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Abstract
A significant portion of COVID-19 patients and survivors display marked clinical signs of neurocognitive impairments. SARS-
CoV-2-mediated peripheral cytokine storm and its neurotropism appear to elicit the activation of glial cells in the brain
proceeding to neuroinflammation. While adult neurogenesis has been identified as a key cellular basis of cognitive functions,
neuroinflammation-induced aberrant neuroregenerative plasticity in the hippocampus has been implicated in progressive
memory loss in ageing and brain disorders. Notably, recent histological studies of post-mortem human and experimental animal
brains indicate that SARS-CoV-2 infection impairs neurogenic process in the hippocampus of the brain due to neuro-
inflammation. Considering the facts, this article describes the prominent neuropathogenic characteristics and neurocognitive
impairments in COVID-19 and emphasizes a viewpoint that neuroinflammation-mediated deterioration of hippocampal
neurogenesis could contribute to the onset and progression of dementia in COVID-19. Thus, it necessitates the unmet need for
regenerative medicine for the effective management of neurocognitive deficits in COVID-19.
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Introduction

The severe acute respiratory syndrome coronavirus (SARS-
CoV)-2 infection accountable for coronavirus disease
(COVID)-19 has become one of the leading causes of death
worldwide.1 Notably, elderly people are at a high risk of being
infected with SARS-CoV-2, mainly due to the progressive
physiological deficits and reduced immunogenic competence.2

Moreover, individuals with late-onset comorbid pathogenic
conditions like hypertension, diabetes and coronary heart
disease are highly vulnerable to SARS-CoV-2 infection and
severity of the disease.3 While SARS-CoV-2 infection me-
diates cytokine storm responsible for neuroinflammation and
oxidative stress in the brain, COVID-19-associated long-term
neurological consequences have become increasingly
evident.4-9 A significant portion of COVID-19 patients and
survivors display marked clinical signs of stress, depression,
anxiety, endocrine disruption and neurodegenerative disorders
accounting for a wide array of cognitive deficits ranging from
mild cognitive impairment to irreversible dementia.10 To note,

the neuropathogenic signatures of COVID-19 appear to be
overlapped with many brain disorders like stroke, multiple
sclerosis, seizure, Alzheimer’s disease (AD), Parkinson’s
disease (PD) and Huntington’s disease (HD) in which pro-
gressive sensory-motor impairments, cognitive decline and
memory loss in association with neuroinflammation are highly
evident.6,11,12 Besides, the incidence of SARS-CoV-2-mediated
prion-like disease with cognitive impairments has become
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prominent in post-recovery state.13,14 In addition to post-
COVID-19 dementia and other brain abnormalities, rapidly
progressive dementia and autoimmune encephalitis have also
been reported in individuals immunized with adenovirus-
based vaccines encoding SARS-CoV-2 spike protein.15,16

While the hippocampus of the brain plays an important role
in the regulation of emotions, cognitive functions and long-term
potentiation, some viral infection-induced hippocampal atrophy
results in neurocognitive impairments and memory loss.17,18

Considering the facts, SARS-CoV-2-mediated neuropathogenic
alterations and neuroinflammation might be linked to abnormal
hippocampal plasticity leading to cognitive impairments, mood
disorders and dementia. Thus, understanding the structural and
functional deterioration of the hippocampus responsible for
neurocognitive impairments resulting from neuropathogenic
events of COVID-19 might be highly important. The hippo-
campus is a key neurogenic area of the adult brain that harbours
neural stem cells (NSCs).19,20 NSCs in the hippocampus are
multipotent in nature that give rise to new neurons throughout
life.17,20 While NSC-derived neurogenesis in the hippocampus
represents a key cellular foundation for regenerative plasticity
accounting for various neurocognitive functions including
learning and memory in adulthood,17,19,21,22 impaired hippo-
campal neurogenesis has been established as a potential cause
of progressive memory loss in ageing and many neurode-
generative disorders.23-28 Notably, ageing, stress, depression,
anxiety and neurodegenerative disorders have been char-
acterized by various neurocognitive impairments including
chronic memory deficits due to neuroinflammation-mediated
pathogenic defects in hippocampal neurogenesis regardless
of neuronal dysfunction and synaptic loss.19,22 Therefore, the
establishment of a potential link between SARS-CoV-2-
mediated neuropathogenic changes and the regulation of
hippocampal regenerative plasticity appears to be unequiv-
ocally important with reference to the incidence and degree
of dementia in COVID-19 patients and survivors.

