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ABSTRACT HIV incidence is a key measure for tracking disease spread and identifying 
populations and geographic regions where new infections are most concentrated. The 
HIV sequence population provides a robust signal for the stage of infection. Large-scale 
and high-precision HIV sequencing is crucial for effective genomic incidence surveil
lance. We produced 1,034 full-length envelope gene sequences from a seroconversion 
cohort by conducting HIV microdrop sequencing and measuring the genomic incidence 
assay’s genome similarity index (GSI) dynamics. The measured dynamics of 9 of 12 
individuals aligned with the GSI distribution estimated independently using 417 publicly 
available incident samples. We enhanced the capacity to identify individuals with recent 
infections, achieving predicted detection accuracies of 92% (89%–94%) for cases within 6 
months and 81% (74%–87%) for cases within 9 months. These accuracy levels agreed 
with the observed detection accuracy intervals of an independent validation data 
set. Additionally, we produced 131 full-length envelope gene sequences from eight 
individuals with chronic HIV infection. This analysis confirmed a false recency rate 
(FRR) of 0%, which was consistent with 162 publicly available chronic samples. The 
mean duration of recent infection (MDRI) was 238 (209–267) days, indicating an 83% 
improvement in performance compared to current recent infection testing algorithms. 
The shifted Poisson mixture model was then used to estimate the time since infection, 
and the model estimates showed an 88% consistency with the days post infection 
derived from HIV RNA test dates and/or seroconversion dates. HIV microdrop sequencing 
provides unique prospects for large-scale incidence surveillance using high-throughput 
sequencing.

IMPORTANCE Accurate identification of recently infected individuals is vital for 
prioritizing specific populations for interventions, reducing onward transmission risks, 
and optimizing public health services. However, current HIV-specific antibody-based 
methods have not been satisfactory in accurately identifying incident cases, hindering 
the use of HIV recency testing for prevention efforts and partner protection. Genomic 
incidence assays offer a promising alternative for identifying recent infections. In our 
study, we used microdroplet technologies to produce a large number of complete HIV 
envelope gene sequences, enabling the accurate detection of early infection signs. 
We assessed the dynamics of the incidence assay’s metrics and compared them with 
statistical models. Our approach demonstrated high accuracy in identifying individuals 
with recent infections, achieving predicted detection rates exceeding 90% within 6 
months and over 80% within 9 months of infection. This high-resolution method holds 
significant potential for enhancing the effectiveness of HIV incidence screening for 
case-based surveillance in public health initiatives.
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A ccurate measurement of HIV incidence is integral to assessing the HIV/AIDS 
epidemic over time and across geographic regions and evaluating intervention 

and prevention programs (1–5). Identifying newly infected individuals can help prioritize 
the target population for interventions, reducing the risk of onward transmissions and 
maximizing the impact of public health services (6).

The recent infection testing algorithm (RITA) has been used for incidence estimation 
in a range of cross-sectional surveys, including Population HIV Impact Assessment (PHIA) 
surveys and the South Africa National HIV Prevalence, Incidence, Behavior and Communi
cation Surveys (7–11). However, one of the key performance metrics of HIV incidence 
assays, the mean duration of recent infection (MDRI) was estimated to be 130 days for 
RITA, indicating that around 64% of incident cases cannot be identified (12). Additionally, 
the MDRI of RITA is dependent on the subtype of HIV, which requires local adjustment of 
MDRI based on the subtype distribution in the region (13). The high likelihood of recently 
infected individuals being misclassified can impede the use of HIV recency testing for 
case-based surveillance and partner protection efforts (14).

The genomic incidence assay has offered greater precision in determining the stage 
of infection compared to current serologic approaches (15). The genomic incidence 
assay detects the similarity of HIV envelope gene sequences as a signature of recent 
infection (16–19). To effectively determine genomic variability for population incidence 
surveillance, it is necessary to implement high-throughput sequencing technologies to 
process a large volume of samples while minimizing sequencing errors. HIV microdrop 
sequencing has addressed these challenges by labeling HIV templates with a unique 
molecular identifier (UMI) (20–22), amplifying them in around 20,000 microreactors 
(15), and sequencing the full-length HIV envelope gene by long-read high-throughput 
sequencing that produces millions of reads with greater than 99.9% accuracy (23).

In this study, we used HIV microdrop sequencing to investigate the incidence assay’s 
genome similarity index (GSI) dynamics from the study participants, who were serially 
followed from their early stages of infection in the Centers for Disease Control and 
Prevention (CDC) seroconversion cohort. The GSI dynamics were quantitatively evaluated 
via statistical modeling of population-wide variability. We then calculated the MDRI by 
choosing a threshold with the false recency rate (FRR) at 0% to eliminate the uncertainty 
associated with FRR. From the full-length HIV envelope gene sequences, we estimated 
the timing of infection using an acute HIV evolution model. We also evaluated the assay’s 
performance with chronic cases from the Los Angeles County-University of Southern 
California (LAC-USC) Rand Schrader clinic cohort.

MATERIALS AND METHODS

Study cohorts

We sequenced 62 specimens collected from 12 study participants who were serially 
followed in the CDC seroconversion cohort from the CASPIR [CDC & Agency for Toxic 
Substances and Disease Registry (ATSDR) Specimen Packaging, Inventory and Reposi
tory] (CDC IRB protocol #4660) (24). Both HIV RNA negative and positive test dates were 
available (Table 1), allowing us to determine the interval of infection time. Furthermore, 
enzyme immunoassay (EIA) test records (Table 1) provided us with each individual’s 
seroconversion timeframe. The samples collected before seroconversion were at Fiebig 
stage I or II, and their time since infection was estimated as 19.5 (13–34) days (25, 26). 
Infection time estimates are listed in Table 2 (see the Supplementary Material for more 
details).

