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Abstract

Background: Kataegis refers to the occurrence of regional genomic hypermutation in cancer and is a phenomenon that has been
observed in a wide range of malignancies. A kataegis locus constitutes a genomic region with a high mutation rate (i.e., a higher
frequency of closely interspersed somatic variants than the overall mutational background). It has been shown that kataegis is of
biological significance and possibly clinically relevant. Therefore, an accurate and robust workflow for kataegis detection is paramount.

Findings: Here we present Katdetectr, an open-source R/Bioconductor-based package for the robust yet flexible and fast detection
of kataegis loci in genomic data. In addition, Katdetectr houses functionalities to characterize and visualize kataegis and provides
results in a standardized format useful for subsequent analysis. In brief, Katdetectr imports industry-standard formats (MAF, VCF,
and VRanges), determines the intermutation distance of the genomic variants, and performs unsupervised changepoint analysis
utilizing the Pruned Exact Linear Time search algorithm followed by kataegis calling according to user-defined parameters.

We used synthetic data and an a priori labeled pan-cancer dataset of whole-genome sequenced malignancies for the performance
evaluation of Katdetectr and 5 publicly available kataegis detection packages. Our performance evaluation shows that Katdetectr is
robust regarding tumor mutational burden and shows the fastest mean computation time. Additionally, Katdetectr reveals the highest
accuracy (0.99, 0.99) and normalized Matthews correlation coefficient (0.98, 0.92) of all evaluated tools for both datasets.

Conclusions: Katdetectr is a robust workflow for the detection, characterization, and visualization of kataegis and is available on

Bioconductor: https://doi.org/doi:10.18129/B9.bioc.katdetectr.

Keywords: kataegis, R-package, Bioconductor, changepoint analysis, cancer

Introduction

Large-scale next-generation sequencing of malignancies has re-
vealed that a myriad of mutational mechanisms and mutational
rates are at play within even a single tumor genome. Moreover, it
has been shown that mutations can cluster together, that is, the
acquired mutations are found in proximity to one another, much
closer than expected if each base pair had an equal probability
of being mutated. This phenomenon was termed kataegis and its
respective genomic location was termed a kataegis locus [1, 2].

Kataegis, Greek for thunderstorm or shower, was first observed
and visualized in whole-genome sequencing (WGS) data of 21
primary breast cancers [1]. Alexandrov and colleagues [2] subse-
quently detected 873 kataegis loci in a pan-cancer dataset con-
taining 507 WGS samples from primary malignancies.

Extensive exploration of the etiology of kataegis revealed a sig-
nificant positive association between kataegis and 2 distinct mu-
tational signatures (COSMIC signatures SBS2 and SBS13) both at-
tributed to the APOBEC enzyme family [3, 4]. Subsequently, mul-
tiple studies confirmed the importance of the APOBEC enzymes
in cancer, showing that APOBEC enzymes are a major cause of

mutagenesis, grouped in clusters, dispersed throughout the can-
cer genome and in extrachromosomal DNA [5-7]. Additionally,
kataegis has been ascribed in lymphomas to 2 other mutational
signatures (COSMIC signatures SBS84 and SBS85) related to the
APOBEC family member activation-induced cytidine deaminase
(AID) enzyme [8].

Moreover, the locations of kataegis loci have been associated
with locations of somatic structural variant breakpoints. Kataegis
loci have been observed most frequently within the proximity of
deletions and complex rearrangement breakpoints (3, 9]. Further-
more, kataegis can occur within known cancer driver genes, in-
cluding TP53, EGFR, and BRAF, which are associated with over-
all survival in some cancer types [5, 18]. However, the clinical
relevance of kataegis remains to be validated and therefore ob-
fuscates kataegis as a clinical biomarker for prognosis. Moreover,
future insight into kataegis etiology and clinical applications re-
quires accurate and robust detection of kataegis.

Since the discovery of kataegis, different computational
detection tools using genomic variant data have been de-
veloped and are publicly available, including MafTools [10],
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Figure 1: Overview of the Katdetectr workflow, intermutation distance, and rainfall plots. (A) General workflow of Katdetectr from data import to data
visualization represented by arrows. (B) The intermutation distance (IMD) is determined for all genomic variants in each chromosome, and rainfall
plots are used to visualize the IMDs. Single-nucleotide variant (SNV), multinucleotide variant (MNV). (C) Rainfall plot of WGS breast cancer sample
PD7049a as interrogated by Katdetectr with IMDcutoff = 1,000 and minSizeKataegis = 6 [2]. Y-axis: IMD, x-axis: variant ID ordered on genomic location,
light blue rectangles: kataegis loci with genomic variants within kataegis loci shown in bold. The color depicts the mutational type. The vertical lines
represent detected changepoints, while black horizontal solid lines show the mean IMD of each segment.

ClusteredMutations [11], kataegis [12], SegKat [13], and SigPro-
filerClusters [14]. These packages employ distinct statistical
methods for kataegis detection and differ in their ease of use
and computational feasibility. Therefore, a comparison of their
performances is currently needed.

