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Abstract

Background Feature selection is a critical step for translating advances afforded by systems-scale molecular profil-
ing into actionable clinical insights. While data-driven methods are commonly utilized for selecting candidate genes,
knowledge-driven methods must contend with the challenge of efficiently sifting through extensive volumes of bio-
medical information. This work aimed to assess the utility of large language models (LLMs) for knowledge-driven
gene prioritization and selection.

Methods In this proof of concept, we focused on 11 blood transcriptional modules associated with an Erythroid cells
signature. We evaluated four leading LLMs across multiple tasks. Next, we established a workflow leveraging LLMs. The
steps consisted of: (1) Selecting one of the 11 modules; (2) Identifying functional convergences among constituent
genes using the LLMs; (3) Scoring candidate genes across six criteria capturing the gene’s biological and clinical rel-
evance; (4) Prioritizing candidate genes and summarizing justifications; (5) Fact-checking justifications and identifying
supporting references; (6) Selecting a top candidate gene based on validated scoring justifications; and (7) Factoring
in transcriptome profiling data to finalize the selection of the top candidate gene.

Results Of the four LLMs evaluated, OpenAl's GPT-4 and Anthropic’s Claude demonstrated the best performance
and were chosen for the implementation of the candidate gene prioritization and selection workflow. This workflow
was run in parallel for each of the 11 erythroid cell modules by participants in a data mining workshop. Module M9.2
served as an illustrative use case. The 30 candidate genes forming this module were assessed, and the top five scoring
genes were identified as BCL2L1, ALAS2, SLC4A1, CA1, and FECH. Researchers carefully fact-checked the summarized
scoring justifications, after which the LLMs were prompted to select a top candidate based on this information. GPT-4
initially chose BCL2L1, while Claude selected ALAS2. When transcriptional profiling data from three reference datasets
were provided for additional context, GPT-4 revised its initial choice to ALAS2, whereas Claude reaffirmed its original
selection for this module.

Conclusions Taken together, our findings highlight the ability of LLMs to prioritize candidate genes with mini-

mal human intervention. This suggests the potential of this technology to boost productivity, especially for tasks

that require leveraging extensive biomedical knowledge.
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Background

Systems-scale profiling technologies are unbiased, simul-
taneously measuring all analytes in a biological system.
Transcriptomics, for instance, uses RNA-sequencing to
simultaneously quantify tens of thousands of RNA species
[1, 2]. The introduction of such capabilities over two dec-
ades ago was transformational and resulted in significant
advances across a wide range of medical fields [3, 4], nota-
bly in oncology for risk stratification [5, 6] and in autoim-
munity to elucidate the pathogenesis of diseases like SLE
[7, 8]. However, while systems/omics profiling offers tre-
mendous advantages, there is also a need to identify rel-
evant analyte panels and design targeted profiling assays.

Targeted transcriptional profiling assays enable precise,
quantitative assessments of the abundance of panels com-
prising tens to hundreds of transcripts [9, 10]. Owing to
their simplicity, cost-effectiveness, and rapid turnaround
times, these assays carry substantial potential for both
research and clinical endeavors. In research scenarios,
targeted assays firstly provide the advantage of enabling
the processing of large number of samples. This can be
critical in studies conducted with large patient cohorts,
especially when incorporating a longitudinal component
[11-13]. Secondly, these streamlined targeted profiling
assays could also prove more suitable in resource-con-
strained research environments, such as in developing
countries. Finally, from a translational perspective, tar-
geted assays can assist in discovering biomarkers, evalu-
ating drug responses, and monitoring treatments, while
offering a path towards development and validation of
novel diagnostic modalities.

The critical task of selecting relevant candidate genes
for inclusion in targeted assays can be guided by both
prior knowledge and analysis of existing omics data.
As demonstrated in our previous work, we leveraged a
combination of data- and knowledge-driven strategies
to develop a targeted transcriptional panel for monitor-
ing immune responses to SARS-CoV-2 infection [14].
This selection process relied on the well-established
BloodGen3 fixed blood transcriptome repertoire, which
we employed as a framework for data-driven identifica-
tion of candidate gene pools [17]. By leveraging refer-
ence blood transcriptome datasets from SARS-CoV-2
infected subjects, 23 distinct sets of modules compris-
ing co-expressed genes were identified. To finalize the
selection of the gene panel from these pools of candi-
dates, which included 3176 transcripts in total, we used
a knowledge-driven approach. Utilizing functional pro-
filing tools, knowledge bases, and expert curation, we
were able to prioritize three "themed" panels of 23 genes
each, which were categorized based on their relevance to
SARS-CoV-2 biology, immunological relevance, or thera-
peutic relevance.
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Employing knowledge-driven in addition to data-driven
approaches, as we have done as part of this prior work, is
valuable since it can enhance the interpretability of assay
results and provide insights into mechanisms of action and
potential therapeutic pathways. However, as was also the
case in our study, the pools of candidates obtained through
systems-scale profiling approaches may include thou-
sands of genes, representing a large volume of associated
literature, making the curation process potentially lengthy
and possibly lacking in depth. And while resources such
as gene ontologies and curated pathways can help, they
often provide only superficial information about the genes
and may lack context. Recently introduced large language
models (LLMs) hold significant potential for improving
the utilization of collective biomedical knowledge, and this
innovative approach may offer a more efficient means of
assimilating and synthesizing the extensive, context-rich
information necessary for effective gene curation and anal-
ysis. Thus, we decided here to explore the use of genera-
tive LLMs to assist with prioritizing pools of co-expressed
genes that form modules of potential clinical and biologi-
cal relevance—with the development of a generic immune
profiling Targeted Fingerprinting Assay (ImmP-TFA)
as our ultimate goal. We compared the performance of
GPT-3.5, GPT-4 (from OpenAl), Bard (from Google), and
Claude (from Anthropic) across various tasks and created
a standardized workflow inclusive of validation checks. We
applied this workflow to the ongoing prioritization of 11
BloodGen3 modules that encompass the module aggregate
A37. This meta-signature has been correlated with respira-
tory syncytial virus (RSV) infection severity [15], vaccine
response [16], and elevated abundance of transcripts in
patients with metastatic melanoma [15]. Our results dem-
onstrate that LLMs can effectively prioritize large candi-
date gene pools for inclusion in targeted biomarker panels
with minimal human input. Notably LLMs were also able
to interpret and factor in reference transcriptional data
when tasked to pick a top candidate for a given module.

Methods

BloodGen3 module repertoire

The construction and characterization of the BloodGen3
repertoire has been described in detail previously [17].
Briefly, we used as input a collection of 16 reference
datasets encompassing 985 unique blood transcrip-
tome profiles, representing 16 disease and physiological
states, including infectious and autoimmune diseases,
pregnancy, transplantation. Co-clustering patterns were
identified and served as a basis for the constitution of a
weighted network, from which densely inter-connected
networks (modules or cliques) were identified. Modules
were subsequently grouped into aggregates, based on
patterns of transcript abundance observed across the 16



Toufiq et al. Journal of Translational Medicine (2023) 21:728

datasets. It is possible thus to obtain two tiers of dimen-
sion reduction: at the module (382 variables) or module
aggregate level (38 variables).

Large language models

ChatGPT-3.5 (OpenAl, San Francisco, CA, https://ope-
nai.com/). Description provided by GPT-3.5: “The Gen-
eralized Pre-training Transformer 3.5 (GPT-3.5) is an
advanced language model. Its primary objective is to
comprehend and generate human-like text. Leveraging
unsupervised learning, GPT-3.5 is trained on a diverse
dataset sourced from internet text, ensuring comprehen-
sive exposure to various linguistic patterns and contexts.
As of its last training cut-off in September 2021, GPT-3.5
does not integrate new information, and its responses are
solely derived from the knowledge acquired during the
training period”

ChatGPT-4 (OpenAl, San Francisco CA, https://ope-
nai.com/). Description provided by GPT-4: “The Gener-
alized Pre-training Transformer 4 (GPT-4) is similar to
its predecessor GPT-3, as it uses unsupervised learning
and is trained on a diverse range of internet text. How-
ever, GPT-4 has more parameters, enabling it to gener-
ate more coherent and contextually relevant outputs. As
of its last training cut-off in September 2021, the model
does not incorporate new data or information, and its
responses are purely based on patterns and information
it has learned during the training period”

Bard (Google, Mountain View, CA, https://bard.google.
com/). Description provided by Bard: “Bard is a LLM
chatbot developed by Google Al It is trained on a mas-
sive dataset of text and code, which includes books, arti-
cles, code repositories, and other forms of text data. Bard
is able to communicate and generate human-like text in
response to a wide range of prompts and questions. For
example, Bard can provide summaries of factual topics,
create stories, translate languages, and answer questions
in an informative way”

Claude (Anthropic, San Francisco, CA, https://www.
anthropic.com/). Description provided by Claude:
“Claude a large language model trained using a tech-
nique called Constitutional Al, which refers to the use
of governance frameworks, aiming to ensure that Al sys-
tems operate within the established rules and principles.
Claude contains 11 billion parameters and was trained on
a large dataset of web data”

Candidate gene prioritization and selection workflow

The stepwise prompting strategy employed for prioritiz-
ing and selecting candidate genes is described below. The
numerical and textual outputs generated by the models
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are available in Additional File 1 for module M9.2, which
serves as our use case.

Selecting one of the A37 modules (Step 1)

Participants to the data mining workshop were first
tasked to select a module from the set of 11 modules
comprised in the BloodGen3 A37 aggregate.

Identifying functional convergences among the pool
of candidate genes (Step 2)
The following prompts were designed and input to the
LLMs via their respective chat interfaces.

PROMPT 2.1: Could you identify functional conver-
gences among this set of genes?

[provide symbols for genes constituting the module].

PROMPT 2.2: Could you generate a R script to visu-
alize these relationships as a network, with nodes rep-
resenting themes and genes, and edges representing
functional associations between genes and themes and
among genes?