We also studied eight study participants who were enrolled at the LAC-USC Rand 
Schrader Clinic (USC IRB protocol #HS-12–00121), as previously reported (17). Partici
pants were confirmed to be chronically infected at the time of sample collection, based 
on their documented first positive HIV antibody test records [enzyme-linked immuno
sorbent assay (ELISA) and Western blot analysis] or due to an AIDS diagnosis with CD4+ 

T cell count below 200 cells/mm3 (Table 3). The study IDs of study participants were 
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anonymized by assigning serial numbers for the CDC seroconversion cohort and random 
codes for the Rand Schrader Cohort. All study participants provided written informed 
consent at enrollment.

Publicly available incident and chronic specimens

To infer the GSI probability density function, publicly available HIV complete envelope 
gene sequences from 417 incident specimens were analyzed as previously described 
(see the Supplementary Material for data sources) (18, 19). An additional 107 publicly 
available incident samples were used to measure the detection accuracy of recent 
infections (18, 19). We also analyzed 162 publicly available chronic specimens (18, 19).

HIV RNA extraction, UMI labeling, and microdroplet amplification

HIV RNA was extracted from study participants’ plasma specimens as previously 
described (15). The extracted HIV RNA from each specimen was used to synthesize 
UMI-tagged cDNA with the envelope gene UMI primer, rover1UMIenvB3out (15). 
UMI-tagged HIV cDNA was then loaded into the QX200 Droplet Generator (BioRad) with 
PCR mix and PicoSurf-1 oil (Sphere Fluidics) for droplet generation (15). The droplets 
were then PCR cycled at an annealing temperature of 55°C (15). After purification with 
Ampure XP beads (Beckman Coulter), the second PCR was performed with 8 µL of 
purified PCR product at an annealing temperature of 57°C (15).

Bulk PCR

We additionally amplified UMI-tagged HIV cDNA using conventional bulk PCR methods. 
Each specimen was amplified in one to four replicate reactions with 2 µL of the UMI-
tagged cDNA (15). These were then PCR cycled at an annealing temperature of 55°C. 
After purification, 2 µL of purified PCR product was subjected to the second round of PCR 
at an annealing temperature of 57°C.

Quantification, pooling, and long-read sequencing

The second PCR products from both microdroplet amplification and bulk amplification 
methods were quantified via the Quant-iT PicoGreen dsDNA Assay (ThermoFisher). 
Equimolar amounts of each specimen were then pooled, accounting for the presence 
of untargeted amplicons. The pooled samples were then sequenced using the PacBio 
Sequel II system (PacBio) at DNA Technologies Core, UC Davis Genome Center (15).

High-throughput sequencing data analysis

The full-length envelope gene raw sequencing reads were first demultiplexed based 
on their index sequences. All raw reads sharing the same UMI were then collected 

TABLE 1 HIV RNA test dates and EIA test dates of the CDC seroconversion cohort

Study participant HIV RNA last negative date HIV RNA first positive date HIV EIA last negative date HIV EIA first positive date

SC4 3/14/2008 11/17/2008 11/17/2008 1/14/2009
SC5 9/30/2008 12/16/2008 9/30/2008 12/16/2008
SC8 8/1/2008 8/27/2008 8/27/2008 9/26/2008
SC15 3/12/2009 4/3/2009 4/3/2009 5/13/2009
SC18 12/16/2008 4/2/2009 4/2/2009 5/2/2009
SC19 Not available 7/28/2009 7/28/2009 8/27/2009
SC20 Not available 8/3/2009 8/3/2009 8/24/2009
SC21 3/10/2008 11/9/2009 3/10/2008 11/9/2009
SC22 Not available 10/30/2009 10/30/2009 11/10/2009
SC23 Not available 9/4/2009 9/4/2009 10/30/2009
SC24 Not available 1/8/2010 1/8/2010 1/29/2010
SC25 Not available 1/21/2010 1/21/2010 2/1/2010
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TABLE 2 Serial specimens from CDC seroconversion cohorta

Specimens Sample collection date Days post infection from HIV RNA test Estimated days post infection Number of envelope gene sequences