Here, we introduce Katdetectr, an R-based Bioconductor pack-
age that contains a suite for the detection, characterization, and
visualization of kataegis. Additionally, we have evaluated and
compared the performance of Katdetectr to the 5 commonly used
and publicly available kataegis detection packages.

Results

The principle of Katdetectr is to assess the variation in the muta-
tion rate of a cancer genome. To achieve this, Katdetectr starts
by importing and preprocessing industry-standard variant call-
ing formats (VCF, MAF, VRanges) (Fig. 1A). Next, the intermuta-
tion distance (IMD) is determined, which denotes the distance be-
tween variants in base pairs (Fig. 1B; see Methods). Unsupervised
changepoint analysis is performed, using the IMD as input, which
results in detected changepoints. The changepoints, which denote
the points at which the distribution of the IMD changes, are used
to segment the genomic sequence. Finally, segments are anno-
tated and labeled as a putative kataegis locus if a segment fits the
user-defined settings: the mean IMD of the segment < IMDcutoff
and the number of variants in the segment > minSizeKataegis. The
IMD, segmentation, and detected kataegis loci can be visualized
by Katdetectr in a rainfall plot (Fig. 1C).

Katdetectr search algorithm selection

To optimize Katdetectr for kataegis detection, we generated a syn-
thetic dataset to test 4 changepoint search algorithms: pruned

exact linear time (PELT) [15], binary segmentation (BinSeg) [15],
segment neighborhoods (SegNeigh) [17], and at most one change
(AMOC). The synthetic dataset contains 1,024 samples with a
varying number of kataegis loci and tumor mutational burden
(TMB) (see Methods). All variants in this dataset were binary la-
beled for kataegis, as a variant either lies within a kataegis lo-
cus (TRUE) or not (FALSE). This dataset was considered ground
truth and was used for computing performance metrics. We ana-
lyzed the synthetic dataset separately for each search algorithm
showing that the PELT algorithm outperformed the alternatives
(Supplementary Table 1, Supplementary Figs. S1, S2). Therefore,
we set PELT as the default search algorithm in Katdetectr.

Performance Evaluation

We utilized the synthetic dataset to evaluate the performances
of Katdetectr and 5 publicly available kataegis detection pack-
ages: MafTools, ClusteredMutations, Kataegis, SegqKat, and Sig-
ProfilerClusters (Table 1, Supplementary Table S1). Katdetectr re-
vealed the highest overall accuracy (0.99), normalized Matthews
correlation coefficient (nMCC: 0.98), and F1 score (0.97), whereas
ClusteredMutations showed the highest true-positive rate (TPR:
0.99) and Kataegis showed the highest true-negative rate (TNR:
0.99). Most packages showed a high nMCC for samples with a
TMB ranging from 0.1 to 50. However, the performance of all
packages dropped for samples with a TMB >100 (Fig. 2A). More
specifically, for Katdetectr and Kataegis, this is due to an in-
crease in false negatives. For SeqKat, MafTools, ClusteredMuta-
tions, and SigProfilerClusters, this performance drop is due to an
increase in false positives in samples with a TMB of 100 and 500
(Supplementary Fig. S1).

Next to the synthetic dataset, we evaluated the performance
of the kataegis detection packages on a dataset containing 507 a
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Summary: information of all evaluated kataegis detection packages and their respective performance metrics regarding kataegis classification on 1,024 synthetic samples and 507 a priori labeled whole-genome sequenced

(WGS) samples. Accuracy, normalized Matthews correlation coefficient (nMCC), F1-score, true-positive rate (TPR), and true-negative rate (TNR), pruned exact linear time (PELT), piecewise constant fit (PCF), and intermutation

distance (IMD).

Table 1: Summary and performance of kataegis detection packages

Note: Highest value per column is underscored.

ClusteredMutations

SigProfilerClusters
Kataegis

Package
Katdetectr
SegKat
MafTools
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priori labeled WGS samples from Alexandrov et al. [2] (see Meth-
ods). Katdetectr revealed the highest overall accuracy (0.99),
nMCC (0.92), and F1 score (0.83), whereas ClusteredMutations
showed the highest TPR (0.99) and SigProfilerClusters showed the
highest TNR (0.99) (Table 1, Supplementary Fig. S1). Katdetectr,
ClusteredMutations, and MafTools showed a high nMCC (>0.92)
on the samples with a low or middle TMB. However, the perfor-
mance of all packages drops for samples with a TMB >10 (n = 20)
(Fig. 2A). This is due to an increase in false negatives by Kataegis
and SegKat and false positives by Katdetectr, MafTools, Clustered-
Mutations, and SigProfilerClusters.