Scoring each candidate gene across multiple criteria (Step 3)
In this study, “prompt engineering” played a critical role
in harnessing the capabilities of LLMs for candidate gene
prioritization. Here a key aspect of our approach con-
sisted in requesting LLMs to score on a scale from 0 to
10 each gene against a series of statements. Those state-
ments were structured around three primary themes: (i)
Relevance as a biomarker, (ii) Therapeutic relevance, and
(iii) Biological significance. For benchmarking purposes,
themes could be explored through two types of state-
ments—some were explicit and direct (e.g., 'the gene is
associated with erythroid cells or erythropoiesis’), while
others allowed for inferencing (e.g., ‘the gene has poten-
tial value as a blood transcriptional biomarker’). Each
statement was scored independently, obviating the need
for a specific order in the prompts. Although we con-
sidered weighted scoring based on the perceived impor-
tance of each theme, we opted for equal weighting across
all themes to align with the translational focus of this
project. It is worth noting that the statements were opti-
mized through several iterations. Some of the statements
will also be tailored for specific module aggregates (e.g.
erythroid relevance in this case, that is more specifically
pertinent for module aggregate A37).

PROMPT 3.1: I am next going to ask for a given gene
to:

1. Provide the gene’s official name

2. Provide a brief summary of the gene’s function.

3. Give each of the following statements a score from 0
to 10, with 0 indicating no evidence and 10 indicating
very strong evidence:


https://openai.com/
https://openai.com/
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4. The gene is associated with erythroid cells or eryth-
ropoiesis.

5. The gene is currently being used as a biomarker in
clinical settings.

6. The gene has potential value as a blood transcrip-
tional biomarker.

7. The gene is relevant to circulating leukocytes
immune biology.

8. The gene is a known drug target.

9. The gene is therapeutically relevant for immune-
mediated diseases.

Scoring criteria:

0—No evidence found.

1-3—Very limited evidence.

4—6—Some evidence, but needs validation or is lim-
ited to certain conditions.

7-8—Good evidence, used or proposed for some
clinical applications.

9-10—Strong evidence, firmly established as a useful
biomarker.

For scores of 4 or above please provide an evaluative
comment and up to three key supporting references
using as a format: First author, Title, Date, Journal.

The results should be generated in the following for-
mat, using | as a delimiter and on a single line:

Gene symbol | Gene name | a brief summary | evalua-
tive comment for statement a | supporting references for
statement a | score for statement a | and so on for state-
ments b, ¢, d, eand f.

PROMPT 3.2: Just to give an idea of what the out-
put should look like, here is an example for the gene
GPX4: GPX4 | Glutathione Peroxidase 4 | The GPX4
gene provides instructions for making an enzyme called
glutathione peroxidase 4. This enzyme is involved in
protecting cells from oxidative damage by neutralizing
harmful molecules called reactive oxygen species. Spe-
cifically, GPX4 is crucial in preventing lipid peroxidation,
a process damaging cell membranes. | There is limited
evidence that GPX4 has direct relevance to erythroid
cells or erythropoiesis. | No specific references found |
2 | GPX4 is not currently widely used as a biomarker in
clinical settings, but there is research suggesting poten-
tial uses in the future. | "Wang, Glutathione peroxidase
4 and vitamin E cooperatively prevent hepatocellular
degeneration, 2020, Redox Biology" | 4 | GPX4 is poten-
tially valuable as a blood transcriptional biomarker due
to its role in oxidative stress response. However, more
research is needed for validation. | "Banning, Glutathione
Peroxidase 4: A new player in neurodegeneration?, 2018,
Molecular Neurobiology" | 5 | GPX4 has some relevance
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to circulating leukocytes immune biology due to its anti-
oxidant function, though it’s not the primary focus in this
context. | "luchi, Glutathione Peroxidase 4 Overexpres-
sion Inhibits ROS-Induced Cell Death in Diffuse Large
B-cell Lymphoma, 2017, Lab Invest" | 4 | GPX4 has been
identified as a possible drug target, especially in the field
of cancer biology where ferroptosis—a form of cell death
that GPX4 inhibits—is being explored. | "Yang, Regula-
tion of ferroptotic cancer cell death by GPX4, 2014, Cell"
| 7 | The gene’s role in antioxidant responses and lipid
peroxidation can make it relevant for immune-medi-
ated diseases, but it’s not a primary target at this point. |
"Friedmann Angeli, Inactivation of the ferroptosis regula-
tor Gpx4 triggers acute renal failure in mice, 2014, Nature
Cell Biology" | 6 |

PROMPT 3.3: Now go ahead with the evaluation of this
gene: [provide gene symbol].

The output was recorded in a text file. It was parsed
using a simple R script which read the pipe symbol | as a
delimiter.

Prioritizing candidate genes and summarizing justifications
(Step 4)

Parsed scores generated by GPT-4 and Claude obtained
in the previous step were saved in a shared Google Sheets
spreadsheet (Additional File 1 is the MS Excel version of
this spreadsheet). Averages were computed and genes
rank-ordered based on their cumulative scores. Bar plots
and spider plots were generated in Google Sheets.

We next consolidate score justifications of the top 5
genes. For this we utilize the justifications previously
furnished by the models in Step 3, when scoring genes
against the six specified criteria (relevance to erythro-
poiesis, clinical biomarker, etc.).

Prompt 4.1 below operates independently for each cri-
terion (e.g. starting with relevance to erythropoiesis),
incorporating the justifications generated by GPT-4 and
Claude, but for the top five genes only.

PROMPT 4.1 (for each criterion): Could you generate
a coherent summary paragraph based on the information
provided below? The style needs to be technical, direct
and to the point. [input text is provided here=justifica-
tions provided by GPT2 and Claude for top 5 genes for one
of the criteria; to be repeated for each criterion].

Fact checking justifications and identifying supporting
references (Step 5)

Prompt 5.1 is subsequently executed for each statement
in the summary generated by Prompt 4.1. It is essential to
validate that the provided reference: 1) exists (is identifi-
able in PubMed), and 2) is relevant (abstract or full text
contains information substantiating the statement). If
these conditions are met, the PubMed ID is retrieved and
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inserted into the text. If required, additional or alternate
references can be manually identified in PubMed. If no
references are found to support a statement, it should be
eliminated.

PROMPT 5.1 (for each statement within the summary):
Could you fact-check and provide a couple of support-
ing references for this statement? [input text is provided
here=individual statements from the summaries gener-
ated by PROMPT1—record PMIDs manually in the text,
and later insert references].

Selecting a top candidate gene based on the validated
scoring justifications (Step 6)
GPT-4 and Claude were prompted to select one of the
top 5 genes as the overall pick for a given module:
PROMPT 6.1: Based on the summary provided below,
could you select a top candidate based on: relevance to
(1) erythroid cells or erythropoiesis, (2) current use as
a biomarker, (3) potential use as a blood transcriptional
biomarker, (4) relevance to leukocytes immune biology,
(5) being a known drug target, and (6) being of thera-
peutic relevance for immune mediated diseases? Equal
weight should be given to each of those 6 criteria: [the
narratives generated earlier in step 5 are compiled and
passed here in the same prompt]”.

Factoring in transcriptome profiling data to finalize

the selection of the top candidate gene (Step 7)

In this step transcriptional profiles for the top 5 candi-
dates from three references datasets are submitted to
GPT-4 and Claude and these models are prompted to
take this new information in consideration to finalize
their selection.

Transcriptional profiling data were retrieved for the top
5 genes from three reference datasets and plots were gen-
erated in Google sheets. The reference datasets were con-
tributed to the NCBI GEO repository by:

Speake et al. (GSE6042459) [18], which comprises pro-
files of whole blood and isolated circulating blood leu-
kocytes. The profiles were accessed via a data browsing
web application, the Gene eXpression Browser (GXB)
“CD2K” collection. This team of investigators analyzed
the sequencing libraries on an Illumina HiScan, targeting
a read depth of approximately 20 M. They demultiplexed
the reads, aligned them to ENSEMBL’s human gene mod-
els, and quantified the results using HTSeq [19]. Follow-
ing this, they normalized the read counts utilizing the
TMM method from the edgeR package [20]. http://cd2k.
gxbsidra.org/dm3/geneBrowser/show/4000098.

Novershtern et al. (GSE24759) [21], which comprises
profiles of isolated leukocyte populations and hemat-
opoietic progenitors. The profiles were accessed via a
data browsing web application, the Gene eXpression
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Browser (GXB) developmental immunology collection
[22]. For this dataset transcript levels were extracted
from data image files using the RMA method [23] with
corrections for sample variations via quantile normali-
zation through the Bioconductor R package [24]. Batch
effects were mitigated using the ComBat method [25]
(Johnson et al., 2007). http://developmentalimmunol
ogy.gxbsidra.org/dm3/geneBrowser/show/4000026.

Altman, Rinchai et al. (GSE100150) [17], which com-
prises bulk blood transcriptional profiles of 16 reference
cohorts encompassing 985 transcriptional profiles. The
16 cohorts encompass a wide range of pathological or
physiological states, including autoimmune/inflamma-
tory diseases, infectious diseases, transplantation, can-
cer or pregnancy. Gene expression profiles from whole
blood samples, gathered using Illumina HumanHT-12
v3.0 expression BeadChips, were obtained from 16
patient and control groups. Each dataset underwent
a preprocessing procedure, which included filter-
ing based on detection levels, normalization using the
BeadStudio algorithm, and transformations focusing on
fold changes. Final data were represented as the log2 of
the calculated fold changes.

A concatenating function was used to generate
text that includes the relevant data and metadata. For
instance, the following text was generated for BCL2L1:

From the Speake et al. dataset:

+ In Human Whole blood, RNA sequencing detected
BCL2L1 RNA at a count of 280

+ In Human Neutrophils, RNA sequencing detected
BCL2L1 RNA at a count of 34

+ In Human Monocytes, RNA sequencing detected
BCL2L1 RNA at a count of 32

+ Etc...

From the Novershtern et al. dataset:

+ In Human Basophils, Microarrays detected BCL2L1
RNA at a signal intensity unit of 267

o In Human Naive B cells, Microarrays detected
BCL2L1 RNA at a signal intensity unit of 60

+ In Human class switching-capable Mature B cells,
Microarrays detected BCL2L1 RNA at a signal
intensity unit of 66

+ Etc...