SC4-1 12/8/2008 (21–269) 40.5 (34–55) 16
SC4-2 1/14/2009 (58–306) 77.5 (71–92) 16
SC4-3 2/11/2009 (86–334) 105.5 (99–120) 14
SC4-4 3/18/2009 (121–369) 140.5 (134–155) 5
SC4-5 4/15/2009 (149–397) 168.5 (162–183) 6
SC4-6 5/14/2009 (178–426) 197.5 (191–212) 16
SC4-7 6/17/2009 (212–460) 231.5 (225–246) 14
SC4-8 11/20/2009 (368–616) 387.5 (381–402) 16
SC4-9 12/16/2009 (394–642) 413.5 (407–428) 6
SC5-1 12/16/2008 (0–77) 38.5 (0–77)b 9
SC5-4 3/5/2009 (79–156) 117.5 (79–156) 41
SC5-5 4/13/2009 (118–195) 156.5 (118–195) 17
SC5-6 5/12/2009 (147–224) 185.5 (147–224) 19
SC5-8 9/14/2009 (272–349) 310.5 (272–349) 6
SC8-1 1/13/2009 (139–165) 158.5 (152–173) 13
SC8-2 2/19/2009 (176–202) 195.5 (189–210) 18
SC8-3 3/19/2009 (204–230) 223.5 (217–238) 13
SC8-6 6/23/2009 (300–326) 319.5 (313–334) 22
SC8-7 7/21/2009 (328–354) 347.5 (341–362) 7
SC15-1 4/14/2009 (11–33) 30.5 (24–45) 30
SC15-2 5/13/2009 (40–62) 59.5 (53–74) 56
SC15-3 6/17/2009 (75–97) 94.5 (88–109) 62
SC18-1 6/19/2009 (78–185) 97.5 (91–112) 22
SC18-2 7/13/2009 (102–209) 121.5 (115–136) 26
SC18-3 8/7/2009 (127–234) 146.5 (140–161) 23
SC18-4 9/14/2009 (165–272) 184.5 (178–199) 5
SC18-5 10/5/2009 (186–293) 205.5 (199–220) 5
SC19-1 9/17/2009 (51–) 70.5 (64–85) 5
SC19-2 10/1/2009 (65–) 84.5 (78–99) 18
SC19-8 3/15/2010 (230–) 249.5 (243–264) 26
SC19-9 7/12/2010 (349–) 368.5 (362–383) 24
SC20-1 8/24/2009 (21–) 40.5 (34–55) 17
SC20-2 10/2/2009 (60–) 79.5 (73–94) 5
SC20-3 10/26/2009 (84–) 103.5 (97–118) 7
SC20-4 12/3/2009 (122–) 141.5 (135–156) 6
SC20-8 4/27/2010 (267–) 286.5 (280–301) 12
SC20-9 6/8/2010 (309–) 328.5 (322–343) 9
SC20-10 7/20/2010 (351–) 370.5 (364–385) 13
SC21-1 11/9/2009 (0–609) 52.2 (34.3–70.2)c 11 (B/F1(5)]
SC21-3 12/30/2009 (51–660) 103.2 (85.3–121.2) 18 (B/F1(10)]
SC21-4 2/3/2010 (86–695) 138.2 (120.3–156.2) 15 (B/F1(7)]
SC21-5 2/26/2010 (109–718) 161.2 (143.3–179.2) 15 (B/F1(9), B/D (1)]
SC21-6 3/29/2010 (140–749) 192.2 (174.3–210.2) 20 B/F1(13)]
SC22-1 11/10/2009 (11–) 30.5 (24–45) 6
SC22-6 4/5/2010 (157–) 176.5 (170–191) 5
SC23-2 2/4/2010 (153–) 172.5 (166–187) 9
SC23-3 3/8/2010 (185–) 204.5 (198–219) 6
SC23-7 7/6/2010 (305–) 324.5 (318–339) 24
SC23-8 7/22/2010 (321–) 340.5 (334–355) 20
SC24-2 1/29/2010 (21–) 40.5 (34–55) 21
SC24-3 3/10/2010 (61–) 80.5 (74–95) 26
SC24-4 4/7/2010 (89–) 108.5 (102–123) 19

(Continued on next page)
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and sorted by their lengths. Raw reads with the most frequent length (the length with 
the highest count in the length histogram) and their closest lengths (when needed) were 
preferentially selected, with a minimum sequencing depth of 35. These selected 
sequences were then aligned using MUSCLE (22), and their consensus sequence was 
obtained. To account for sequencing errors in the UMI region, we removed consensus 
sequences with low read counts when their UMI had less than three nucleotide base 
differences (including gaps) from high-read-count consensus sequences. The set of 
consensus sequences from each specimen was then aligned and trimmed to obtain full-
length envelope gene (HXB2 6225–8795) sequences.

GSI probability density function, MDRI, and detection accuracy

We previously modeled the GSI probability density function as a beta distribution as 
follows (18), with α t = V × GSI− t  and β t = V 1 − GSI− t  . Here, V  is the precision 
parameter and the average GSI was assumed to decrease as a function of time as follows:

(1)GSI(t) = c 1 + exp[ −M/S]
1 + exp[(t −M)/S]′

where M, S, and c are regression parameters. Then, the cumulative density function of 
GSI at time t is given by the regularized incomplete beta function:

(2)CDF(GSI ∣ t) = IGSI[α(t), β(t)] .

TABLE 2 Serial specimens from CDC seroconversion cohorta (Continued)

Specimens Sample collection date Days post infection from HIV RNA test Estimated days post infection Number of envelope gene sequences

SC24-6 6/8/2010 (151–) 170.5 (164–185) 26
SC24-7 7/6/2010 (179–) 198.5 (192–213) 15
SC24-8 7/22/2010 (195–) 214.5 (208–229) 11
SC24-9 8/4/2010 (208–) 227.5 (221–242) 17
SC24-10 8/18/2010 (222–) 241.5 (235–256) 12
SC25-2 3/3/2010 (41–) 60.5 (54–75) 14 [B/D (7)]
SC25-3 4/7/2010 (76–) 95.5 (89–110) 5 [B/D (3)]
SC25-5 6/16/2010 (146–) 165.5 (159–180) 23 [B/D (18)]
SC25-7 7/22/2010 (182–) 201.5 (195–216) 27 [B/D (19)]
SC25-8 8/4/2010 (195–) 214.5 (208–229) 24 [B/D (13)]
aSample collection date, days post infection by RNA test dates (if available), estimated days post infection by seroconversion dates (if available), and the number of 
full-length envelope gene sequences we obtained. The majority of the sequences were subtype B and recombinant sequences were indicated by the number of sequences 
in parentheses, as assigned by the REGA HIV-1 subtyping tool (27).
bHalf-time point of HIV RNA last negative and first positive dates.
cEstimated using SPMM.