We visualized the concordance regarding per sample kataegis
classification and kataegis locus between Katdetectr, SigProfiler-
Clusters, ClusteredMutations, MafTools, and the original authors
of the WGS dataset: Alexandrov et al. [2] (Fig. 2B). In total, 451
kataegis loci were detected in 127 WGS samples by all the pack-
ages and the original publication. Interestingly, Katdetectr, SigPro-
filerClusters, ClusteredMutations, and MafTools concordantly de-
tected 102 previously unannotated kataegis loci within the origi-
nal publication.

The runtimes of all packages were recorded to give insight
into the computational feasibility of these packages. Katdetectr
showed the lowest mean runtime on both the synthetic and the
WGS datasets (Fig. 2C).

Katdetectr examples with different TMBs

We highlight 4 samples from the datasets that illustrate how
Katdetectr accurately detects kataegis loci regardless of the
TMB of the respective sample (Fig. 3). The synthetic sample
124625_1_50_100 (TMB: 500) harbors 1 kataegis locus, containing
57 variants, which is detected by Katdetectr (Fig. 3A). This kataegis
locus is also detected by SegKat, MafTools, ClusteredMutations,
and SigProfilerClusters, in addition to numerous false positives.
The package Kataegis did not detect any kataegis loci in this syn-
thetic sample.

In lung adenocarcinoma sample LUAD-E01014 (TMB: 7.6),
Katdetectr detected 37 kataegis loci containing 449 variants
(Fig. 3B). MafTools, ClusteredMutations, and SeqgKat detected sim-
ilar kataegis loci in this sample, whereas Kataegis and SigProfiler-
Clusters did not detect any kataegis loci in this sample. In breast
cancer sample PD7207a (TMB: 0.8), 2 kataegis loci were detected
by Katdetectr MafTools, ClusteredMutations, and SigProfilerClus-
ters (Fig. 3C). Kataegis and SegKat did not detect any kataegis
loci in this sample. Lastly, in the breast cancer sample PD4086a
(TMB: 0.6), 1 kataegis locus was detected by all packages except
for Kataegis (Fig. 3D).

Methods

Implementation of Katdetectr

Katdetectr (v1.2.0, git commit 5a6e5d04109eb082cbea040049dca3
4237b6c8f5) was developed in the R statistical programming lan-
guage (v4.2.0) [23]. Katdetectr imports genomic variants through
generic, standardized file formats for variant calling: MAF, VCF,
or Bioconductor-standard VRanges objects. Within Katdetectr, the
imported variants are preprocessed such that, per chromosome,
all variants (all rows in variant file, including indels or structural
variations) are sorted in ascending order based on their genomic
position. Overlapping variants are merged into a single record as
phasing and clonality are not considered by katdetectr. Follow-
ing, per chromosome;, the intermutation distance (IMD; ;) of each
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Figure 2: Performance evaluation of kataegis detection tools. (A) The normalized Matthews correlation coefficient (nMCC) per package and tumor
mutational burden (TMB) class are depicted by individual data points connected with a dashed line (colored per package). (B) Venn diagrams showing
the concordance between Katdetectr, SigProfilerClusters, MafTools, ClusteredMutations, and Alexandrov et al. regarding kataegis classification per
sample (i.e., does a sample contain 1 or more kataegis loci) and per kataegis loci (i.e., does a detected kataegis locus overlap with a kataegis locus
detected by another package). (C) Boxplots with individual data points represent the per sample runtimes of kataegis detection packages on the
synthetic and whole-genome sequence datasets. Boxplots were sorted in ascending order based on mean runtime (depicted in the text below the
boxplot). Y-axis is logio-scaled. Boxplots depict the interquartile range, with the median as a black horizontal line.

variant; ; and its closest upstream variant; _ 4, ; is calculated ac- the total number of variants in chromosome; (Fig. 1B). Additionally,

cording to

1= 1si;

IMD; ;i = 9. i=1{1,2,..., k; 1
v 1> 1s;; — 81 { )} S

with 1 as the variant number, j as the chromosome number, s as
the genomic location of the first base pair of a variant; ;, and k; as

for each chromosome; one pseudo-IMD, IMD,,;, is added such that

k
nj= IMDyj + ) IMD;; )

with n; as the total number of base pairs in chromosome;.
Katdetectr aims to identify genomic regions characterized
by specific mutation rates. An unsupervised technique called
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Figure 3: Rainfall plots constructed by Katdetectr and confusion matrices, accuracy, and nMCC for 4 samples. (A) Synthetic sample 124625_1_50_100
with tumor mutational burden (TMB): 500. (B) Lung adenocarcinoma whole-genome sequenced (WGS) sample LUAD-E01014 with TMB: 7.6. (C) Breast
cancer WGS sample PD7207a with TMB: 2.5. (D) Breast cancer WGS sample PD4086a with TMB: 0.62. The WGS samples were collected and labeled for
kataegis by Alexandrov et al. [2]; their results were used as ground truth to construct the confusion matrices and performance metrics. Rainfall plot:
y-axis: IMD, x-axis: variant ID ordered on genomic location, light blue rectangles: kataegis loci with genomic variants within kataegis loci shown in
bold. The color depicts the mutational type. The vertical lines represent detected changepoints, while black horizontal solid lines show the mean IMD
of each segment. Confusion matrix: true positive (TP), false positive (FP), true negative (TN), false negative (FN), accuracy, and normalized Matthews
correlation coefficient (nMCC).
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changepoint analysis is performed per chromosome on the IMDs
to assess the variability in mutation rate across each chromo-
some. Changepoint analysis refers to the process of detecting
points in a sequence of observations where the statistical prop-
erties of the sequence significantly change. Subsequently, the de-
tected changepoints are used to segment the input sequence into
segments. For a detailed description of the changepoint analysis,
see the work of Killick et al. [15]