COVID-19 and Mental Disorders

Due to the expanding COVID-19 pandemic, most people
worldwide suffer from different mental problems like stress,
anxiety, depression and panic attacks.10,29,30 Anxiety, stress
and depression-related issues have been reported to be es-
calated dramatically not only in COVID-19 patients but also in
frontline workers, healthcare professionals and caretakers due
to unrelenting workload and for being at great risk of SARS-
CoV-2 infection.30-32 Notably, elderly people, breadwinners of
the family, students and children also experience a significant
level of mental health issues due to lockdown, unmanageable
socioeconomic status, online mode of education, reduced physical
activities, social withdrawal, loneliness and overall uncertainty.10,33

Many cross-sectional studies and meta-analyses have revealed that
a significant portion of COVID-19 survivors and the high-risk
population, especially from the containment zone, have fre-
quently been experiencing insomnia, anxiety, depression and

post-traumatic stress disorder.29,30,34-37 Considering the
aforementioned facts, it is obvious that unmanaged mental health
issues will lead to increased levels of stress hormones like
cortisol, corticosteroid releasing hormone (CRH), epinephrine
and norepinephrine in the circulation that could alter the hy-
pothalamic–pituitary–adrenal (HPA) axis, exacerbate neuro-
inflammation and deteriorate neuroplasticity of the brain.35,38,39

Therefore, identifying the COVID-19-related pathogenic deter-
minants that affect the functional regulation of neuroplasticity has
become very crucial in this unprecedented pandemic situation.

COVID-19 and Neuroinflammation

SARS-CoV-2 enters the human body via the angiotensin-
converting enzyme (ACE)-2 receptor which has been found
to be expressed by airway epithelia, lungs, and various
subpopulations of the brain cells including the endothelial
cells of the cerebral microvascular system.40-42 In addition to
ACE2, neuropilin - 1 (NRP1), a transmembrane receptor, has
also been identified to facilitate the entry of SARS-CoV-2 via
the olfactory epithelium.43 Likewise, other molecular me-
diators that aid the entry of SARS-CoV-2 include angiotensin
II receptor type (AGTR)-2, receptor for advanced glycation
end products (RAGE), transmembrane protease, serine
(TMPRSS)-2, cluster of differentiation (CD)-147 and periph-
eral olfactory receptors.44-48 Upon infection, SARS-CoV-2
radically replicates in the tissues and organs and induces pe-
ripheral and local cytokine storm that potentially deteriorates
the innate immune system.49,50 Based on the experimental data
derived from immunological assays in the plasma samples of
COVID-19 patients, elevated levels of key proinflammatory
determinants including different interleukins (ILs), fibroblast
growth factor (FGF), interferon-gamma (IFN-γ), tumour ne-
crosis factor alpha (TNF-α) and vascular endothelial growth
factor (VEGF) have become evident.50 Among them, the
surplus levels of IFN-γ, TNF-α, IL-1 and IL-6 have been known
to be associated with the dysfunction of the blood–brain barrier
(BBB) as a part of priming the neuroinflammatory process in
the brain.17,51 In the neuropathological study conducted in a
hamster model and post-mortem humans, disruption of the
BBB has been reported in different parts of the brain, with
maximum disruption in the hippocampus.52 It is well known
that peripheral immune response exerts an influence on the
activation of microglial cells resulting in the surplus discharge
of proinflammatory cytokines in the brain through various
mechanisms including sensitising the afferent vagus nerve,
stimulation of neurovascular endothelial cells and antibody-
mediated humoural immune response.53-55 As SARS-CoV-2
and peripheral proinflammatory cytokines enter the brain,
microglial cells get activated and contribute to the proin-
flammatory secretome in the brain.56 Moreover, the gut–brain
axis has been proposed to facilitate the neuroinvasive prop-
erties of SARS-CoV-2 which could also be a pathophysio-
logical basis for microglial activation accounting for the
pathogenic establishment of neuroinflammation.57 Moreover,
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a study by Awogbindin I O et al. haves suggested that microglia
could act in the clearance of the virus, but at the same time,
unregulated activated forms of microglia can trigger robust
neuroinflammation which could contribute to neuronal dys-
function, neurodegeneration and impaired neuroplasticity similar
to PD.58 Notably, pathological signs ofmicroglial activation have
been detected in the post-mortem brains of COVID-19 victims.59

The SARS-CoV-2 infection has also been identified to result in
pathogenic activation of microglia and neuroinflammation
leading to demyelination diseases like multiple sclerosis.60,61

Besides, enhanced levels of IL-8 and TNF-α have been re-
ported in the cerebrospinal fluid (CSF) of a COVID-19 patient.62

