i.e.,
 kataegis locus contains ≥6 genomic variants with a mean
MD ≤1,000 bp). 
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Table 2: Descriptive statistics of synthetic dataset 

TMB class (no. of 
background 
mutations) 

No. of samples 
(with kataegis) 

No. of kataegis 
loci 

No. of variants in 
kataegis loci 

0.1 (25) 128 (64) 176 4,005 
0.5 (125) 128 (64) 176 4,006 
1 (249) 128 (64) 176 4006 
5 (1,246) 128 (64) 176 4,014 
10 (2,493) 128 (64) 176 4,029 
50 (12,463) 128 (64) 176 4,077 
100 (24,925) 128 (64) 176 4,183 
500 (124,625) 128 (64) 176 4,925 

Showing, per tumor mutational burden (TMB) class: TMB, number of generated background mutations per sample, the total number of samples, total number of 
samples with kataegis, total number of kataegis loci, and total number of variants within a kataegis loci of 1,024 synthetic samples. 

Table 3: Descriptive statistics of the WGS dataset 

TMB class 
No. of samples 
(with kataegis) 

No. of kataegis 
loci 

No. of variants in 
kataegis loci 

Low: TMB < 0.1 301 (45) 93 946 
Middle: 0.1 ≥ TMB < 10 186 (89) 444 5,058 
High: TMB ≥10 20 (18) 336 3,107 

Showing, per tumor mutational burden (TMB) class: TMB range, the total number of samples, total number of samples with kataegis, total number of kataegis loci, 
and total number of variants within a kataegis loci of 507 whole-genome sequenced (WGS) samples labeled by Alexandrov et al. [ 2 ]. 
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iscussion 

ere, we described Katdetectr, an R/Bioconductor pac ka ge for the
etection, c har acterization, and visualization of kataegis in ge-
omic variant data by utilizing unsupervised changepoint anal-
sis. 

First, we tested 4 search algorithms for changepoint analysis,
hic h r e v ealed that the PELT [ 15 ] algorithm outperformed the Bin-
eg [ 16 ], SegNeigh [ 17 ], and AMOC algorithms in terms of predic-
ion accuracy and computational feasibility. The BinSeg algorithm
erformed r easonabl y well, but it underfitted the data, which
 esulted in man y false negativ es . T he SegNeigh algorithm per-
ormed well on samples with a TMB < 5; howe v er, this algorithm
s computationall y expensiv e, as it scales exponentiall y with the
ize of the data and cannot r easonabl y be used for the analysis
f samples with a TMB > 10. Unsur prisingl y, the AMOC algorithm
annot detect kataegis as a kataegis locus is gener all y defined by
 changepoints. 

Besides testing search algorithms, we benchmarked Katdetectr
sing PELT and 5 publicl y av ailable kataegis detection pac ka ges
hat were recently published and used for supporting kataegis re-
earch [ 2 , 5 , 14 , 15 , 19 ]. Since no consensus benchmark was avail-
ble, we aimed to get insight into the performance of these tools.
he complexity of kataegis detection is to separate genomic re-
ions of higher-than-expected mutational density from the back-
round of somatic mutations . T herefore , we argued that generat-
ng a synthetic dataset containing samples of varying TMB (0.1–
00) would provide a good measure for algorithmic solvability of
he kataegis detection pr oblem. Benc hmarking on this synthetic
ataset r e v ealed that the accur acy of kataegis detection for all
 v aluated pac ka ges dr ops when the TMB incr eases. Performance
 v aluation per TMB-binned class r e v ealed that Katdetectr is on
ar with alternative packages for samples with low or middle TMB.
o w e v er, in contr ast to alternativ e pac ka ges, Katdetectr r emained
 obust when anal yzing samples with a high TMB. This could be an
mportant feature when analyzing late-stage (metastatic) malig-
1  
ancies or malignancies with a known predisposition of acquiring
any somatic mutations such as skin or lung malignancies [ 20 ]. 
Additionally, the computation times of Katdetectr are feasible

or samples with a TMB ranging from 0.1 to 500 as PELT scales lin-
arly with the size of the data [ 15 ]. This shows that kataegis detec-
ion using Katdetectr is feasible on r easonabl y modern computer
ar dw are. 