We implemented the cpt.meanvar () function from the com-
monly used R changepoint package (v2.2.3) in Katdetectr for the
unsupervised segmentation of IMDs, as detailed by [15, 24, 25]. We
set the following parameter settings as default settings in Katde-
tectr: method, PELT, minimal segment length, 2; test statistic, ex-
ponential; and penalty, Bayesian information criterion (BIC).

After changepoint analysis, each segment is annotated with its
respective genomic start and end positions, its mean IMD, and the
total number of included variants. Since we use an exponential
distribution as the test statistic in changepoint analysis, each seg-
ment has a corresponding rate parameter of the fitted exponential
distribution. Whereas each segment is annotated with its corre-
sponding mutation rate, the mutation rate of an entire sample
can be expressed as the weighted arithmetic mean of the muta-
tion rate of the segments:

k m Ag N
At:izzszl s s (3)

Ne Nt

with A as the mutation rate of the entire sample, k; as the total
number of variants present in the sample, n; as the total number
of base pairs in the genome, m as the total number of segments in
the sample, and As and ng as the mutation rate and the number
of base pairs in segments.

To call a segment a putative kataegis locus, it has to adhere to
2 user-defined parameters: the maximum mean IMD of the seg-
ment (IMDcutoff) and the minimum number of included variants
(minSizeKataegis). These parameters can be provided as static inte-
ger values or as a custom R function determining the IMD cutoff
for each segment. For example, the following function for anno-
tation of kataegis events, as used by the ICGC/TCGA Pan-Cancer
Analysis of Whole Genomes Consortium, can be easily imple-
mented in Katdetectr [3]:

— — ks=1/0.01
IMDcutof f < W @

with; [IMDcutof f] = 1000

with IMDcutof fs as the IMD cutoff value, ks as the number of mu-
tations, and L as the length of segment; in base pairs. For this func-
tion, the rate of the whole sample is modeled assuming an expo-
nential distribution with

log (2)

median (IMD) ©)

Amed =

Henceforth, all segments satisfying these user-specified pa-
rameters are considered putative kataegis loci and stored appro-
priately. Two or more adjacent kataegis loci are merged and stored
as a single record.

The output of Katdetectr consists of an S4 object of class “Kat-
Detect” that stores all relevant information regarding kataegis de-
tection and characterization. A KatDetect object contains 4 slots:
(i) the putative kataegis loci (Granges), (ii) the detected segments
(Granges), (iii) the inputted genomic variants with annotation
(Vranges), and (iv) the parameters settings (List). These data ob-
jects can be accessed using accessor functions.

In addition, we implemented 3 methods for the KatDetect class:
summary, show, and rainfallPlot. In concordance with R standards,
the summary function prints a synopsis of the performed analysis,
including the number of detected kataegis loci, and the number
of variants inside a kataegis loci. The show function displays in-
formation regarding the S4 class and the synopsis.

The method rainfallPlot is a function for generating rainfall
plots. These rainfall plots display the genomic ordered IMDs (from
all genomic variants) within a sample and highlight putative
kataegis loci and associated genomic variants. This function has
additional arguments: showSequence, which allows the user to dis-
play specific chromosomes, and showSegmentation, for displaying
the changepoints and the mean IMD of all segments.

For additional examples and more hands-on technical in-
structions, we refer to the accompanying vignette (Supplemental
Vignette) or the online Bioconductor repository [21].

Performance evaluation

As multiple packages for kataegis detection are publicly avail-
able, we compared Katdetectr against MafTools (v2.13.0), Clus-
teredMutations (v1.0.1), kataegis (v0.99.2), SeqKat (v0.0.8), and Sig-
ProfilerClusters (v1.0.11) [6-10]. For benchmarking, we used an in-
house generated synthetic dataset and an a priori labeled pan-
cancer dataset of whole-genome sequenced malignancies. As not
all evaluated packages accepted indels

We used the following definition of kataegis as postulated by
Alexandrov and colleagues [2]: a kataegis locus is (i) a continuous
segment harboring >6 variants and (ii) the captured IMDs within
the segment have a mean IMD of <1,000 bp. To quantify and com-
pare performances, the task of kataegis detection was reduced to
a binary classification problem. The task of the kataegis detec-
tion packages was to correctly label each variant for kataegis (i.e.,
whether or not a genomic variant lies within a kataegis locus).