From the Altman et al. dataset:

+ In Human Whole blood, the abundance of BCL2L1
RNA measured by Microarrays differed in patients
with B-cell deficiency compared to controls by a
Log2 fold change of 0.12379294


http://cd2k.gxbsidra.org/dm3/geneBrowser/show/4000098
http://cd2k.gxbsidra.org/dm3/geneBrowser/show/4000098
http://developmentalimmunology.gxbsidra.org/dm3/geneBrowser/show/4000026
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+ In Human Whole blood, the abundance of BCL2L1
RNA measured by Microarrays differed in patients
with chronic obstructive pulmonary disease com-
pared to controls by a Log2 fold change of -0.0691174

+ In Human Whole blood, the abundance of BCL2L1
RNA measured by Microarrays differed in patients
with acute influenza infection compared to controls
by a Log?2 fold change of -0.3697682

« Etc...

This text was submitted to GPT-4 and Claude as input
using the following stepwise prompting strategy:

PROMPT 7.1: Based on the summary below, please rec-
ommend the top candidate gene to include in a targeted
blood transcriptional profiling panel. The intent is for the
selected gene to be representative of an erythroid cell
signature associated with response to mRNA vaccines,
severity of RSV infection and that found to be expressed
at high levels in patients with metastatic melanoma and
in liver transplant recipients. Please weigh the following
criteria equally in your recommendation: (1) Relevance
to erythroid cells and erythropoiesis, (2) Current use as
a biomarker, (3) Potential use as a blood transcriptional
biomarker, (4) Relevance to leukocyte immune biology,
(5) Status as a known drug target, (6) Therapeutic rel-
evance for immune mediated diseases [the narratives
generated earlier in step 5 are compiled and provided as
input in the same prompt]”.

PROMPT 7.2: Now that you have provided an ini-
tial recommendation based on the summary, take into
account the following RNA-sequencing expression data
from key immune cell types and whole blood samples:
[“expression levels of the five candidate genes are pro-
vided next in the form of text”].

Given this additional RNA-seq expression data, does
your recommended gene selection remain the same?
Please explain which gene you would recommend at
this stage and why, incorporating both the summarized
information provided earlier and RNA-seq data in your
rationale."

(See figure on next page.)
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PROMPT 7.3 [skip for GPT-4, input exceeds the limit]:
Now that you have provided an initial recommendation
based on the summary and the RNAseq data, take into
account the following microarray expression data from
key immune cell types and hematopoietic precursors:
[“expression levels of the five candidate genes are pro-
vided next in the form of text”].

Given this additional microarray expression data, does
your recommended gene selection remain the same?
Please explain which gene you would recommend at this
stage and why, incorporating the summarized informa-
tion and RNA-seq data provided earlier, as well as this
new microarray data in your rationale."

PROMPT 7.4: Now that you have provided an initial
recommendation based on the summary and the immune
cells RNAseq and microarray data, take into account the
following averaged log2 fold changes in RNA abundance
in patient cohorts compared to controls. [“Log2 Fold
changes of the five candidate genes are provided next in
the form of text”].

Given this additional data, does your recommended
gene selection remain the same? Please explain which
gene you would recommend at this stage and why, incor-
porating the summarized information, the leukocytes
RNA-seq and microarray data provided earlier, as well as
these new patient cohort profiles in your rationale."

PROMPT 7.5: Could you summarize the key conclu-
sions you have drawn from the conversation so far?

Results
Exploring the potential utility of LLMs
for knowledge-driven candidate biomarker prioritization
We hypothesized that LLMs could mitigate challenges
in knowledge-driven curation and prioritization of can-
didate genes derived from systems-scale profiling data.
In our proof of concept, we utilized LLMs to prioritize
genes forming a circulating erythroid cell blood tran-
scriptional signature (Fig. 1).

This signature is a component of the BloodGen3 tran-
scriptional module repertoire, which we have recently

Fig. 1 Schematic overview of the targeted panel development strategy. This figure presents our novel workflow for candidate gene prioritization
(€), within a broader omics data-driven strategy for developing targeted “transcriptome fingerprinting assays” (TFAs). The first component involves
data-driven construction of a collection of co-expressed blood transcriptional modules (A). This “fixed transcriptional repertoire” provides a stable
framework over time for data analysis and interpretation. The BloodGen3 repertoire consists of 382 modules in 38 aggregates representing

14,168 transcripts, constructed and characterized as described in the Methods and a prior publication [17]. Using BloodGen3 in multiple studies
provided insight into the potential biological and clinical relevance of its modular signatures (B). One signature, corresponding to the module
aggregate A37, was associated with circulating erythroid cells, vaccine responses, and respiratory viral infection severity [15, 16], leading to its
prioritization for inclusion in a generic Immune Profiling TFA panel (ImmP-TFA). Modules within this aggregate were selected to pilot the novel
workflow for the prioritization of candidate gene pools (C). In doing so, we investigated the versatility of large LLMs for a range of tasks, from scoring
candidates to the selection of top candidates for more comprehensive characterization in a separate workflow (D) [30, 31]
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A. Development of the fixed BloodGen3 module repertoire
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constructed and characterized [17] (Fig. 1A and see
methods for details). Among the 38 module aggregates,
aggregate A37 comprised 11 modules, which expression
in one of the reference datasets appeared to be restricted
to CD71+ Glycophorin A+ erythroid cells [15]. It was
chosen to be subjected to candidate gene prioritization
on the basis of its biological significance and potential
clinical relevance (Fig. 1B): (1) we have shown in our pre-
vious work this erythroid cell signature to be associated
with RSV disease severity [15]; (2) It was also increased
in patients with late-stage melanoma [15], which is con-
sistent with reports that have attributed immunomodula-
tory functions to this cell population [26, 27]; (3) More
recently we described pronounced changes in abundance
for the transcripts included in this signature following the
administration of the second dose of COVID-19 mRNA
vaccines [16]; and (4) Others have also found erythroid
cell signatures to be associated with COVID-19 [28] and
pregnancy [29].

In the current study, we introduce a novel workflow
that employs LLMs to prioritize pools of candidate genes,
such as those forming the A37 modules (Fig. 1C). We ini-
tiated the development of this prioritization workflow by
benchmarking four LLMs: OpenAI's GPT-3.5 and GPT-
4, Google’s Bard, and Anthropic’s Claude. Two primary
benchmarking tasks were emphasized: (1) identifying
functional convergences within the candidate pool to
elucidate relationships and biological themes, a staple
in interpreting gene lists from transcriptomics, and (2)
scoring individual candidates against specific relevance
criteria, such as potential utility as a blood biomarker
or significance in immune cell biology. The overarching
goal was to utilize LLMs for the initial prioritization of
candidate genes. Those ranking highest would subse-
quently undergo rigorous evaluation via our previously
described gene-centric workflow [30, 31] (Fig. 1D). Upon
thorough characterization, these top candidates would
be considered for inclusion in a targeted “Transcriptome
Fingerprinting Assay” (TFA). It is important to note that,
diverging from our previous work centered on specific
diseases like COVID-19 [14], our aim here is to guide
the gene prioritization and characterization process
toward creating a generic immune profiling TFA panel
(ImmP-TFA).

Benchmarking LLMs on the identification of functional
convergences among candidate genes
We first compared the LLMs’ ability to identify converg-
ing functional themes among genes in a transcriptional
module.

We selected the erythroid-restricted A37 module
M9.2 from BloodGen3 for benchmarking. While not
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all 30 genes that constitute module M9.2 are associated
with erythroid cells according to existing literature, we
anticipated that this would be a significant overarch-
ing theme for this gene list. To this end, we utilized a
direct prompt: "Could you identify functional conver-
gences among this set of genes? ALAS2 BCL2L1 BPGM
C140RF45 C1ORF128 CA1l EPB42 FAM46C FECH
GMPR GPR146 GYPB GYPE IFITL1 KRT1 MARCHS8
NFIX OR2W3 OSBP2 PLEK2 SELENBP1 SLCI14Al1
SLC4A1 SNCA TMCC2 TMOD1 TNS1 TRIM10
TUBB2A XK?" The convergences identified by the vari-
ous models are detailed in Table 1. Three out of the four
models identified erythrocytes or erythropoiesis as one
of the themes, with only Google’s Bard failing to rec-
ognize this relationship. We also conducted tests using
established functional tools, such as Ingenuity Pathway
Analysis (IPA) and DAVID [32]. Functional annota-
tion clustering performed in DAVID identified "Blood
group antigen” as a primary theme (represented by XK,
GYPB, SLC14A1, SLC4A1l), in addition to erythrocyte
development and erythrocyte differentiation (ALAS2,
BPGM, SLC4A1l). The IPA identified enriched path-
ways, including Heme biosynthesis. Overall, the LLMs
and bioinformatic tools identified the following genes
as being associated with erythrocyte biology: ALAS2
(GPT3.5, GPT-4, Claude, DAVID); BPGM (GPT-4,
DAVID); CAl (GPT3.5); EPB42 (GPT3.5, GPT-4);
FECH (GPT3.5, GPT-4, Claude); SLC4A1 (GPT3.5,
GPT-4, Claude, DAVID); GYPB (GPT3.5, GPT-4);
GYPE (GPT3.5, GPT-4); XK (GPT-4, DAVID). PubMed
queries using the official gene symbols AND "erythro-
cytes OR erythroid OR erythropoiesis” confirmed these
associations. GPT-4 performed best, correctly associat-
ing 8 genes with this central theme, only missing CA1
identified uniquely by GP-T3.5. GPT-3.5 made 7 asso-
ciations, while Claude made 3 associations.