TABLE 3 LAC-USC Rand Schrader clinic cohorta

Study 
participant

Sample collection 
date

Minimum days post 
infection

ART status Viral load
(RNA copies /mL)

CD4+ T cell count
(cells/mm3)

Number of envelope 
gene sequences

UD9992b 7/2/2012 48 Naive 1,230 185 16
CX7332 8/7/2012 5,464 Experienced 389,081 63 14 [B/D (1)]
NK9147b 8/8/2012 65 Naive 156,582 87 25
EC8287 8/8/2012−9/11/2012 427 Naive 46,398 591 8
CS0442 10/23/2012 1,947 Experienced 1,980 58 14
CD8867 12/20/2012 3,513 Experienced 22,136 284 14
SK4851 1/9/2013 800 Experienced 91,406 208 27
JN1992 6/5/2013 1,250 Not available 7,328 245 13
aSample collection date, minimum days post infection, ART status, viral load, CD4+ T cell count, and the number of full-length envelope gene sequences we obtained. Most 
sequences were subtype B and recombinant sequences were marked with the number of sequences in parenthesis.
bStudy participants who had an AIDS diagnosis at the time of specimen collection with CD4+ T cell count less than 200 cells/mm3.
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This model was fitted to the 417 incident samples for which an estimated infection 
time was available. The parameters were estimated by using the likelihood function 
(18), under the constraint that the cumulative density function value is 0.014 at GSI = 
0.206 and t = 22 days. This value was empirically obtained using the subset of 71 incident 
specimens at Fiebig stage II.

As derived previously (18), the MDRI was obtained from the integral of the regularized 
incomplete beta function as follows:

(3)MDRI = T −
0

TIθ[α(t), β(t)]dt,
where T= 365 days, and θ is the threshold GSI value that distinguishes chronic from 

incident infections. The detection accuracy for identifying incident cases within a given 
time of infection, τ, is the probability that an individual’s GSI value is not below the 
threshold. This was calculated as

(4)  DA  =  1 −   1τ 0

τIθ α t ,  β t  dt .
RESULTS

Incidence assay metric dynamics

We studied the 62 specimens of 12 ART naive study participants who were serially 
followed from the early stage of infection in the CDC seroconversion cohort (Tables 1 
and 2). We obtained 5–62 full-length envelope gene (consensus) sequences from each 
specimen using HIV microdrop sequencing (15) and conventional bulk PCR methods, 
yielding 1,034 full-length envelope gene sequences (Table 2). Additionally, we obtained 
131 full-length envelope gene sequences from eight study participants in the LAC-USC 
Rand Schrader Clinic cohort (Table 3) (17). The phylogenetic tree of all 1,164 envelope 
gene sequences showed that sequences from the same study participant clustered 
together (Fig. 1A). The tree of the eight serial samples collected from study participant 
SC24 demonstrated a pattern of evolutionary divergence increasing over time (Fig. 1B).

We measured the dynamics of the incidence assay’s metric, the GSI, for 12 individuals 
in the CDC seroconversion cohort. GSI measures the proportion of similar sequences 
in the viral population of each host, permitting us to properly identify the signature of 
a recent infection by accounting for multiple founder infections (15, 17, 19). The GSI 
dynamics were plotted over a heatmap of the fitted density for the GSI distribution over 
time (Fig. 2), where infection times were estimated from HIV RNA test dates, serocon
version dates, and sample collection intervals. We independently estimated the GSI 
probability density as a function of time using 417 publicly available incident samples 
within 1 year of infection (Fig. S1) (18, 19). We verified that 99.2% of these 417 samples 
were located inside the 99% prediction interval (Fig. S1). The estimated cumulative 
density function closely matched the empirical cumulative distribution of GSI at various 
time points, as confirmed by low Wasserstein distances ranging from 0.039 to 0.14 and 
high Pearson correlation coefficients ranging from 0.96 to 0.98 (Fig. 3).

Study participant SC4 was followed for longer than 1 year, from before their 
seroconversion (Table 2). We observed a decrease in GSI over time, with the GSI dynamics 
conforming to the high probability density function region (Fig. 2). We performed 
a one-sample Kolmogorov-Smirnov test to assess how closely the GSI dynamics of 
SC4 approximated the fitted probability density function. The P value for SC4 (0.057) 
indicates no significant departure from agreement between the measured dynamics and 
the model distribution. Similarly, the GSI dynamics of study participants SC5, SC8, and 
SC15 conformed to the model dynamics (P = 0.23, P = 0.51, and P = 0.14). SC22 showed 
GSI values of 1 in their two specimens, one collected within 50 days and another from 
close to 200 days of infection (Fig. 2).
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In study participant SC18, the GSI values of two samples collected around 100 days 
post infection were substantially smaller than the model would predict, followed by an 
increase to nearly 1 and a subsequent decrease in the later time points. This behavior 
was a significant deviation from the model distribution (P = 0.002, Fig. 2). A similar 
pattern of transient GSI increase was obtained in SC19, but the goodness-of-fit indicated 
a lack of significant deviation from the model (P = 0.28, Fig. 2). SC20 showed an overall 
decrease in GSI over time. However, this trend significantly deviated from the model 
distribution, likely due to the relatively low values of GSI at early time points, a signature 
of multiple founders (P = 0.029, Fig. 2 and 5P). Conversely, the GSI dynamics of SC21 
conformed to the model prediction when we approximated the time since infection of 
the first sample as 52.2 days using the shifted Poisson mixture model (SPMM) (P = 0.18, 
Fig. 2 and 5R) (30). The GSI dynamics of SC23, SC24, and SC25 were also consistent with 
the model prediction (P = 0.23, 0.22, and 0.40; Fig. 2).