Performance metrics

Only a small fraction of all observed variants is located within
kataegis loci, which results in a large class imbalance that ren-
ders the interpretation of performance metrics, such as accuracy,
F1, TPR, and TNR, counterintuitive and possibly unrepresentative
(Equation 3). Therefore, the nMCC was used as the primary met-
ric for performance evaluation. The nMCC considers performance
proportionally to both the size of positive and negative elements
in a dataset [26].

TP + TN

Accuracy = 73 +FP + TN + FN

TP-TN — FP-FN

McC = /(TP+FP)-(TP+EN)-(TN+EP)-(TN+EN)

_ MCC+1
- 2

_ TP
F1 = TP + (FP + FN)

TP
TPR = w7

™
TNR = o7

Performance metrics. Accuracy, Matthews correlation coeffi-
cient (MCC), normalized Matthews correlation coefficient (nMCC),
F1 score, true-positive rate (TPR), and true-negative rate (TNR).

1. True positive (TP): Predicted: variant in kataegis locus. Truth
set: variant in kataegis locus.

2. False positive (FP): Predicted: variant in kataegis locus. Truth
set: variant not in kataegis locus.


https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad081#supplementary-data

3. True negative (TN): Predicted: variant not in kataegis locus.
Truth set: variant not in kataegis locus.

4. False negative (FN): Predicted: variant not in kataegis locus.
Truth set: variant in kataegis locus.

We utilized Venn diagrams to display the concordance of the
kataegis detection packages. We showed in which samples the
packages detected 1 or more kataegis loci and which kataegis loci
were detected by the packages. Two packages are said to detect
the same kataegis locus if the genomic locations of their respec-
tive kataegis locus overlap by at least 1 base pair.

To give insight into the package’s computation time, the pack-
age’s runtime performance was recorded using the proc.time ()
function from the base R package. All packages and comparisons
were run on the same server utilizing an AMD EPYC 7742 64-Core
Processor. The packages Katdetectr and SigProfilerClusters con-
tained options for parallel processing and used at most 4 cores
per sample during the analyses. All other packages used a single
processing core per sample.

All scripts necessary for running and visualizing the perfor-
mance evaluation of all evaluated packages are available on
GitHub [22]. All data used for the performance evaluation are
available at Zenodo [27].

Synthetic data generation

The synthetic dataset was generated using the generateSyn-
theticData () function within the Katdetectr package. Mutations
were randomly sampled on a reference genome such that each
base has an equal probability, p, of being mutated (except for N
bases for which p = 0). This reduces the occurrence of mutations
on the reference genome to a sequence of Xy, Xy, ..., X;, indepen-
dent Bernoulli trials, X; (i.e., a Bernoulli process), where

o
=
I

1) P (Mutation at ith base) = p
)

P(X; = 0) P (No mutation atith base) = 1 — p

with probability mass function (PMF), expectation, and variance:

ps (k) = (Z) (1 -p" k=01 ..n

8
E(S) = np ®
var () = np(1 - p)
with p as the probability of success (i.e., mutation), n as the num-
ber of independent trials (i.e., length of the genome in base pairs),
and k as the number of successes (i.e., number of occurred muta-
tions). The IMD now reduces to geometric random variable T, with
PMF, expectation, and variance:

prt) =1 -p) ~'p
E(T) = )

var(T) = 152

The genomic start location of a kataegis locus was sampled
as an independent Bernoulli trial. The genomic end location of
a kataegis locus was calculated using

end; = start; + E(T); (ki + 1) -1 (10)

Synthetic dataset description

The synthetic data consist of 1,024 samples with a total of
21,299,360 SNVs (Table 2). All mutations were generated on chro-
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mosome 1 on the human reference genome hgl9. These samples
were generated such that 8 different TMB classes (0.1, 0.5, 1, 5, 10,
50, 100, 500) were considered.

total number of variants in sample

TMB = -
length of genome in bp

% 10° (11)

For each TMB class, a sample was generated for all combina-
tions of the following parameters: the number of kataegis loci
(1, 2, 3, 5), the number of variants within each kataegis loci (6,
10, 25, 50), and the expected IMD of the variants in kataegis loci
(100, 250, 500, 750). This resulted in 64 kataegis samples per TMB
class. To balance the dataset, 64 samples without kataegis loci
were generated for each TMB class. The synthetic dataset con-
tained 1,232 kataegis loci and 33,245 variants within kataegis
loci.