The presented performance evaluation depends on the truth
abels provided by the datasets. Both the synthetic and the WGS
atasets have their limitations. We constructed the synthetic
ataset by modeling mutations on a genome as a Bernoulli pro-
ess, which is a common approach for modeling events that oc-
ur in a sequence. Ho w e v er, we did not incor por ate prior biological
nowledge in the synthetic dataset generation. Both SeqKat and
igPr ofilerClusters incor por ate biological assumptions r egarding
ataegis (e.g., mutation context), which possibly negatively influ-
nced their performance regarding the synthetic dataset. Addi-
ionally, the distance between events generated by a Bernoulli pro-
ess is a geometric r andom v ariable. For a lar ge n , whic h is the
ase for a human genome, a geometric r andom v ariable a ppr ox-
mates an exponential random variable. Since we constrain Kat-
etectr to only fit exponential distributions, it is unsurprising that
atdetectr performs well on the synthetic dataset. Ne v ertheless,
afTools , ClusteredMutations , SeqKat, and SigProfilerClusters are

ess robust when analyzing the synthetic samples with a TMB of
00 and 500 as they classify many false-positive kataegis loci. 

In addition to the synthetic dataset, we used the a priori la-
eled pan-cancer WGS dataset from the gr oundbr eaking work
f Alexandrov et al. [ 2 ] to evaluate the kataegis detection tools.
o w e v er, the field of kataegis has grown and e volv ed since the
ublication of this dataset. Ther efor e, w e w ant to emphasize that
his dataset should not be considered an unequivocal truth, and
he performance metrics should not be taken at face value . T he
nnotation of this dataset likely contains several false positives
nd false negatives, as highlighted by the concordant discovery of
02 additional kataegis loci by se v er al pac ka ges. Ne v ertheless, we
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belie v e that the current benchmarking results give insight into the 
behavior of the e v aluated pac ka ges r egarding kataegis classifica- 
tion in samples with varying TMB. Additionally, the dataset pub- 
lished by Alexandrov et al. [ 2 ] and the predictions by all tools e v al- 
uated her e ar e publicl y av ailable, whic h facilitates benc hmarking 
of future endeavors regarding kataegis loci detection methods. 

Our benchmarking sho w ed that, for the WGS dataset, Katde- 
tectr, MafTools , ClusteredMutations , and, SigProfilerClusters ha ve 
a high concordance in classifying a whole sample as kataegis pos- 
itive or negative. Ho w ever, when concerning distinct kataegis loci,
we observed more differences. ClusteredMutations reported the 
ov er all lar gest number of loci ( n = 2,360), indicating it has the 
highest sensitivity. Conv ersel y, kataegis ( n = 8) and SeqKat ( n = 

528) reported the overall smallest number of loci, which we deem 

too small based on visual inspection. The third smallest number 
of kataegis loci is reported by SigProfilerClusters ( n = 764), indi- 
cating it has the highest specificity. Katdetectr appears to balance 
sensitivity and specificity as it only detects kataegis loci detected 

by 1 or more alternative packages ( n = 1,050). 
We have sought to test the performance of all alternative tools 

utilizing their hard-coded or otherwise suggested default settings 
as mentioned by the authors in their r espectiv e manuscripts or 
manuals. Katdetectr was likewise performed with its default set- 
tings as described within this article . We ha ve not performed addi- 
tional parameter sweeps for the alternativ e pac ka ges as we argue 
that the default settings will be used by the majority of users. We 
ther efor e cannot discard that fine-tuning the parameters would 

have had an influence on our performance evaluation. 
Kataegis is the most commonly used term for local hypermu- 

tations and has historically been defined as a cluster of at least 6 
v ariants, of whic h the mean IMD is less than or equal to 1,000 
base pairs [ 1 , 16 ]. Ho w e v er, this definition has been altered re- 
cently, making the formal definition of kataegis ambiguous [ 2 , 4 ,
5 , 14 ]. For instance, another type of cluster ed m utations is called 

Omikli, whic h r efers to clusters smaller than kataegis, gener all y 
containing 3 or 4 variants [ 7 ]. Although different types of clus- 
ter ed v ariants can be detected using Katdetectr by suppl ying the 
corr ect par ameters, we onl y e v aluated Katdetectr for the detec- 
tion of kataegis. 