Mean duration of recent infection and false recency rate

We investigated the sensitivity of MDRI to varying the GSI cutoff value, θ. Previously 
published envelope gene sequences from 162 chronic samples, with a documented 
infection time longer than 1 year, showed GSI values lower than 0.52 (Fig. 4A). Conse
quently, setting the threshold value to 0.52 yielded an FRR of 0%, which can effectively 
reduce uncertainty in the incidence rate. Under this condition, the MDRI was estimated 
to be 238 (209–267) days. This was comparable to the MDRI of 257 (223–288) days when 
the threshold value was lowered to 0.36 with an FRR = 0.62% (0%–1.9%) (Fig. 4B). The 
GSI values of an independent set of eight chronically infected individuals of LAC-USC 

FIG 1 Maximum likelihood trees. (A) Maximum likelihood tree of all 1,165 full-length envelope gene sequences from both the CDC seroconversion cohort 

(denoted by SC) and LAC-USC Rand Schrader Clinic cohort, aligned with the HXB2-envelope sequence. Each colored box represents each study participant’s 

cluster. The envelope gene sequences were aligned using MAFFT (version 7.392) (28), and the resulting alignment was used to build a phylogenetic tree using 

FastTree (version 2.1.8) (29). The final tree was visualized using FigTree (version 1.4.4). (B) Maximum likelihood tree of 147 full-length envelope gene sequences 

from study participant SC24 in the CDC seroconversion cohort. The first sample was colored in pink, and subsequent sequences collected at 40, 68, 130, 158, 174, 

187, and 201 days after the first sample were colored in light red, red, dark red, purple, green, blue, and black, respectively.
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Rand Schrader Clinic and two specimens collected at the chronic stage of the CDC 
seroconversion cohort were below both threshold values, validating the high specificity 
of the genomic incidence assay (Fig. 4C).

The detection accuracy of recent cases was assessed as a function of their infection 
time. As calculated in equation (4), the genomic incidence assay could detect cases 
within 3 months of infection with 95% (95%–96%) accuracy, cases within 6 months with 
92% (89%–94%) accuracy, cases within 9 months with 81% (74%–87%) accuracy, and 
cases within 1 year with 65% (58%–73%) accuracy (Fig. 4D). To validate our findings, we 
measured the detection accuracy using 107 publicly available specimens (18, 19), which 
were 67% (33%–100%) for individuals within 3 months, 82% (75%–90%) for individuals 
within 6 months, 79% (72%–85%) for individuals within 9 months, and 78% (71%–84%) 
for individuals within 1 year. These accuracy levels overlapped with the predicted ones 
every month, as shown in Fig. 4D.

Estimating time since infection

We estimated time since infection using the SPMM, which quantifies early HIV-1 
evolution during acute infections originating from a single or multiple founder viruses 
(30). Figure 5 shows the Hamming distance distribution of SC4-1’s 16 envelope gene 
sequences, along with the model fit. The number of founder strains was estimated to 
be two, as shown in the phylogenetic tree in Fig. 5B. Consistent with the Fiebig staging 
estimate of 40.5 (34–55) days post infection, the SPMM estimated this sample’s time since 
infection as 40.6 (27.3–53.9) days (Fig. 5C). The model estimates for subsequent samples 
were also in agreement with the sample collection intervals (Ρ = 0.98, Fig. 5D through 
F). The model estimates for specimens obtained from SC5 were also consistent with the 
infection times determined by HIV RNA test dates and sample collection intervals (Fig. 5G 
through J). The model estimates for SC15’s specimens overlapped with those by Fiebig 
staging but were greater than those by HIV RNA test dates (Fig. 5K through O).

The Hamming distance distribution of 17 envelope gene sequences obtained from 
SC20’s first sample revealed a signature of three founder strains, as indicated by 
four distinct peaks in Fig. 5P. A phylogenetic tree of these envelope gene sequences 
confirmed the presence of three distinct founders (Fig. 5Q). The infection time of 42.9 
(29.7–56.1) days by SPMM matched the Fiebig estimate of 40.5 (34–55). SPMM estimated 
SC21’s first specimen’s time since infection as 52.2 (34.2–70.2) days (Fig. 5R), which falls 

FIG 2 GSI dynamics for 12 individuals’ samples collected at serial visits. Under each individual trajectory, 

the heatmap (red) showed the fitted densities of the GSI distribution over time. The goodness-of-fit 

P-value was obtained from a one-sample Kolmogorov-Smirnov test.
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within the range determined by HIV RNA test results (Fig. 5S). This participant’s three 
subsequent samples conformed to SPMM (Fig. 5T through W), resulting in a high level of 
association between the model estimates and sample collection intervals (Ρ = 0.79, Fig. 
5X).