We next tested the models’ ability to generate sim-
ple network visualizations, a common method for
representing functional associations among gene lists.
Since the models cannot directly generate images, we
prompted them to output R scripts to visualize a net-
work with nodes for themes and genes, and edges for
functional associations between them. All four models
generated scripts, but only GPT-4’s ran error-free and
produced the requested network visualization (Fig. 2).
Notably, GPT-4 could also successfully troubleshoot
and fix the code generated by the other models. And
while Bard failed to identify erythrocyte biology as
a convergent theme after initial prompting, it did so
when requested to generate a network representation.
However, of the nine associations Bard made, only two
overlapped with those from the other models/tools
(CA1, EBP4).
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Table 1 List of converging functional themes identified by different LLMs for a co-expression gene set (M9.2), from the BloodGen3
repertoire associated with circulating erythroid cells: ALAS2 BCL2L1 BPGM C140RF45 C1ORF128 CA1 EPB42 FAM46C FECH GMPR
GPR146 GYPB GYPE IFITLT KRTT MARCH8 NFIX OR2W3 OSBP2 PLEK2 SELENBP1 SLC14A1 SLC4A1 SNCA TMCC2 TMOD1 TNS1 TRIM10

TUBB2A XK

Model Functional Themes

Associated genes

LLMs’ Comments

GPT3.5 Hemoglobin synthesis and red blood cell
function
Enzymes and metabolic processes:

Cytoskeletal proteins:

GPT-4  Erythrocyte development and function

Cytoskeleton and cellular structure

Ubiquitin—proteasome system

Claude Erythrocyte biology or iron/heme metabo-
lism

Cytoskeletal or cytoskeleton-associated
genes

Protein binding, degradation or trafficking

Interferon response

phospholipid metabolism or vesicle traffick-

ing

GPCR biology

Bard Production of Heme

Glutathione synthesis

Cell signaling

Solute carrier genes

ALAS2, CA1, EPB42, FECH, GYPB, GYPE,

SLC4AT

BPGM, FECH, GMPR

KRT1, TUBB2A

ALAS2, BPGM, EPB42, GYPB, GYPE, SLC4A1,
XK, FECH

TNS1, TMOD1, TUBB2A

MARCHS, TRIM10

ALAS2, FECH, SLC4A1

EPB42, KRT1, TMOD1, TNS1, TUBB2A

MARCHS, TRIM10

IFITLT, SELENBP1

OSBP2, PLEK2

GPR146, SNCA

ALAS2, FECH

BPGM, GYPB

GPR146, OR2W3

SLC14A1, SLC4A1

These genes are involved in processes related
to hemoglobin synthesis, red blood cell mem-
brane stability, and carbon dioxide transport

These genes encode enzymes involved
in glycolysis, heme biosynthesis, and purine
nucleotide biosynthesis, respectively

These genes encode proteins involved
in maintaining the structure and function
of the cytoskeleton

These genes are all involved in processes
related to erythrocyte (red blood cell) devel-
opment, function, or associated conditions.
For example, ALAS2 and FECH are involved
in heme biosynthesis, a crucial component
of hemoglobin. BPGM, EPB42, SLC4AT, GYPB,
GYPE, and XK are directly involved in eryth-
rocyte structure or function, and muta-
tions in these genes can lead to conditions
like hereditary spherocytosis, elliptocytosis,
or blood group antigen variations

These genes are all involved in cytoskeleton
formation and function, which is essential
for cell shape, division, and movement

These genes are involved in the ubiquitin—pro-
teasome system, which is essential for protein
degradation, cell cycle regulation, and other
crucial cellular functions

ALAS2 and FECH are both involved in por-
phyrin/heme biosynthesis. SLC4A1 encodes
a major anion exchanger in erythrocytes

These genes encode cytoskeletal proteins
like keratins, tubulins, actins

MARCHS8 is an E3 ubiquitin ligase involved

in protein degradation. TRIM10 is a RING-finger
E3 ubiquitin ligase as well that regulates traf-
ficking of GLUT4 glucose transporters

IFITLT and SELENBP1 are both interferon-
stimulated genes, though they have different
functions

OSBP2 encodes an oxysterol binding protein
that regulates lipid metabolism. PLEK2

is involved in regulating vesicle transport
GPR146 is an orphan GPCR. SNCA encodes
alpha-synuclein, which is involved in dopamine
neurotransmission and signaling

ALAS2 and FECH are both involved in the pro-
duction of heme, which is an essential mol-
ecule for many cellular processes

BPGM and GYPB are both involved in the syn-
thesis of glutathione, which is an antioxidant
that protects cells from damage

GPR146 and OR2WS3 are both G protein-
coupled receptors that bind to specific ligands
and signal to the cell

SLC14A1 and SLC4A1 are both solute carrier
genes that transport essential molecules
across cell membranes
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or functional themes, and edges show associations between them

Benchmarking LLMs on the scoring of candidate genes.
We next tasked the four LLMs with prioritizing candi-
dates based on their functional characteristics and poten-
tial clinical relevance.

Our prompting strategy involved presenting the mod-
els with statements about each gene and asking them
to score and justify their scores for each statement. The

models were also prompted to provide references sup-
porting their assessments. To facilitate downstream
analysis, we specified the desired format for the model
outputs in the prompts. The full text of the prompts is
provided in the Methods section. The statements pre-
sented to the LLMs were as follows: a. The gene is associ-
ated with erythroid cells or erythropoiesis. b. The gene is
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currently being used as a biomarker in clinical settings.
c. The gene has potential value as a blood transcrip-
tional biomarker. d. The gene is relevant to circulating
leukocytes immune biology. e. The gene is a known drug
target. f. The gene is therapeutically relevant for immune-
mediated diseases. We generated scores in triplicates to
assess within-model consistency.

We examined the scores obtained for the M9.2 genes to
assess functional convergences identified earlier (Fig. 3).
For the first statement probing associations with eryth-
roid cells/erythropoiesis, three of the four LLMs showed
substantial convergence. The main discrepancy arose
from Google’s Bard assigning high scores to genes oth-
erwise scored low by the other models. Examining Bard’s
justifications for the~14 genes for which scoring dis-
crepancies occurred, we found they did not support the
scores produced. For instance, the justification provided
for OBP2 was that “OSBP2 mutations have been associ-
ated with age-related macular degeneration, a condition
that affects the retina’, or for another gene: “FAM46C
mutations are associated with multiple myeloma, a type
of cancer of the plasma cells” And while these statements
are factual (e.g. [33]), they do not pertain to erythroid
cells or erythropoiesis. We also assessed justifications
from the models for "consensus genes" that received
high scores from all three models for the first statement.
We found these scores to be well-justified. For example,
GPT-4 provided this justification for SLC4A1: “SLC4A1
is directly linked to erythroid cells, as it is involved in
maintaining the shape and survival of red blood cells.
Mutations in this gene can lead to hereditary spherocy-
tosis” GPT-4 also referenced Perrotta et al. [34], which
mentions SLC4A1’s role in full text. However, this may be
more an exception rather than the rule, as backing ref-
erences generated by LLMs at this stage were rarely fac-
tual. However, in most instances supporting statements
could be “manually” linked to actual references. Verifying
all score justifications would be too time-consuming at
this stage, but we did do this systematically in subsequent
steps when focusing on the top five candidates for this
module, as will be describe in detail below.

(See figure on next page.)
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For the next statement (“b. The gene is currently being
used as a biomarker in clinical settings”’), Bard appeared to
show greater convergence with the other models relative to
the previous statement (Fig. 3B). However, GPT3.5 this time
produced overall much lower scores than the other three.

We performed correlation analyses to quantify within-
and across-model consistency for all six statements
(Fig. 4). Overall, we found good level of agreement
between GPT-4 and Claude, with high degree of intra-
model consistency. Bard and GPT3.5 showed more often
discrepancies and, especially in the case of GPT3.5, poor
within-model consistency and overall lower scores, with
several instances where all genes received a score of 0.
Notably, output generated by Bard and GPT3.5 was also
more prone to deviate from the specified format, which
made working with these models much more difficult.

Collectively, the comparative analyses performed on
the four LLMs, across two different tasks, identified
GPT-4 and Claude as the most proficient models. Fur-
thermore, the general agreement between these two
models on scoring tasks presents an opportunity to
cross-validate results, thereby enhancing the robustness
of the prioritization process through the combined use of
both models.

Establishing a workflow for distributed candidate genes
prioritization across A37 modules

Having determined that at least two of the LLMs per-
formed satisfacorily, we next designed a prioritization
workflow aiming to select a top candidate from each of
the eleven A37 modules.

To streamline this task, we distributed the workload
among participants during a data mining workshop. Each
participant selected a specific A37 module to focus on,
allowing for parallel processing. We introduced a work-
flow incorporating the LLMs, guiding participants to
select a top candidate for their designated modules and
produce a ’prioritization report’ (Table 2). It should be
noted that the protocol delineated for module M9.2’s
gene prioritization is consistent across the other ten A37
modules. Comprehensive, sequential guidelines given to
the participants are detailed in the methods section.

Fig. 3 LLMs scoring of M9.2 genes across multiple criteria. Line graphs show scores attributed by four LLMs to 30 genes in module M9.2. Prompts
were run in triplicate and scores plotted accordingly. Lines indicate moving averages. Genes on the x-axis were rank-ordered by averaged scores
from the four models. Each panel shows scores obtained for one of six statements, which relate to the gene’s: A relevance to erythroid cells

or erythropoiesis, B use as a clinical biomarker, C potential as a blood transcriptional biomarker, D relevance to leukocytes immune biology, E status
as a known drug target, and F therapeutic relevance for immune mediated diseases. The actual prompts can be found in the methods section (Step

3)
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In summary, the workflow, described in detail below
using module M9.2 as an illustrative example, was as
follows:

+ Stepl: Selecting one of the A37 modules.

+ Step 2: Identifying functional convergences among
the pool of candidate genes.

« Step 3: Scoring each candidate gene across multiple
criteria.

+ Step 4: Prioritizing candidate genes and summarizing
justifications.

+ Step 5: Fact checking justifications and identifying
supporting references

+ Step 6: Selecting a top candidate gene based on the
validated scoring justifications.

» Step 7: Factoring in transcriptome profiling data to
finalize the selection of the top candidate gene.

In total, seven researchers with a diverse range of
expertise and career stages are participating in these
activities. Top candidates have been identified for three
A37 modules so far, with work still in progress (Table 2).

Rank scoring of the pool of candidate genes constitutive
of a given A37 module

The gene count within A37 modules varies from 18 to 40,
and M9.2, the module selected for this use case (Step 1)
is comprised of 30 genes (Table 2). Considering the sub-
stantial volume of biomedical literature potentially linked
to each specific gene, it is crucial to rapidly narrow the
pool of candidates to a few top contenders.

The next step thus consisted in identifying functional
convergences among the genes constituting the module
of interest (Step 2). This could, in some instances, permit
to prioritize genes based on their alignment to a relevant
functional theme or inform the design of scoring criteria
that will be applied next. GPT-4 was used for this task,
as the best performing model for this task, as described
above as part of LLM benchmarking. And as reported
earlier, in the case of M9.2 it identified ALAS2, BPGM,
EPB42, GYPB, GYPE, SLC4A1 and XK as being associated
with “Erythrocyte development and function” (Table 1,
Fig. 2). These could be thus considered as potential can-
didates, given their alignment with the function attributed

(See figure on next page.)
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to this module in our earlier work (e.g. [15]). Other
themes identified by GPT-4 for M9.2 were: Cytoskeleton
and cellular structure (TNS1, TMODI1, TUBB2A) and
Ubiquitin—proteasome system (MARCHS, TRIM10).