We made Katdetectr publicly available on the Bioconductor 
platform, whic h r equir es peer-r e vie w ed open-sour ce softw are and 

high standards r egarding de v elopment, documentation, and unit 
testing. Furthermor e, Bioconductor ensur es r eliability and op- 
erability on common operating systems (Windows, macOS, and 

Linux). We designed Katdetectr to fit well in the Bioconductor 
ecosystem by incor por ating common Bioconductor object classes.
This allows Katdetectr to be used r ecipr ocall y with the plethora of 
statistical software packages available in Bioconductor for prepro- 
cessing and subsequent anal ysis. Lastl y, we implemented Katde- 
tectr flexibly, allowing Katdetectr to be used in an ad hoc manner 
for quick assessment of clustered variants and extensive research 

of the mutation rates across a tumor genome. 

Conclusion 

Katdetectr is a fr ee, open-source R pac ka ge av ailable on Biocon- 
ductor that contains a suite for the detection, c har acterization,
and visualization of kataegis. Katdetectr employs the PELT search 

algorithm for unsupervised changepoint analysis, resulting in ro- 
bust and fast kataegis detection. Additionally, Katdetectr has been 

implemented in a flexible manner, which allows Katdetectr to ex- 
pand in the field of kataegis. Katdetectr is available on Bioconduc- 
tor [ 21 ] and on GitHub [ 22 ]. 
vailability of Supporting Source Code and 

equirements 

� Project name: Katdetectr 
� RRID: SCR_023506 
� BiotoolsID: katdetectr 
� Workflo whub: 10.48546/w orkflo whub.w orkflo w.463.1 
� Pr oject homepa ge: 
� https:// bioconductor.org/ packages/ release/ bioc/ html/ 

katdetectr.html 
� https:// github.com/ Er asm usMC-CCBC/katdetectr
� Operating system(s): Platform independent 
� Pr ogr amming langua ge: R ( > = 4.2) 
� Other r equir ements: BiocP ar allel ( > = 1.26.2), c hangepoint

( > = 2.2.3), c hec kmate ( > = 2.0.0), dpl yr ( > = 1.0.8), Genom-
icRanges ( > = 1.44.0), GenomeInfoDb ( > = 1.28.4), IRanges
( > = 2.26.0), maftools ( > = 2.10.5), methods ( > = 4.1.3), rlang
( > = 1.0.2), S4Vectors ( > = 0.30.2), tibble ( > = 3.1.6), Vari-
antAnnotation ( > = 1.38.0), Biobase ( > = 2.54.0), Rdpack ( > =
2.3.1), ggplot2 ( > = 3.3.5), tidyr ( > = 1.2.0), BSgenome ( > =
1.62.0), ggtext ( > = 0.1.1), BSgenome .Hsapiens .UCSC.hg19 ( > =
1.4.3), BSgenome .Hsapiens .UCSC.hg38 ( > = 1.4.4), pl yr anges
( > = 1.17.0) 

� License: GPL-3 
� Pr oject name: Ev aluation of Katdetectr and alternativ e

kataegis detection pac ka ges 
� Workflo whub: 10.48546/w orkflo whub.w orkflo w.500.1 
� Pr oject homepa ge: https:// github.com/ Er asm usMC-CCBC/ 

e v aluation _ katdetectr
� Operating system(s): Platform independent 
� Pr ogr amming langua ge: R ( > = 4.2) 
� Other r equir ements: katdetectr (1.1.2), MafTools (2.13.0),

ClusteredMutations (1.0.1), kataegis (0.99.2), SeqKat (0.0.8),
SigPr ofilerClusters (1.0.11), dpl yr (1.0.10), tidyr (1.2.1), ggplot2 
(3.4.0), variantAnnotation (1.44.0), mltools (0.3.5) 

� License: GPL-3 

a ta Av ailability 

ll data used in the performance e v aluation can be found on Zen-
do [ 27 ]. All supporting data and materials are available in the
igaScience GigaDB database [ 28 ]. 

dditional Files 

upplemental Fig. S1. Heatmap showing performance of kataegis 
etection pac ka ges on synthetic data. Accur acy, normalized
atthe ws corr elation coefficient (nMCC), F1 scor e, true-positiv e

ate (TPR), and true-negative rate (TNR) for each of the tumor mu-
ational burden (TMB) classes. 
upplemental Fig. S2. Violin plots with individual data points rep-
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