The estimated time since infection for SC8-1 using SPMM was higher than the 
estimates obtained using HIV RNA test date and Fiebig staging (Fig. S2B). The model 
estimates for SC18’s specimens were not consistent with HIV RNA test date estimates 
and Fiebig staging, resulting in a negative correlation coefficient (Ρ= −0.79, Fig. S2F). 
On the other hand, SC19, SC24, and SC25 showed a high level of consistency among 
the SPMM estimates, RNA test date estimates, and Fiebig staging (Fig. S2G through P). 
Table 4 presents the model fit results for all specimens that had over 10 envelope gene 
sequences and were collected within 6 months of infection. Out of the 25 specimens 
analyzed, the 95% CI of infection time estimated by SPMM overlapped with the infection 
time estimates based on HIV RNA test dates and/or Fiebig staging for 22 specimens 
(Tables 2 and 4).

DISCUSSION

The primary advantage of our genomic incidence assay is its desirable performance 
metrics for determining incidence. The genomic approach estimated an FRR of 0% and 
an MDRI of 238 (209–267) days, representing an 83% increase in performance compared 
to current recent infection testing algorithms (RITAs) (7–11). While our genomic assay can 
classify 65% (58%–73%) of incident cases as recent overall, it was predicted to have a 
higher accuracy for identifying individuals who have been more recently infected. The 
assay would be able to correctly identify 95% (95%–96%) of incidence cases within 3 
months of infection, 92% (89%–94%) for cases within 6 months, and 81% (74%–87%) for 
cases within 9 months. To validate our predictions, we measured the detection accuracy 
using an independent data set with a maximum duration of infection and found that the 
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accuracy intervals overlapped with the predicted accuracy intervals. The low accuracy 
of current serologic assays has deterred their use in non-incidence surveillance cases, 
such as identifying geographic hotspots, infection transmission clusters, and subpopula
tions with ongoing or emerging transmission (4). Our high-resolution recent infection 

 180

 220

 260

 300

θ1 θ2

FRR=0.62% FRR=0%

M
D

R
I 
(d

a
y
s
)

 0

 10

 20

 30

 40

 50

 0  0.2  0.4  0.6  0.8  1

θ1 θ2
N

u
m

b
e

r 
o

f 
s
p

e
c
im

e
n

s

GSI

 0

 0.2

 0.4

 0.6

 0.8

 1

UD9992 CX7332 NK9147 EC8287 CS0442 CD8867 SK4851 JN1992 SC4-8 SC4-9

θ1

θ2

G
S

I

Study participant

 0

 20

 40

 60

 80

 100

 1  2  3  4  5  6  7  8  9  10  11  12

incident cases

model

D
e

te
c
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

Infection duration (months)

A B

C

D

FIG 4 MDRI, FRR, and detection accuracy. (A) The GSI distribution of previously published envelope gene sequences from 162 chronic samples with an infection 

time longer than 1 year (18, 19). Setting a threshold value of 0.36 (denoted as θ1), the FRR was 0.62% (0%–1.9%). Setting a higher threshold value of 0.52 

(denoted as θ2), the FRR was 0%. (B) The MDRI was estimated as 257 (223–288) days for θ1 and as 238 (209–267) days for θ2. (C) GSI values of eight chronically 

infected individuals from the LAC-USC Rand Schrader Clinic and two chronic specimens from the CDC seroconversion cohort. These values were below both 

θ1 and θ2 thresholds. (D) Detection accuracy of incident cases within a given time of infection using our model (red boxes) and publicly available incident 

specimens with a maximum infection duration (blue boxes) (18, 19). The model predicted that incident cases within 6 months of infection could be detected 

with an accuracy of 92% (89%–94%), which overlapped with the observed accuracy of 67 incident cases within 6 months, at 82% (75%–90%). Similarly, the 

model predicted an accuracy of 81% (74%–87%) for detecting incident cases within 9 months of infection, which overlapped with the measured accuracy for 103 

incident cases within 9 months, at 79% (72%–85%).

Research Article Microbiology Spectrum

September/October 2023  Volume 11  Issue 5 10.1128/spectrum.02285-23 10

https://doi.org/10.1128/spectrum.02285-23


 0

 10

 20

 30

 0  3  6  9  12

SC4-1

N
u

m
b

e
r 

o
f 
p

a
ir
s

Hamming distance

 0

 100

 200

 300

RNA Fiebig SPMM

SC4-1

D
a

y
s
 p

o
s
t 
in

fe
c
ti
o

n

 0

 10

 20

 30

 0  2  4  6  8

SC4-2

N
u

m
b

e
r 

o
f 
p

a
ir
s

Hamming distance

 0

 5

 10

 15

 20

 0  3  6  9  12

SC4-3

N
u

m
b

e
r 

o
f 
p

a
ir
s

Hamming distance

 0

 30

 60

 90

 120

 0  30  60  90  120

SC4

ρ=0.98D
a

y
s
 (

S
P

M
M

)