WGS dataset description

The WGS dataset (as used in this study; Table 3) is publicly avail-
able in .txt format [2]. This dataset contained 7,042 primary can-
cer samples from 30 different tissues, of which 507 originated
from WGS and 6,535 from whole-exome sequencing (WES). Only
the WGS samples (n = 507) were originally labeled using a piece-
wise constant fit (PCF) model and manually curated for kataegis
presence (or absence) by the original study. Only the respec-
tive WGS samples, with a total of 3,382,751 SNVs, were rein-
terrogated within our performance evaluation. Additionally, we
binned this dataset into 3 TMB classes (low: TMB <0.1, middle:
0.1 > TMB < 10, high: TMB >10) and filtered it such that it only
contained SNVs.

Preprocessing and parameter settings of
alternative kataegis detection packages

Both the synthetic and the Alexandrov et al. [2] datasets were con-
verted to MAF format for use in MafTools [10] ClusteredMutations
[11], and kataegis [12] and to BED format for use in SegKat [13].
All other parameter settings for MafTools, kataegis, ClusteredMu-
tations, and SeqKat were set to the default values as specified in
their respective manuals and vignettes.

For SigProfilerClusters [14], both the synthetic and the
Alexandrov et al. [2] datasets were converted to a .txt file
with column names as specified in the manual of Sig-
ProfilerClusters. We set the following parameters for Sig-
ProfilerSimulator(): genome=“GRCh37,” contexts = [*288"],
simulations=100, overlap=True. For subsequent cluster
detection, we set the following parameters for SigProfil-
erClusters.analysis(): genome="GRCh37,” contexts=“96,"
simContext=[“288"], analysis="all,” sortSims=True,
subClassify=True, correction=True, calculateIMD=True,
max_cpu=4, includedVAFs=False.

From the output of SigProfilerClusters, we selected the class 2
(kataegis) clusters for further analysis. The definition of kataegis
used by SigProfilerClusters differs from the one used in our perfor-
mance evaluation. SigProfilerClusters defines kataegis as a clus-
ter of >4 genomic variants, of which the mean IMD is statisti-
cally different from the sample specific IMD cutoff. To include
SigProfilerClusters in our performance evaluation, we only se-
lected clusters detected by SigProfilerClusters that fit the defi-
nition of kataegis we used for the performance evaluation (i.e.,
a kataegis locus contains >6 genomic variants with a mean
IMD <1,000 bp).
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Table 2: Descriptive statistics of synthetic dataset

TMB class (no. of

background No. of samples No. of kataegis No. of variants in
mutations) (with kataegis) loci kataegis loci
0.1 (25) 128 (64) 176 4,005

0.5 (125) 128 (64) 176 4,006

1 (249) 128 (64) 176 4006

5 (1,246) 128 (64) 176 4,014

10 (2,493) 128 (64) 176 4,029

50 (12,463) 128 (64) 176 4,077

100 (24,925) 128 (64) 176 4,183

500 (124,625) 128 (64) 176 4,925

Showing, per tumor mutational burden (TMB) class: TMB, number of generated background mutations per sample, the total number of samples, total number of
samples with kataegis, total number of kataegis loci, and total number of variants within a kataegis loci of 1,024 synthetic samples.

Table 3: Descriptive statistics of the WGS dataset

No. of samples

No. of kataegis No. of variants in

TMB class (with kataegis) loci kataegis loci
Low: TMB <0.1 301 (45) 93 946
Middle: 0.1 > TMB < 10 186 (89) 444 5,058
High: TMB >10 20 (18) 336 3,107

Showing, per tumor mutational burden (TMB) class: TMB range, the total number of samples, total number of samples with kataegis, total number of kataegis loci,
and total number of variants within a kataegis loci of 507 whole-genome sequenced (WGS) samples labeled by Alexandrov et al. [2].

Discussion

Here, we described Katdetectr, an R/Bioconductor package for the
detection, characterization, and visualization of kataegis in ge-
nomic variant data by utilizing unsupervised changepoint anal-
ysis.

First, we tested 4 search algorithms for changepoint analysis,
which revealed that the PELT [15] algorithm outperformed the Bin-
Seg [16], SegNeigh [17], and AMOC algorithms in terms of predic-
tion accuracy and computational feasibility. The BinSeg algorithm
performed reasonably well, but it underfitted the data, which
resulted in many false negatives. The SegNeigh algorithm per-
formed well on samples with a TMB <5; however, this algorithm
is computationally expensive, as it scales exponentially with the
size of the data and cannot reasonably be used for the analysis
of samples with a TMB >10. Unsurprisingly, the AMOC algorithm
cannot detect kataegis as a kataegis locus is generally defined by
2 changepoints.

Besides testing search algorithms, we benchmarked Katdetectr
using PELT and 5 publicly available kataegis detection packages
that were recently published and used for supporting kataegis re-
search [2, 5, 14, 15, 19]. Since no consensus benchmark was avail-
able, we aimed to get insight into the performance of these tools.
The complexity of kataegis detection is to separate genomic re-
gions of higher-than-expected mutational density from the back-
ground of somatic mutations. Therefore, we argued that generat-
ing a synthetic dataset containing samples of varying TMB (0.1-
500) would provide a good measure for algorithmic solvability of
the kataegis detection problem. Benchmarking on this synthetic
dataset revealed that the accuracy of kataegis detection for all
evaluated packages drops when the TMB increases. Performance
evaluation per TMB-binned class revealed that Katdetectr is on
par with alternative packages for samples with low or middle TMB.
However, in contrast to alternative packages, Katdetectr remained
robust when analyzing samples with a high TMB. This could be an
important feature when analyzing late-stage (metastatic) malig-

nancies or malignancies with a known predisposition of acquiring
many somatic mutations such as skin or lung malignancies [20].