We next prompted GPT-4 and Claude, as described
earlier as part of LLM benchmarking, to score genes
within a module of interest (Step 3) across the six pre-
established criteria (a—f, including relevance to eryth-
roid cells and erythropoiesis, being currently in use as a
clinical biomarker, potential relevance as a blood tran-
scriptional biomarker, relevance to leukocytes immune
biology, is a known drug target and potential therapeutic
relevance for immune-mediated diseases). After parsing
of the output, the sum of average scores obtained from
the two model were computed, and genes were rank
ordered accordingly (Step 4; Fig. 5A). The top five M9.2
genes according to this ranking were BCL2L1, ALAS2,
SLC4A1, CAl and FECH. BCL2L1 received high scores
for most categories. It presented with a distinct “scoring
profile” compared to the other four high scoring genes
from this module (Fig. 5B). Indeed, it received much
higher scores for criteria related to therapeutic relevance
(criteria e & f) and relevance to leukocyte immune biol-
ogy (criterion d). It received in comparison lower scores
on the criterion prompting its relevance to erythropoiesis
(criterion a).

While the identification of functional associations can
provide useful insights, we favored the supervised scor-
ing approach for the selection of top candidates that will
be considered in the next selection steps.

Generating a narrative and validating LLMs statements

From the top 5 scoring candidates, we endeavored to
select a single gene, which would subsequently be sub-
jected to more in-depth characterization (Fig. 1D). Thus,
we next compiled the narratives provided by GPT-4 and
Claude to justify the scores they attributed to each of the
statements when prompted earlier in Step 3. We then
relied on GPT-4 to summarize the statements generated
by the models, using the following prompt: “Could you
generate a coherent summary paragraph based on the
information provided below? The style needs to be tech-
nical, direct and to the point” This was repeated for each
of the six criteria. We next relied on GPT-4 and Claude

Fig. 4 Benchmarking of LLMs on gene scoring tasks. Correlation plots show the degree of similarity between scores generated for a statement

by four LLMs: GPT-3.5, GPT-4, Claude and Bard. Scores were generated in triplicate for each model. Plots show scoring similarities and differences
within and between models. Each panel shows correlations for scores on a given statement regarding: A Relevance to erythroid cells

or erythropoiesis. B Use as a clinical biomarker. C Potential as a blood transcriptional biomarker. D Relevance to leukocyte immune biology. E Status
as a known drug target. F Therapeutic relevance for immune-mediated diseases. Actual statements and prompts can be found in the Methods

section (Step 3)
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Table 2 List of A37 modules undergoing prioritization
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ModuleID N Genes Gene Symbols

Status

Top pick

Report

M9.2

M11.2

M11.3

M11.4

M12.11

M13.26

M13.30

M14.53

M15.53

M15.74

M15.100

30

39

24

25

24

40

32

25

21

17

ALAS2, BCL2L1, BPGM, C140RF45, C1TORF128, CAT, EPB42, FAM46C, FECH, GMPR,
GPR146, GYPB, GYPE, IFITTL, KRT1, MARCHS, NFIX, OR2W3, OSBP2, PLEK2, SELENBP1,
SLC14A1, SLC4AT, SNCA, TMCC2, TMOD1, TNST, TRIM10, TUBB2A, XK

ABCC4, AMFR, BAT3, BMP2K, C170RF39, COORF40, DNAJB2, EIF1B, GDE1, GNA12,
HS.211743, HS.57079, 1QWD1, JAZF1, MED25, NSUN3, ODC1, POLR1D, PPP2R58,
PSME4, RANBP10, RNF14, RSRCT, SELK, SLC2AT, SNX3, TBC1D22B, TMEM183A,
TMEM183B, UBE2F, UBQLN1, WBP2, WDR26, WDR45, WDR51B, WNK1, ZBTB44, ZER1,
ZNF653

ASCC2, C180RF10, C180RF10, DPM2, EPB49, FBXO7, FBXO7, GATA1, HAGH, HEMGN,
HEMGN, HMBS, KEL, LOC284422, LOC440359, LOC441081, MBNL3, MBNL3, MYL4,
PDZK1IP1, PHOSPHOT, RUNDC3A, SESN3, TESC, TGM2, TRIM10, TSPANS5, VWCE

AP2M1, AP2M1, AP251, ATGOA, ATGOA, BAGALT3, BCL2L13, C130RF15, C190RF62,
CYB5R3, DAP, DENND1A, FAM134A, HK1, JUND, MSI2, NTANT, NUCB1, PA2G4,
POLR1D, TCEB2, UBACT, UBAP1, UBL7, UROD, WDR13, WIPI2, ZMAT2

ALDH5AT, BNIP3L, BNIP3L, C200RF108, DNAJA4, FAM104A, HBD, HS.105618,
HS.291319, ISCATL, LOC389293, MPP1, MXI1, PRDX2, PRDX2, RAB2B, RAD23A, RIOK3,
RPIA, SIAH2, SLCTAS5, TFDP1, TFDP1, TRAK2, TSTA3, UBE20, YOD1

AP2AT1, ATP6VOC, BMP2K, C160RF35, C190RF22, C20RF24, CO9ORF78, CCDC23,
CREGT, EIF2AKT, ELOF1, FAM100A, FOXO4, FURIN, GABARAPL2, GCLC, GPX1, H1FO,
HDGF, ISCAT1, ISCAT, LYL1, MAFT, MKRNT, NINJ2, NP, PIM1, PINK1, PNPLA2, PRR6,
PSMF1, RFESD, RNF123, RNF14, STK33, STOM, SYT15, TERF2IP, TFDP2, XPO7, YPEL3

ABCC13, ADIPORT, ARL4A, BLVRB, BOAT, C160RF35, CARM1, CES3, CSDA, FBXO9,
FIST, FKBP8, FLJ20489, GLUL, GSPT1, GUKT1, GYPC, HAGH, HBM, HBQ1, HPS1, HPST,
PBX1, PTMS, SHARPIN, SLC25A39, STEGALNAC4, ST6GALNAC4, TMEM86B, UBL7,
UBXD1

BCL2L1, BSG, CDC34, CHPT1, CHPT1, FHL2, GLRXS, IGF2BP2, KLF1, LOC650832,
LOC653778, LOC654103, MAP2K3, MARCHS, RBM38, RIOK3, TMEM638B

BRD4, C160RF35, CDKL1, DPM2, EPB41, HMBS, HPS1, IQWD1, KLC3, LOC643008,
LOC648434, LOC650898, MAP2K3, MICAL2, MICALCL, MXI1, RAB3IL1, RP11-529110.4,
SLC38A5, SLC6A8, TCP11L2, TGM2, TMPRSS9, TTC25, WNKI

ANKRD9, ATP6VOC, C220RF25, C50RF4, E2F2, FHL2, HMG2L1, LGALS3, LOC653907,
MAP2K3, MARCH2, MCOLNT, MGC13057, PPM1A, PPM1A, RNF10, RNF11, SLCEATOR,
SMOX, SRRD, TMEM158, UBE2H

ARHGEF12, C140RF45, CISD2, CMBL, FLCN, GCAT, GYPE, HBBP1, LOC253012,

Completed

Completed

Completed

Completed

Completed

Completed

Completed

Completed

Completed

Completed

Completed

ALAS2

WNK1

HMBS

MSI2

HBD

SLC2A1

PBX1

KLF1

BRD4

LGALS3

SPTB

Additional File 2

Additional File 3

Additional File 4

Additional File 5

Additional File 6

Additional File 7

Additional File 8

Additional File 9

Additional File 10

Additional File 11

Additional File 12

PCSK1N, PLVAP, RHD, SLC6A9, SPTB, TBCEL, TMEMS56, YPEL4

to identify supporting references for each of the state-
ments generated as part of these summaries. The prompt
used this time was: “Could you fact-check and provide a
couple of supporting references for this statement? . This
was repeated for each statement and verifications were
performed “manually” to ensure that the references were
real and contained the relevant information. The human-
curated references were then added to the summary.
Implementing this workflow for module M9.2, our illus-
trative use case, yielded the following material, which was
entirely generated by GPT-4, with supporting references
added manually (Step 5):

- Function:

“The BCL2L1, ALAS2, SLC4A1, CAl, and FECH genes
play crucial roles in cellular apoptosis regulation, heme
biosynthesis, acid-base balance, and overall erythrocyte
physiology. The BCL2L1 gene encodes a critical apoptosis-
regulating protein in the Bcl-2 family that exists as Bcl-xL

and Bcl-xS isoforms with opposing impacts on cell survival
[35, 36]. The ALAS2 gene instructs the production of the
5’-aminolevulinate synthase 2 enzyme, essential for initiat-
ing heme biosynthesis in red blood cells, with mutations
linked to X-linked sideroblastic anemia [37]. The SLC4A1l
gene drives the formation of an anion exchanger that mod-
ulates intracellular and extracellular pH by orchestrating
the exchange of chloride, bicarbonate, and carbonate ani-
ons across the cell membrane, an integral process affected
in conditions such as hereditary spherocytosis [34, 38]. The
CA1 gene directs the production of carbonic anhydrase 1, a
cytosolic enzyme that helps maintain tissue and blood pH
balance by aiding the conversion of carbon dioxide and water
into bicarbonate and protons, primarily in red blood cells
[39, 40]. Lastly, the FECH gene governs the expression of fer-
rochelatase, the terminal enzyme in the heme biosynthesis
pathway, with mutations leading to erythropoietic protopor-
phyria due to protoporphyrin accumulation [41]”
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Gene symbol

BCL2L1
ALAS2
SLC4A1
CA1
FECH
SNCA
BPGM
EPB42
GYPB
XK
SLC14A1
KRT1
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TMOD1
FAM46C
TUBB2A
PLEK2
SELENBP1
TRIM10
GYPE
TNS1
OSBP2
GMPR
IFITL1
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OR2W3
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W Avg Ery