Moreover, a significant increase in the neurofilament light chain
(NF-L), a molecular determinant indicating the presence of
neurological disorders, has been observed in the critical
COVID-19 group compared to other groups.63 Similar to non-
COVID-19 stroke controls, a prominent increase in the levels of
TNF-α, IL-6 and IL-12p70 has been found in COVID-19
subjects.63 Notably, various forms of dementia including AD
have been characterized by elevated levels of TNF-α, IL-6 and
IL-1.24,64,65 To note, the hippocampus is highly vulnerable to
neuroinflammation,66,67 while previously, Jacomy H et al. dem-
onstrated that the endemic human coronavirus HCoV-OC43 af-
fects many brain areas and induces neurodegeneration in the
hippocampus.68 Further, based on co-immunolabeling experi-
ments and readout of caspase signalling, it has become apparent
that HCoV-OC43 infects hippocampal-derived astrocytes, mi-
croglia and neurons in vitro and induces apoptosis predominantly
in primary cultures of neurons.68 Considering neuroinflammation
as a major detrimental factor for neuroplasticity, various viral
infections have been reported to affect hippocampal functions due
to the abnormal activation of glial cells.69-71 Thus, SARS-CoV-2-
mediated hippocampal pathology needs distinct scientific attention
as it may govern dementia-related issues.

Neuroimaging Observations and Hippocampal
Atrophy in COVID-19

The hippocampus is one of the important functional regions of
the limbic system of the brain that contributes to the neuro-
regenerative process, long-term potentiation, learning process,
memory formation and regulation of emotion.19,21,72 Defects
in the hippocampal structure and functions due to ageing and
neurological illnesses have been directly linked to emotional
disorders and memory loss.17,73 Many neuroimaging studies
have clearly established that SARS-CoV-2-mediates patho-
genic alterations in various functional regions of the brain
accounting for comorbid neurological deficits.74-78 Recently,
a diffusion tensor imaging (DTI)-based study on COVID-19
survivors revealed abnormal microstructural changes and
hypertrophy in different brain regions including the olfactory
cortex and hippocampus in parallel with memory loss.79 A
magnetic resonance imaging (MRI) based investigation on the
brain of a COVID-19 patient showed hyperintensities in the
unilateral ventricle and temporal lobe along with hippocampal

atrophy indicating the clinical signs of encephalitis.78 Similarly,
a nuclear magnetic resonance (NMR) based case report by
Chiveri L et al. reported a pathogenic lesion in the posterior
portion of the hippocampus of a SARS-CoV-2 positive elderly
woman with neurological deficits.80 Meanwhile, a number of
neuroimaging findings of COVID-19 patients revealed abnor-
malities in the medial temporal lobe in association with cerebral
haemorrhage, stroke, encephalitis and seizure.74,76,77,81,82 Based
on previous retrospective studies and meta-analysis, de Eraus-
quin GA et al. indicated that one in five recovered individuals
from the previous outbreak of SARS-CoV displayed memory
loss.83,84 Presently, ample scientific evidence points towards the
potential link between COVID-19 and AD as both conditions
appear to share a similar pattern in the changes of the
neuroinflammatory molecules like TNF-α and IL-1.11,85

Taken together, SARS-CoV-2-mediated noticeable hippo-
campal pathology appears to be an underlying basis of
neurocognitive impairments in COVID-19 survivors.86-88

Thus, the neuropathogenic findings on the hippocampus of
COVID-19 subjects need to be extended to understand the
underlying cellular basis of dementia, as the chances for the
deterioration of neurogenesis in the hippocampus of COVID-
19 positive cases are highly possible, which could further
result in cognitive decline in the post-recovery state re-
gardless of neurodegeneration.

Neuropathogenic signatures in post-mortem brain
samples and experimental models of COVID-19

The post-mortem analysis of the brains of COVID-19 victims
revealed prominent histopathological signatures of neuronal loss
in different areas of the brain including the cerebral cortex,
cerebellar Purkinje layer and hippocampus.89 Haemorrhage, acute
hypoxic injury and neuroinflammation have been commonly
noticed in the post-mortem brains of COVID-19 victims.90,91

Brain ischaemic injury has also been identified in a post-mortem
study conducted in SARS-CoV-2-affected individuals.92 The
histological brain slices derived from the SARS-CoV-2 positive
cases have been characterized by widened gyri, narrowed sulci,
flattened surface and congested meninges.91,92 Acute neuronal
injury was observed to be prominent in the hippocampal cornu
ammonis (CA)-1 region, the parahippocampal gyrus and the
cerebellar Purkinje cells.92 A study by Boroujeni ME et al. re-
vealed a reduction in the number of neurons and an increase in the
number of ionized calcium binding adaptor molecule (Iba)-1-
positive microglial cells and glial fibrillary acidic protein (GFAP)-
positive astrocytes in the cerebral cortex of COVID-19 victims.93