Additionally, the computation times of Katdetectr are feasible
for samples with a TMB ranging from 0.1 to 500 as PELT scales lin-
early with the size of the data [15]. This shows that kataegis detec-
tion using Katdetectr is feasible on reasonably modern computer
hardware.

The presented performance evaluation depends on the truth
labels provided by the datasets. Both the synthetic and the WGS
datasets have their limitations. We constructed the synthetic
dataset by modeling mutations on a genome as a Bernoulli pro-
cess, which is a common approach for modeling events that oc-
cur in a sequence. However, we did not incorporate prior biological
knowledge in the synthetic dataset generation. Both SegKat and
SigProfilerClusters incorporate biological assumptions regarding
kataegis (e.g., mutation context), which possibly negatively influ-
enced their performance regarding the synthetic dataset. Addi-
tionally, the distance between events generated by a Bernoulli pro-
cess is a geometric random variable. For a large n, which is the
case for a human genome, a geometric random variable approx-
imates an exponential random variable. Since we constrain Kat-
detectr to only fit exponential distributions, it is unsurprising that
Katdetectr performs well on the synthetic dataset. Nevertheless,
MafTools, ClusteredMutations, SeqgKat, and SigProfilerClusters are
less robust when analyzing the synthetic samples with a TMB of
100 and 500 as they classify many false-positive kataegis loci.

In addition to the synthetic dataset, we used the a priori la-
beled pan-cancer WGS dataset from the groundbreaking work
of Alexandrov et al. [2] to evaluate the kataegis detection tools.
However, the field of kataegis has grown and evolved since the
publication of this dataset. Therefore, we want to emphasize that
this dataset should not be considered an unequivocal truth, and
the performance metrics should not be taken at face value. The
annotation of this dataset likely contains several false positives
and false negatives, as highlighted by the concordant discovery of
102 additional kataegis loci by several packages. Nevertheless, we



believe that the current benchmarking results give insightinto the
behavior of the evaluated packages regarding kataegis classifica-
tion in samples with varying TMB. Additionally, the dataset pub-
lished by Alexandrov et al. [2] and the predictions by all tools eval-
uated here are publicly available, which facilitates benchmarking
of future endeavors regarding kataegis loci detection methods.

Our benchmarking showed that, for the WGS dataset, Katde-
tectr, MafTools, ClusteredMutations, and, SigProfilerClusters have
a high concordance in classifying a whole sample as kataegis pos-
itive or negative. However, when concerning distinct kataegis loci,
we observed more differences. ClusteredMutations reported the
overall largest number of loci (n = 2,360), indicating it has the
highest sensitivity. Conversely, kataegis (n = 8) and SegKat (n =
528) reported the overall smallest number of loci, which we deem
too small based on visual inspection. The third smallest number
of kataegis loci is reported by SigProfilerClusters (n = 764), indi-
cating it has the highest specificity. Katdetectr appears to balance
sensitivity and specificity as it only detects kataegis loci detected
by 1 or more alternative packages (n = 1,050).

We have sought to test the performance of all alternative tools
utilizing their hard-coded or otherwise suggested default settings
as mentioned by the authors in their respective manuscripts or
manuals. Katdetectr was likewise performed with its default set-
tings as described within this article. We have not performed addi-
tional parameter sweeps for the alternative packages as we argue
that the default settings will be used by the majority of users. We
therefore cannot discard that fine-tuning the parameters would
have had an influence on our performance evaluation.

Kataegis is the most commonly used term for local hypermu-
tations and has historically been defined as a cluster of at least 6
variants, of which the mean IMD is less than or equal to 1,000
base pairs [1, 16]. However, this definition has been altered re-
cently, making the formal definition of kataegis ambiguous (2, 4,
5, 14]. For instance, another type of clustered mutations is called
Omikli, which refers to clusters smaller than kataegis, generally
containing 3 or 4 variants [7]. Although different types of clus-
tered variants can be detected using Katdetectr by supplying the
correct parameters, we only evaluated Katdetectr for the detec-
tion of kataegis.

We made Katdetectr publicly available on the Bioconductor
platform, which requires peer-reviewed open-source software and
high standards regarding development, documentation, and unit
testing. Furthermore, Bioconductor ensures reliability and op-
erability on common operating systems (Windows, macOS, and
Linux). We designed Katdetectr to fit well in the Bioconductor
ecosystem by incorporating common Bioconductor object classes.
This allows Katdetectr to be used reciprocally with the plethora of
statistical software packages available in Bioconductor for prepro-
cessing and subsequent analysis. Lastly, we implemented Katde-
tectr flexibly, allowing Katdetectr to be used in an ad hoc manner
for quick assessment of clustered variants and extensive research
of the mutation rates across a tumor genome.