B Avg Clin BM
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Fig.5 Rank score-based prioritization of M9.2 genes. A The stacked bar graph shows cumulative scores across six criteria for the 30 M9.2 genes. B
The radar plot represents individual scores for the 5 top scoring genes: BCL2L1, ALAS2, SLC4A1, CA1, and FECH
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- Statement a—relevance to erythroid cells and
erythropoiesis:

“While BCL2L1 plays a general role in controlling
cell death, there is no evidence it is specifically associ-
ated with erythroid cells or erythropoiesis. In contrast,
ALAS2, SLC4A1, CAl, and FECH have critical roles tied
to erythroid cell function and erythropoiesis. ALAS2 is
highly expressed in erythroid progenitors and is essential
for heme biosynthesis, a process vital for red blood cells
[42]. SLC4AL1 is highly expressed in erythroid cells, where
it maintains pH balance and facilitates oxygen transport.
Mutations in SLC4A1 can lead to hereditary spherocyto-
sis [43]. CAl is strongly associated with erythroid cells
due to its high expression in red blood cells and role in
maintaining their pH balance [44]. FECH is also highly
expressed in erythroid cells and is essential for heme
biosynthesis during erythropoiesis [45, 46]. In summary,
while BCL2L1 has a general role in apoptosis, ALAS2,
SLC4A1, CAl, and FECH are integral to erythroid cell
physiology and erythropoiesis”

Statement b—is used as a clinical biomarker:

“The potential utility of BCL2L1, ALAS2, SLC4Al,
CAl, and FECH as clinical biomarkers varies consider-
ably. While BCL2L1 is not commonly utilized as a bio-
marker in clinical settings, it might be of interest in
certain malignancies due to its key role in apoptosis
regulation, although further research is warranted [47].
ALAS2 is not extensively used as a clinical biomarker,
except as a biomarker and therapeutic target for X-linked
sideroblastic anemia [48]. SLC4A1 has clinical relevance
as a biomarker for hereditary spherocytosis and as a ther-
apeutic target in sickle cell disease and other red blood
cell disorders [49]” CAl, is not broadly used as a bio-
marker. “Lastly, while FECH is not typically viewed as a
’biomarker’ in a conventional sense, its mutations serve
as genetic markers for erythropoietic protoporphyria,
and its deficiency can be used as a biomarker for this and
other porphyrias [50]”

Statement c—potential relevance as a blood tran-
scriptional biomarker:

“BCL2L1, ALAS2, SLC4A1, CAl, and FECH each
exhibit potential utility as blood transcriptional bio-
markers in specific clinical contexts. BCL2L1, due to its
central role in apoptosis regulation, holds potential as
a biomarker for diseases associated with apoptosis dys-
regulation, including certain cancers [47], albeit further
research is necessary. ALAS2, given its fundamental
role in heme biosynthesis, could potentially serve as a
biomarker for conditions such as X-linked sideroblas-
tic anemia [48], but it is not typically utilized as a blood
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transcriptional biomarker. SLC4A1l, due to its cru-
cial function in red blood cell physiology and its link to
hereditary spherocytosis, may serve as a potential blood
transcriptional biomarker for this condition [49]. CAl,
due to its expression in red blood cells, could potentially
be used as a biomarker for conditions impacting pH bal-
ance in the blood, although more research is warranted
[46]. Lastly, FECH, due to its critical role in heme bio-
synthesis, could serve as a potential blood transcriptional
biomarker for conditions impacting this process, how-
ever, more research is needed for its broader application
[51]”

Statement d—relevance to leukocytes immune biol-
ogy:

“The BCL2L1, ALAS2, SLC4A1, CAl, and FECH genes
each have varying degrees of relevance to circulating
leukocytes immune biology. BCL2L1, due to its role in
apoptosis regulation, is crucial to the lifespan and func-
tion of immune cells and is therefore highly relevant to
leukocyte immune biology [52, 53]. Conversely, ALAS2,
being erythroid-specific, has limited relevance to circu-
lating leukocyte immune biology. There is no significant
evidence pointing towards SLC4Al having relevance
to circulating leukocyte immune biology. CA1, despite
being expressed in some circulating immune cells like
monocytes, only has limited relevance to immune biol-
ogy. Lastly, FECH does not display any significant rel-
evance to the immune biology of circulating leukocytes,
as per the current evidence”

Statement e—is a known drug target:

“The BCL2L1, ALAS2, SLC4Al1, CAl, and FECH
genes are each known to varying degrees as drug targets
in clinical medicine. BCL2L1 is particularly significant
as a target in cancer therapy, where strategies are being
developed to inhibit its anti-apoptotic function [47, 54].
ALAS?2 has been targeted for treatment of X-linked side-
roblastic anemia, although its broader application as a
drug target is currently limited [55-57]. While SLC4A1
could potentially be a drug target for conditions such
as hereditary spherocytosis, more research is needed.
CAl, as part of the carbonic anhydrase group, has been
explored for drug therapy potential, especially consider-
ing its role in pH regulation, and inhibitors are currently
used or studied for conditions like glaucoma, epilepsy,
and cancer [58]. Lastly, while FECH is not a well-docu-
mented drug target, there is interest in its potential for
treating disorders related to heme biosynthesis, including
erythropoietic protoporphyria [59]”

Statement f—potential therapeutic relevance for
immune-mediated diseases:
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“The BCL2L1, ALAS2, SLC4Al, CAl, and FECH
genes exhibit varying degrees of therapeutic relevance
for immune-mediated diseases. BCL2L1, due to its role
in regulating apoptosis in lymphocytes, holds potential
therapeutic value for immune-mediated diseases [60].
ALAS?2, despite its primary role in erythropoiesis, may
have limited relevance for immune-mediated hemo-
lytic anemias. As of 2021, the therapeutic relevance of
SLC4A1 for immune-mediated diseases remains unclear,
although its potential impact on pH or oxygen balance
disorders that affect red blood cells may warrant further
research [43, 61]. CAl is not typically a primary target
for immune-mediated diseases, but the role of members
of the carbonic anhydrase family in managing acid-base
balance or bone resorption in such conditions could be
of interest [62]. Similarly, while FECH is not a well-doc-
umented target for immune-mediated diseases, potential
relevance may exist for certain red blood cell disorders
or porphyrias, necessitating further investigation [63].
In summary, BCL2L1 is the gene with the clearest thera-
peutic relevance for immune-mediated diseases among
this group, due to its direct role in lymphocyte apoptosis.
The other genes have potential connections to immune
disease management, but require more research to deter-
mine their broader therapeutic relevance in this context”

Notably, we failed to identify backing references
for only one of the LLM-generated statement, which
was consequently removed from the summary: “CAl,
although not broadly used as a biomarker, has its altera-
tions associated with conditions such as renal carcinoma
and primary biliary cirrhosis (PBC), hence it can be uti-
lized as a biomarker for these conditions and erythro-
cytic disorders albeit with limitations” And we had to
resort to a manual PubMed search to identify appropri-
ate references in only a few instances. Indeed, for the vast
majority of statements references provided by GPT-4
and/or Claude were real and proved pertinent.

Selection of a top candidate gene based on summarized
justifications

We next endeavored to select a top candidate from each
module. We initially envisioned this task to be performed
by the researchers, based on the information generated
and summarized by the LLMs. However, we found that
GPT-4 and Claude acquitted themselves well of this task
and could provide elaborate arguments to justify their
choice.

Specifically, we requested from GPT-4 and Claude to
each select their top candidate gene for module M9.2
based on the fact-checked summarized justifications
generated in Step 5, taking the six scoring criteria into
account (Step 6). For this task, we compared the model’s
performances when inputting either the fact-checked
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summaries generated earlier in step 5 or the list of 30
candidate genes forming module M9.2. We refer to these
as “stepwise” and “direct” approaches, respectively. The
specific prompts and outputs from both models using
these two approaches can be found side-by-side in
Table 3 (Claude) and Table 4 (GPT-4). Claude selected
ALAS2 as the top candidate gene in both instances.
However, differences in the depth of the justifications
generated employing the stepwise and direct approaches
were notable. In particular, in answering the direct
prompt Claude omitted information about the relevance
of ALAS2 as a clinical biomarker or therapeutic target.
GPT-4 selected BCL2L1 as the top candidate based on its
evaluation of human verified justifications generated for
the top 5 candidates (“stepwise approach”). However, it
selected ALAS2 when prompted directly to select genes
from the entire M9.2 list (“direct approach”). As can be
seen in Table 4, despite the discrepancy the choices were
well justified in both instances.

This finding is noteworthy as it suggests that despite the
general skepticism towards LLMs in such research appli-
cations—stemming from their inclination to generate
fabricated information—they may reliably execute this
specific function. Indeed, both models, when prompted
directly to select candidates among the 30 genes con-
stituting M9.2 picked ALAS2, which was the #2 ranked
genes identified by our stepwise scoring approach. It
was also Claude’s top pick based on the evaluation of the
fact-checked justification summaries. While our results
thus indicate that the models might perform candidate
gene prioritization and selection directly, segmenting the
evaluation into intermediate phases and collecting sup-
plemental data during these stages (e.g., scores) enhances
transparency. This structured approach not only boosts
control, allowing for parameter adjustments, but also
fosters trust since it facilitates verification of the data,
underpinning the decisions taken.

Leveraging reference transcriptome datasets for the final
candidate selection

For module M9.2, GPT-4 and Claude selected different
candidates from the top 5 ranked genes. Given this dis-
crepancy, we proceeded to examine if the models could
utilize transcriptome profiling data to refine the prioriti-
zation of leading candidates (Step 7).

We focused more specifically on three datasets, which
measured transcript abundance in isolated cell popu-
lations, thus permitting to assess the restriction of the
expression of the top 5 candidates.