Days post infection

 0

 30

 60

 90

 0  5  10  15  20

SC5-4

N
u

m
b

e
r 

o
f 
p

a
ir
s

Hamming distance

 70

 100

 130

RNA SPMM

SC5-4

D
a

y
s
 p

o
s
t 
in

fe
c
ti
o

n

 0

 5

 10

 15

 0  5  10  15  20  25

SC5-5

N
u

m
b

e
r 

o
f 
p

a
ir
s

Hamming distance

 0

 50

 100

 150

 200

 0  50  100  150  200

SC5

ρ=1.0D
a

y
s
 (

S
P

M
M

)

Days post infection

 0

 40

 80

 120

 0  3  6  9

SC15-1

N
u

m
b

e
r 

o
f 
p

a
ir
s

Hamming distance

 0

 20

 40

 60

 80

RNA Fiebig SPMM

SC15-1

D
a

y
s
 p

o
s
t 
in

fe
c
ti
o

n
 0

 100

 200

 300

 0  3  6  9  12

SC15-2

N
u

m
b

e
r 

o
f 
p

a
ir
s

Hamming distance

 0

 100

 200

 300

 0  3  6  9  12  15

SC15-3

N
u

m
b

e
r 

o
f 
p

a
ir
s

Hamming distance

 0

 40

 80

 120

 0  40  80  120

ρ=0.99

SC15

D
a

y
s
 (

S
P

M
M

)

Days post infection

 0

 10

 20

 30

 0  40  80

SC20-1

N
u

m
b

e
r 

o
f 
p

a
ir
s

Hamming distance

 0

 5

 10

 0  3  6  9  12

SC21-1

N
u

m
b

e
r 

o
f 
p

a
ir
s

Hamming distance

 0

 200

 400

 600

RNA SPMM

SC21-1

D
a

y
s
 p

o
s
t 
in

fe
c
ti
o

n

 0

 10

 20

 30

 0  5  10  15  20

SC21-3

N
u

m
b

e
r 

o
f 
p

a
ir
s

Hamming distance

 0

 5

 10

 15

 0  5  10  15  20

SC21-4

N
u

m
b

e
r 

o
f 
p

a
ir
s

Hamming distance

 0

 5

 10

 15

 0  5  10  15  20

SC21-5

N
u

m
b

e
r 

o
f 
p

a
ir
s

Hamming distance

 0

 10

 20

 30

 0  5  10  15  20

SC21-6

N
u

m
b

e
r 

o
f 
p

a
ir
s

Hamming distance

 0

 50

 100

 150

 200

 0  50  100  150  200

SC21

ρ=0.79D
a

y
s
 (

S
P

M
M

)

Days post infection

0.0004

0.004

A B C D

E F G H

I J K L

M N O P

Q R S T

U V W X

FIG 5 Infection time estimates by SPMM. (A) The fit of SPMM (red line) to the Hamming distance distribution of SC4-1’s 16 envelope gene sequences (grey 

boxes). The number of founder strains was estimated as two and the time since infection was estimated as 40.6 (27.3–53.9). (B) Two lineages were colored by red 

and blue in the phylogenetic tree of SC4-1’s 16 envelope gene sequences. (C) Time since infection estimated by SPMM was consistent with HIV RNA test date 

estimate of (21–269) days and the Fiebig staging estimate of 40.5 (34–55) days. (D) The fit of SPMM to the Hamming distance distribution of SC4-2. (E) The fit of 

SPMM to the Hamming distance distribution of SC4-3. (F) Our model estimates for the times since infection of the SC4 samples were consistent with the

(Continued on next page)

Research Article Microbiology Spectrum

September/October 2023  Volume 11  Issue 5 10.1128/spectrum.02285-23 11

https://doi.org/10.1128/spectrum.02285-23


detection approach provides significant advantages in enhancing targeted prevention 
efforts and facilitating partner protection programs, thereby maximizing the impact of 
public health services (14, 31).

Producing over 1,000 full-length HIV envelope gene sequences in a high-through
put setting via HIV microdrop sequencing provided unprecedented opportunities for 
measuring the dynamics of GSI. Out of 12 participants studied, the GSI dynamics of 
nine were found to conform to the probability density function of GSI over time, which 
was independently estimated using 417 incident samples with available infection times. 
Although GSI identifies recent infection signals by taking multiple founder infections 
into account, incident samples with multiple founders may still have low GSI values, 

FIG 5 (Continued)

estimates obtained by Fiebig staging and sample collection intervals (Pearson correlation coefficient Ρ = 0.98). (G) The fit of SPMM to the Hamming distance 

distribution of SC5-4. (H) The model estimate agreed with the infection time range based on dates of the last negative and first positive HIV RNA tests. (I) The 

fit of SPMM to the Hamming distance distribution of SC5-5. (J) The model estimates for specimens obtained from SC5 were consistent with the infection times 

determined by HIV RNA test dates and sample collection intervals (Ρ = 1.0). (K) The fit of SPMM to the Hamming distance distribution of SC15-1. (L) The model 

estimate for SC15-1 overlapped with the infection time interval determined by Fiebig staging but was greater than the interval determined by the dates of 

the HIV RNA tests. (M) The fit of SPMM to the Hamming distance distribution of SC15-2. (N) The fit of SPMM to the Hamming distance distribution of SC15-3. 