Conclusion

Katdetectr is a free, open-source R package available on Biocon-
ductor that contains a suite for the detection, characterization,
and visualization of kataegis. Katdetectr employs the PELT search
algorithm for unsupervised changepoint analysis, resulting in ro-
bust and fast kataegis detection. Additionally, Katdetectr has been
implemented in a flexible manner, which allows Katdetectr to ex-
pand in the field of kataegis. Katdetectr is available on Bioconduc-
tor [21] and on GitHub [22].
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Availability of Supporting Source Code and
Requirements

® Project name: Katdetectr

¢ RRID: SCR_023506

® BiotoolsID: katdetectr

® Workflowhub: 10.48546/workflowhub.workflow.463.1

® Project homepage:

® https://bioconductor.org/packages/release/bioc/html/
katdetectrhtml

® https://github.com/ErasmusMC-CCBC/katdetectr

® Operating system(s): Platform independent

® Programming language: R (>= 4.2)

® Other requirements: BiocParallel (>= 1.26.2), changepoint
(>= 2.2.3), checkmate (>= 2.0.0), dplyr (>= 1.0.8), Genom-
icRanges (>= 1.44.0), GenomelnfoDb (>= 1.28.4), IRanges
(>= 2.26.0), maftools (>= 2.10.5), methods (>= 4.1.3), rlang
(>= 1.0.2), S4Vectors (>= 0.30.2), tibble (>= 3.1.6), Vari-
antAnnotation (>= 1.38.0), Biobase (>= 2.54.0), Rdpack (>=
2.3.1), ggplot2 (>= 3.3.5), tidyr (>= 1.2.0), BSgenome (>=
1.62.0), ggtext (>=0.1.1), BSgenome.Hsapiens.UCSC.hgl9 (>=
1.4.3), BSgenome.Hsapiens.UCSC.hg38 (>= 1.4.4), plyranges
(>=1.17.0)

® License: GPL-3

® Project name: Evaluation of Katdetectr and alternative
kataegis detection packages

® Workflowhub: 10.48546/workflowhub.workflow.500.1

® Project homepage: https://github.com/ErasmusMC-CCBC/
evaluation_katdetectr

® Operating system(s): Platform independent

® Programming language: R (>= 4.2)

® Other requirements: katdetectr (1.1.2), MafTools (2.13.0),
ClusteredMutations (1.0.1), kataegis (0.99.2), SegKat (0.0.8),
SigProfilerClusters (1.0.11), dplyr (1.0.10), tidyr (1.2.1), ggplot2
(3.4.0), variantAnnotation (1.44.0), mltools (0.3.5)

® License: GPL-3

Data Availability

All data used in the performance evaluation can be found on Zen-
odo [27]. All supporting data and materials are available in the
GigaScience GigaDB database [28].

Additional Files

Supplemental Fig. S1. Heatmap showing performance of kataegis
detection packages on synthetic data. Accuracy, normalized
Matthews correlation coefficient (nMCC), F1 score, true-positive
rate (TPR), and true-negative rate (TNR) for each of the tumor mu-
tational burden (TMB) classes.

Supplemental Fig. S2. Violin plots with individual data points rep-
resenting the per sample runtimes of katdetectr using different
search algorithms on the synthetic dataset. Boxplots were sorted
in ascending order based on mean runtime (depicted in text below
boxplot).

Supplemental Fig. S3. Heatmap showing performance of kataegis
detection packages on WGS data. Accuracy, normalized Matthews
correlation coefficient (nMCC), F1 score, true-positive rate (TPR),
and true negative rate (TNR) for each of the tumor mutational
burden (TMB) classes.

Supplementary Table S1. Confusion matrix for the synthetic
dataset.

Supplementary Table S2. Confusion matrix for the WGS dataset.


https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:
https://bioconductor.org/packages/release/bioc/html/katdetectr.html
https://github.com/ErasmusMC-CCBC/katdetectr
https://github.com/ErasmusMC-CCBC/evaluation_katdetectr
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Abbreviations

AMOC: at most one change; bp: base pair; BinSeg: binary seg-
mentation; IMD: intermutation distance; MAF: mutation anno-
tation format; MNV: multinucleotide variant; nMCC: normal-
ized Matthews correlation coefficient; PCF: piecewise constant fit;
PELT: pruned exact linear time; SNV: single-nucleotide variant;
SegNeigh: segment neighborhoods; TMB: tumor mutational bur-
den; TNR: true-negative rate; TPR: true-positive rate; VCF: vari-
ant calling format; WES: whole-exome sequencing; WGS: whole-
genome sequencing.
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