The first dataset profiling transcript abundance across
a wide range of hematopoietic cells and precursors
(GSE24759, [21]), is available from our developmental
immunology GXB collection (http://developmentalim


http://developmentalimmunology.gxbsidra.org/dm3/geneBrowser/show/4000026
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munology.gxbsidra.org/dm3/geneBrowser/show/40000
26, [22]). The second dataset measuring transcript abun-
dance in monocytes, neutrophils, B-cells, CD4 + T-cells,
CD8+ T-cells and natural killer (NK) cells and in whole
blood (GSE6042459, [18]). It is accessible via the “CD2K”
GXB collection (http://cd2k.gxbsidra.org/dm3/geneB
rowser/show/4000098). For additional perspective, a
third transcriptome dataset, which measured transcript
abundance in whole blood in patients with a wide range
of pathological or physiological states was also accessed
(GSE100150). This collection of reference datasets was
employed for the development of our BloodGen3 mod-
ule repertoire and has been described in detail previously
[17]. The data is available via the CD2K GXB instance
(http://cd2k.gxbsidra.org/dm3/geneBrowser/list): “A
Transcriptome Fingerprinting Assay for Clinical Immune
Monitoring” datasets] and BloodGen3 app (https://drinc
hai.shinyapps.io/BloodGen3Module/).

We first retrieved the transcriptional profiles of
BCL2L1, ALAS2, SLC4A1, CAl and FECH. Abundance
profiles of those five genes across the comprehensive
set of hematopoietic cells and precursors assembled
by Novershtern et al. indicated a high level of restric-
tion of their expression in CD71+ GYPA + erythroid cell
populations (ERY3-5 populations) (Fig. 6A). As we have
reported previously, it is a characteristic that is common
to most genes constituting A37 modules. However, nota-
bly, BCL2L1 displayed overall much lower abundance
levels in comparison to the other four genes. In the sec-
ond reference dataset from Speake et al., high levels of
expression were detected in whole blood for BCL2L1,
SLC4A1 and ALAS2, in comparison to isolated leukocyte
populations (Fig. 6B). This is consistent with these genes
being expressed by circulating erythroid cells which are
present in whole blood but would be excluded upon iso-
lation of various leukocyte populations. Notably, abun-
dance levels observed in whole blood were considerably

(See figure on next page.)
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higher for ALAS2 and to some extent BCL2L1, when
compared to SLC4A1l, FECH and CA1 levels. The whole
blood transcriptome profiles from the BloodGen3 data-
set confirmed at the level of module M9.2 that the over-
all abundance of the genes constituting this module was
increased most prominently in the whole blood of sub-
jects with metastatic melanoma, in pregnant women,
followed by patients with acute respiratory syncytial
virus (RSV) infection and liver transplant recipients
(Fig. 7A). Decreased abundance was most prominently
observed in patients with multiple sclerosis (MS), HIV
infection, Chronic Obstructive Pulmonary Disease
(COPD), Juvenile Dermatomyositis (JDM) and Influenza
virus infection.

Integrating this information into the LLM-driven pri-
oritization and selection process posed a challenge, espe-
cially in ensuring that the models received both the data
and the essential contextual metadata for interpretation.
Given that the main interface for generative LLMs is text
we endeavored to convert expression tables into textual
input. For this a concatenating function was utilized to
automatically generate sentences such as: “In Human
Neutrophils, RNA sequencing detected BCL2L1 RNA at
a count of 34", which encapsulates both measurements
and parameters such as, measurement method, species,
or sample types. Another such generated sentence for the
Altman et al. dataset was: “In Human Whole blood, the
abundance of BCL2L1 RNA measured by Microarrays
differed in patients with acute influenza infection com-
pared to controls by a Log2 fold change of — 0.3697682".
Here we adopted a multi-tier prompting strategy which
permitted to factor in altogether the fact-checked sum-
marized justifications obtained earlier in step 5 and the
textualized expression values from the three reference
datasets. Five separate prompts were designed to carry
out this task (see methods for details).

Fig. 6 Transcriptional profiles of the top 5 scoring candidate genes in reference leukocyte transcriptome datasets. The stacked bar graphs

show levels of transcript abundance for top 5 scoring M9.2 genes, in: A a dataset comprising isolated leukocyte and hematopoietic progenitor
populations contributed to the NCBI gene expression omnibus (GEO) by Novershtern et al. (GSE24759) and B a dataset comprising whole

blood and leukocyte populations contributed by Speake et al. (GSE6042459). Abbreviated notations for the Novershtern dataset are as follows:
HSC1, Hematopoietic stem cell CD133 +CD34dim; HSC2, Hematopoietic stem cell CD38- CD34 +; CMP, Common myeloid progenitor;

MEP, Megakaryocyte/erythroid progenitor; ERY1, Erythroid CD34 4+ CD71 + GlyA-; ERY2, Erythroid CD34- CD71 + GlyA- ERY3, Erythroid

CD34- CD71+GlyA+; ERY4, Erythroid CD34- CD71lo GlyA+; ERY5, Erythroid CD34- CD71- GlyA+; MEGAT, Colony Forming Unit-Megakaryocytic;
MEGA2, Megakaryocyte; DENDa1, Plasmacytoid dendritic cell; DENDa2, Myeloid dendritic cell; GMP, Granulocyte/monocyte progenitor; GRANT,
Colony Forming Unit-Granulocyte; GRAN2, Granulocyte (Neutrophilic Metamyelocyte); GRAN3, Granulocyte (Neutrophil); MONO1, Colony Forming
Unit-Monocyte; MONO2, Monocyte; BASO1, Basophil; EOS2, Eosinophil; Pre-BCELL2, Early B cell; Pre-BCELL3, Pro-B cell; BCELLa1, Naive B cell;
BCELLa2, Mature B cell, able to class switch; BCELLa3, Mature B cell; BCELLa4, Mature B cell, class switched; NKa1, Mature NK cell_CD56- CD16 +CD3-;
NKa2, Mature NK cell_CD56+CD16+CD3-; NKa3, Mature NK cell CD56- CD16- CD3-; NKa4, NKT cell; TCELL1, CD8 + effector memory RA; TCELL2,
Naive CD8+T cell; TCELL3, CD8 +effector memory cell; TCELL4, CD8 + central memory; TCELL6, Naive CD4 +T cell; TCELL7, CD4 + effector memory
cell; TCELL8, CD4 + central memory; Note: NKa1-4 as well as DENDa1 and DENDa?2 cells were isolated from adult peripheral blood, other cell

populations were isolated from cord blood


http://developmentalimmunology.gxbsidra.org/dm3/geneBrowser/show/4000026
http://developmentalimmunology.gxbsidra.org/dm3/geneBrowser/show/4000026
http://cd2k.gxbsidra.org/dm3/geneBrowser/show/4000098
http://cd2k.gxbsidra.org/dm3/geneBrowser/show/4000098
http://cd2k.gxbsidra.org/dm3/geneBrowser/list
https://drinchai.shinyapps.io/BloodGen3Module/
https://drinchai.shinyapps.io/BloodGen3Module/
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In response to the first prompt, which provided the
fact-checked summarized justifications from step 5 as
input, the results obtained were similar to those reported
earlier for Step 6, with GPT-4 selecting BCL2L1 as its
top pick and Claude selecting ALAS2. These selections
were maintained despite additional guiding contextual
information being provided in the prompt: “Based on the
summary below, please recommend the top candidate
gene to include in a targeted blood transcriptional profil-
ing panel. The intent is for the selected gene to be rep-
resentative of an erythroid cell signature associated with
response to mRNA vaccines, severity of RSV infection
and that found to be expressed at high levels in patients
with metastatic melanoma and in liver transplant recipi-
ents. Please weigh the following criteria equally in your
recommendation: [etc..../” GPT-4 and Claude’s full
response to this and subsequent prompts can be found in
Table 5.

The second prompt provided as input the textual-
ized transcriptional profiling data from the Speake et al.
dataset. At the end of the prompt the following request
was made: “Given this additional RNA-seq expression
data, does your recommended gene selection remain the
same? Please explain which gene you would recommend
at this stage and why, incorporating both the summarized
information provided earlier and RNA-seq data in your
rationale” Claude maintained its initial recommenda-
tion of ALAS2 “as the top candidate gene to include in
the targeted blood transcriptional profiling panel” Fur-
ther stating that “The RNA-seq data confirms the eryth-
roid-specific expression of ALAS2, with counts of 616 in
whole blood but only 1 in all the leukocyte subsets. This
aligns perfectly with the intent to select a gene represent-
ative of an erythroid signature” (see Table 5 for the full
transcript). Notably, the textualized transcriptome data
provided at this step led GPT-4 to reconsider its choice
of BCL2L1 as its top candidate, selecting ALAS2 instead:
“With the addition of the RNA-seq data, it’s clear that
ALAS?2 is the most abundantly expressed gene in whole
blood with a count of 616. This contrasts with BCL2L1,
the initially recommended gene, which exhibits a lower
expression level in whole blood (280). Importantly,
ALAS2 demonstrates minimal expression in all other
tested immune cells (counts of 1), suggesting a strong

(See figure on next page.)
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erythroid cell-specific expression, fitting the criteria to be
representative of an erythroid cell signature. BCL2L1, on
the other hand, is more uniformly expressed across vari-
ous cell types, which makes it less specific to erythroid
cells. Given these findings, I recommend reconsidering
the selection and placing ALAS2 as the top candidate
gene for inclusion in the targeted blood transcriptional
profiling panel” GPT-4 goes on to detail its rationale, to
finally conclude: “By combining both the RNA-seq data
and the summary provided earlier, it appears that ALAS2
would be a more appropriate candidate due to its high
expression in whole blood and its critical role in eryth-
ropoiesis, despite its limited involvement in leukocyte
immune biology and use in immune-mediated diseases”
We in turn attempted to input textualized transcrip-
tional profiling data from the Novershtern et al. and Alt-
man et al. datasets. We were not successful with GPT-4,
given limits imposed on the amount of information it
can receive as input (8192 tokens), which was exceeded
by the Novershtern dataset. Breaking the input down in
multiple prompts was unsuccessful as GPT-4 lost the
thread of the conversation as a result and failed to factor
in the summarized justification and the earlier RNAseq
dataset in its selection of a top candidate. This was also
the case when the Novershtern et al. dataset was omitted
and only the Altman dataset provided (Table 5). No such
issues were however encountered with Claude, which
supports 100,000 tokens of context. We were thus suc-
cessful in inputting transcriptional profiles for all three
datasets and completed all the prompts (Table 5). Prompt
5 stated: “Could you please summarize the key conclu-
sions you have drawn from the conversation so far?
which Claude answered as follows: “Based on reviewing
the initial summary, RNA-seq data, microarray data, and
patient cohort fold change data provided sequentially,
my conclusions are: I would recommend ALAS2 as the
top candidate gene for inclusion in the intended tar-
geted blood transcriptional profiling panel based on its:
(1) Crucial, erythroid-specific role in heme biosynthesis,
making it a good representation of an erythroid signature,
(2) Lack of expression in leukocytes and high, restricted
expression in erythroblast subsets, confirmed by both
RNA-seq and microarrays, (3) Large, consistent fold
changes across conditions like RSV infection, juvenile