(O) SPMM’s infection time estimates were consistent with Fiebig estimates for the SC15’s three samples (Ρ = 0.99). (P) The SPMM model fit to the Hamming 

distance distribution of SC20-1’s 17 envelope gene sequences revealed the presence of four peaks, indicating the signature of three founder strains. (Q) Three 

lineages were colored in red, blue, and green in the phylogenetic tree of SC20-1. (R) The fit of SPMM to the Hamming distance distribution of SC21-1. (S) The 

model estimate fell within the range determined by the HIV RNA test results. (T) The SPMM model fit to the Hamming distance distribution of SC21-3. (U) The 

SPMM model fit to the Hamming distance distribution of SC21-4. (V) The SPMM model fit to the Hamming distance distribution of SC21-5. (W) The SPMM model 

fit to the Hamming distance distribution of SC21-6. (X) The model estimates were consistent with the sample collection intervals of SC21 (Ρ = 0.79).

TABLE 4 Results of shifted Poisson mixture modela

Specimens Estimated days post 
infection

Number of founder 
viruses

P-value SSE/AIC

SC4-1 40.6 (27.3–53.9) 2 0.73 0.0048/457.8
SC4-2 58.5 (42.5–74.4) 1 0.54 0.0077/467.4
SC4-3 84.6 (64.2–105.0) 1 <0.001 0.051/477.9
SC5-4 100.8 (87.8–113.9) 2 <0.001 0.059/5014.7
SC5-5 152.3 (127.3–177.2) 2 0.034 0.011/713.4
SC8-1 218.2 (183.9–252.5) 1 <0.001 0.017/448.0
SC15-1 54.3 (43.1–65.5) 1 0.027 0.0043/1580.5
SC15-2 84.9 (74.7–95.2) 1 <0.001 0.0047/6257.4
SC15-3 118.5 (107.0–129.9) 1 <0.001 0.0031/9145.5
SC18-1 202.4 (177.2–227.5) 4 <0.001 0.0072/1391.4
SC18-2 231.9 (207.1–256.7) 2 <0.001 0.0022/1921.6
SC18-3 36.5 (26.0–46.9) 2 <0.001 0.0082/976.9
SC19-2 93.0 (74.2–111.7) 6 <0.001 0.0085/755.3
SC20-1 42.9 (29.7–56.1) 3 <0.001 0.023/479.9
SC21-1 52.2 (34.3–70.2) 3 0.48 0.0062/249.5
SC21-3 166.1 (141.1–191.2) 1 <0.001 0.0053/795.4
SC21-4 157.4 (130.7–184.2) 1 <0.001 0.0078/577.0
SC21-5 171.9 (144.0–199.8) 1 <0.001 0.0043/524.7
SC21-6 210.1 (183.4–236.9) 1 <0.001 0.0056/996.1
SC24-2 60.1 (46.1–74.1) 1 <0.001 0.029/769.2
SC24-3 114.7 (97.3–132.1) 1 <0.001 0.0063/1643.0
SC24-4 108.5 (88.7–128.3) 1 0.64 0.0027/788.8
SC24-6 152.1 (132.1–172.1) 1 <0.001 0.0062/1794.8
SC25-2 89.8 (68.7–111.0) 1 <0.001 0.073/510.4
SC25-5 115.5 (96.8–134.2) 1 <0.001 0.053/1716.9
aEstimated time since infection, number of founder viruses, goodness-of-fit P-value, and sum of squared errors 
(SSE)/Akaike Information Criteria (AIC).
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as observed in study participants SC18, SC19, and SC20. Therefore, caution should be 
exercised as GSI distributions in populations with a high prevalence of men who have sex 
with men (MSM) and injection drug users (IDU) may potentially deviate from our model 
estimates, despite being included in the 417 incidence samples, as these groups have a 
high likelihood of multiple founder infections (32–35).

We used the shifted Poisson Mixture model (30) to estimate time since infection 
for specimens that were collected within 6 months post infection. This model provides 
estimates for the number of founder viruses and time since infection based on the 
intersequence Hamming distribution of envelope gene sequences. In 22 of 25 speci
mens, the model estimates were found to be consistent with independent estimates 
of infection time based on HIV RNA test dates and/or seroconversion dates. This high 
level of consistency suggested that our UMI labeling and consensus sequence approach 
provided a high level of accuracy in quantifying nucleotide base differences among 
circulating HIV strains within an infected individual.

The limitations of the present study included the variability in the number of 
full-length envelope gene sequences obtained from individual specimens, which ranged 
from 5 to 62. A limited number of sequences can make it challenging to detect 
similar sequences, especially in cases of a high number of multiple founder infections. 
Additionally, the lowest recorded viral load for the specimens we have processed was 
1,230 copies/mL, implying potential difficulties in processing specimens with low viral 
loads using HIV microdrop sequencing. Further refinement of the workflow might help 
address these challenges. The restricted availability of high-throughput sequencing is 
also one of the limitations of our proposed incidence surveillance, particularly in low- 
and middle-income countries. To address this, global sequencing core services and 
low-cost open-source laboratory automation can be utilized (36). It is vital to prioritize 
increasing access to genomics in low- and middle-income countries, as advised by 
the World Health Organization (WHO) (37), as this strategic support will enhance the 
effectiveness of our surveillance approach.

In summary, we demonstrated that the incidence assay’s metric can be determined 
with high precision in a high-throughput sequencing setting, which is instrumental 
for high-precision incidence surveillance on a large scale. Additionally, our modeling 
estimated the distribution of genome similarity index over time, enabling us to assess 
the accuracy of identifying recently infected individuals. Our high-resolution approach 
has the potential to maximize the utility of HIV incidence screening for case-based 
surveillance in public health efforts.
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