Fig. 7 Transcriptional profiles of the top 5 scoring candidate genes across 16 reference blood transcriptome datasets. A The box plot shows

the changes in abundance of transcripts comprising the M9.2 module, expressed within a cohort as the percentage of genes showing differential
expression between each patient and the respective set of control subjects for this cohort. Differential expression is based on a fixed cut-off (Log2
Fold Change > 1.5, difference > 10). These values are expressed as % module activity and can range from+100% (all genes are upregulated) to -100%
(all genes are down regulated). B Box plots show expression levels for the top 5 scoring M9.2 genes in patient cohorts relative to respective control
subjects matched for demographics variables. The datasets were contributed by Altman, Rinchai et al. (GSE100150) [17]
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arthritis, and melanoma that were highlighted as being
relevant, (4) Established utility as a therapeutic target in
erythroid disorders like sideroblastic anemia, (5) Poten-
tial as a biomarker for disrupted erythropoiesis based on
its tight regulation. The other genes (BCL2L1, SLC4Al,
CAl, FECH) are more broadly expressed across immune
cells and their fold changes are smaller in magnitude or
less consistent across key disease states. Each additional
dataset provided further evidence supporting ALAS2 as
the top choice over other candidates based on erythroid
specificity and associations with conditions of interest.
In summary, the collective evidence strongly supports
ALAS2 as the top gene for inclusion in the intended
blood profiling panel to represent an erythroid signature.
The key factors are its erythroid-restricted expression
and marked regulation across relevant conditions..

The final conclusive statement generated by Claude is
notable in the balance it strikes between the information
provided that was derived from knowledge about candi-
date genes significance and from relevant transcriptional
profiling datasets. Overall, the findings obtained in this
use case demonstrate the capabilities of LLMs in aiding
with rationale target prioritization and selection, with
minimal human input.

The workflow described above has been implemented
in other modules by participants in the data mining
workshop. As a result, we were able to parallelize this
process and proceed with the selection of candidates
from the 11 A37 modules (Table 2). Prioritization reports
are available as supplementary material (Additional File
2, Additional File 3, Additional File 4, Additional File 5,
Additional File 6 and Additional File 7, Additional File 8,
Additional File 9, Additional File 10, Additional File 11,
Additional File 12), and LLM scores have been generated
for all 11 modules (Fig. 8).

Discussion

In this study, we aimed to investigate the potential utility
of large language models (LLMs) in addressing a signifi-
cant bottleneck in the knowledge-driven selection of can-
didate biomarkers derived from systems-scale molecular
profiling data. LLMs were successfully integrated into
a new candidate gene prioritization workflow situated
downstream of an established transcriptional module
repertoire construction algorithm [17, 64], and upstream
of a gene-centric workflow designed for the in-depth
characterization of candidate genes [30, 31] (Fig. 1).
LLM tasks ranged from identifying convergences among
genes in a circulating erythroid module, to scoring can-
didates based on specific contextualized criteria, to sum-
marizing justifications, retrieving supporting references,
and determining an overall candidate for inclusion in a
targeted transcriptional assay measuring a circulating
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erythroid signature, relying both on the interpretation of
biomedical knowledge and transcriptional profiling data.
Benchmarking multiple LLMs quickly revealed that not
all four models tested could perform these tasks satisfac-
torily. Indeed, only two models were eventually employed
for candidate gene prioritization and selection: GPT-4,
the most advanced model from OpenAl, and Claude, a
model developed by Anthropic. This decision was made
despite certain accessibility limitations, as GPT-4 is avail-
able only to "OpenAl plus" subscribers, and at the time
of writing, Claude was only accessible in the United
States and the United Kingdom. It is worth noting that
Anthropic released Claude 2 after our benchmarking
was completed. We observed noticeable improvements
in both the speed and quality of the output generated by
Claude 2, which reaffirmed our decision to utilize both
GPT-4 and Claude concurrently when performing these
tasks.

One critical aspect of the work was designing suitable
“prompting strategies” One of the key prompts which we
devised requested models to provide numerical scores
indicating a statement’s accuracy for a given gene. It also
specified an output format, facilitating subsequent pars-
ing of the large volume of information generated. LMMs
proved capable of scoring straightforward statements,
like evaluating a gene’s association with erythroid cells
or erythropoiesis — information which arguably could
also at least partly be retrieved from Gene Ontology or
pathway enrichment tools, albeit lacking the nuances
offered by a 1-10 scoring system. But more interest-
ingly, models could also score more contextualized and
nuanced statements, like potential utility as a blood tran-
scriptional biomarker, relevance to leukocyte biology, or
therapeutic relevance for immune diseases. In doing so,
LMMs performed basic inferencing, for instance linking
a gene’s erythropoiesis role and biomarker potential, and
incorporated these inferences when scoring candidates.
The process of designing prompts involved some experi-
mentation, and in some instances, it was "collaborative"
as we sought feedback from the models to enhance the
clarity and scope of the prompts. We also found that the
quality and accuracy of the output generated by the Large
Language Models (LLMs) were directly proportional to
the extent of the task. For instance, LLMs showed reluc-
tance to identify functional convergences for extensive
gene lists (~ >30) or provided limited justifications when
tasked with scoring more than 2-3 genes in a single
prompt—which was the maximum number suggested by
GPT-4. And as a result, we decided to request the scoring
of only one gene per prompt. Perhaps most notably, the-
supporting references requested while prompting LLMs
for scores and justifications on six different statements
were seldom factual. However, they were consistently
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Fig. 8 Overview of LLM-generated scores for A37 module genes. This network represents the scores generated by two LLMs, GPT-4 and Claude,
for six prespecified criteria, across a pool of candidate genes distributed across 11 BloodGen3 modules from the aggregate A37. Each pie chart
shows the relative magnitude of the averaged score from the two models. The size of each chart is proportional to the overall cumulative score
across the six criteria

accurate at a later stage when the LLMs were prompted
to provide supporting references for specific statements
(Step 5). Notably, the phrasing of the prompt was found

to be critical for this task. When requested directly to
provide relevant references supporting a given statement
GPT-4 often declined and explained that it was “beyond
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its ability as a language model” But when requested to
fact-check a statement and provide backing references
it readily obliged and acquitted itself of this task well.
Another powerful application of LLMs in this workflow
was the synthesis of information generated by the mod-
els themselves to justify the scores attributed to the top
ranked genes. Indeed, after researchers fact-checked
these statements—which again involved using LLMs to
retrieve backing references—it was possible to utilize
these summaries to request the models to identify their
top pick. Notably, both GPT-4 and Claude performed
this task remarkably well, providing elaborate and logical
argumentation to support their choices. Yet, divergences
in “opinion” between the two models remained for the
pick of the top candidate for M9.2 module, which was set-
tled with the input of transcriptome profiling data, that
the models were able to consider in making their final
determination, eventually converging to select ALAS2 as
the top candidate for this module. This finding is notable
as it opens the possibility of generalizing the use of LLMs
for biomedical data analysis and interpretation.

While our results are promising, it is important to
acknowledge the inherent limitations of these models. As
widely reported and experienced here, LLM-generated
information is not always factual. As mentioned earlier,
when prompted for backing references for the state-
ments generated in association to their scores (Step 3),
even the best models largely provided “fake” references.
As demonstrated, instances of information "halluci-
nation" can be addressed through prompt engineering
and fact-checking. However these issues, which have
been widely reported, present considerable challenges to
the adoption of LLMs as research tools in biomedicine.
For this reason, even though, as we have shown, LLMs
could reasonably handle the task of prioritizing a list of
candidate genes when directly prompted, the level of
trust in the models and the answers they generate could
be insufficient for systematic adoption. Thus, the multi-
step process that we implemented, which includes checks
and balances and improves transparency of the decision-
making process, might offer a viable pathway towards
more widespread adoption of LLMs as research tools.

Another inherent limitation of LLMs is that their relia-
bility is closely tied to the quality and comprehensiveness
of the training data. While they excel at aggregating and
summarizing vast amounts of existing biomedical litera-
ture, they may be limited in generating insights beyond
what is already documented. In our view, LLMs are
unlikely to replace traditional scientific methods; instead,
they serve as valuable augmentations. They streamline
the laborious process of sifting through extensive litera-
ture and data, as exemplified in our knowledge-driven
gene prioritization pipeline.
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In recognition of the rapidly evolving landscape of Large
Language Models (LLMs) and their associated tools, we
also acknowledge the limitation of focusing on a select
few models in this study. At the time of this research, our
choice centered around widely recognized and empiri-
cally proven models, specifically OpenAl's GPT-4 and
Anthropic’s Claude, as these provided a robust baseline
for our gene prioritization tasks. While newer models and
tools continue to emerge, offering potentially different
capabilities or performance metrics, the LLMs chosen for
this project were deemed most suitable for this specific
application. Future iterations of this work may benefit
from evaluating these emerging technologies, but for the
scope and timing of the current project, we believe our
selection was appropriate and effective.

Conclusions

In conclusion, our findings underscore LLMs potential
in enhancing knowledge-driven candidate gene prior-
itization and selection processes. Through this study, we
demonstrated that LLMs could direct gene selection with
minimal human input, bringing about significant advance-
ments in efficiency and productivity. Our ongoing efforts
in developing scripts for interfacing with the GPT-4 and
Claude APIs should further expedite the prioritization
of extensive module repertoires such as BloodGen3 and
pave the way for the creation of a universal immune pro-
filing TFA panel. Moreover, basic parameter adjustments
in such streamlined workflow could also allow for the
design of disease-specific panels with minimal effort. As
previously demonstrated with our work on COVID-19,
this could include favoring the selection of genes specifi-
cally relevant to the pathophysiology of the target disease
[14]. Although this development is still in its preliminary
stages, our objective is to provide a tool that streamlines
the gene prioritization process while maintaining trans-
parency, accuracy, and relevance, especially in the context
of disease-specific applications.
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