Moreover, upregulation of inflammation and immune-related
genes and reduction in glutathione levels have also been re-
ported in the cerebral cortex derived from the COVID-19 vic-
tims.93 Neuropathological findings by Colombo D et al. have also
indicated vascular changes in the cerebral cortex, neuronal loss in
the cerebellum and neuronal injury in the pons and medulla.94

Thakur and colleagues indicated the prominent vasculature pa-
thology, hypoxic neuronal damage and presence of activated
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microglia in the hippocampus of COVID-19 victims and cor-
related these neuropathological outcomes with dementia.95 In
addition, post-mortem brains of COVID-19 patients have been
characterized by meningitis like pathology, lymphocytic pan-
encephalitis, microinfarcts and indication for cerebral stroke.96,97

Besides, experimental animal models of COVID-19 have
been characterized by stress and various neurological illnesses.97,98

A mouse model injected with the S1 subunit of the spike
protein displayed stress-related behaviours and increased
levels of caspase-3, C5b-9, TNF-α and IL-6 in association
with neuroendothelial damage in the brain.99 Further, murine
motorneuron (MN)-1 cell line incubated with SARS-CoV-2
spike protein showed its infection and cell death.99 Recent
studies have also suggested that the S1 subunit of SARS-
CoV-2 interacts with prion protein leading to the formation of
homo- or hetero-polymers which results in the protein
misfolding in prion disorders.16 This could be due to the
direct toxicity as a result of prolonged exposure to the spike
protein of SARS-CoV-2.16 While interaction between the
spike protein and aggregation-prone proteins in the brain can
leadto neurodegeneration, another possible mechanism is by
the cross-reaction of anti-spike protein antibodies with the
neural tissue antigens.16 Neurotropism by pseudo SARS-CoV-2
has clearly been demonstrated in studies using human-induced
pluripotent stem cell (hiPSC) derived BrainSphere model and
human embryonic stem cell-derived brain organoids.100,101 A
study conducted in hiPSC-derived monolayer brain cells and
brain organoids revealed that SARS-CoV-2 strongly infects
epithelial cells of choroid plexus than that of cortical neurons
and astrocytes.102 Besides, a parallel study by McMahon CL
et al. also showed higher infectivity of SARS-CoV-2 in glial
cells and choroid plexus than neurons.103 Meanwhile, Ramani A
et al. demonstrated that SARS-CoV-2 targets neurons and causes
an altered distribution and hyperphosphorylation of Tau, and
neuronal cell death in the brain organoids.104 Moreover, a recent
study through two independent immunolocalization experiments
has also provided the evidence for the reduced neurogenesis in

the hippocampus in brains of SARS-CoV-2-infected humans and
hamsters.52 Though the reports on the regulation of neuro-
genesis in COVID-19 are limited now, chances for the oc-
currence of impairment of hippocampal neurogenesis in
subjects with COVID-19 might be highly relevant to various
neurocognitive impairments and dementia (Figure 1).

Possibilities for the occurrence of neuroregenerative
failure in the hippocampus as a potential cause of
dementia in COVID-19

Adult neurogenesis is the NSC-based neuroregenerative
process that appears to be a key cellular basis for the reg-
ulation of neuroplasticity of the brain.24,25,105 The occurrence
of adult neurogenesis appears to be highly prominent in the
subgranular zone (SGZ) of the hippocampal dentate gyrus,
subventricular zone (SVZ) of the lateral ventricles, and
hypothalamus.20,24,25,105,106 The continuous generation and
integration of new neurons in the hippocampus of the adult
brain have been functionally linked to learning and
memory.20,107 However, scientific facts of neurogenesis in the
adult brain have been a longstanding subject of debate. During
the 1960s, the early reports on the possibilities of the oc-
currence of mitotic activities and neurogenesis in the dentate
gyrus and olfactory bulb of the adult brain of experimental
animals had largely been ignored.108 A few decades later, with
technical advancement, concurrent experimental studies val-
idated previous data on adult neurogenesis and concluded the
ongoing neurogenic process in the adult brains of rodents,
songbirds and nonhuman primates.109-112 Moreover, adult
neurogenesis in the hippocampus has been linked to pattern
separation, emotions and learning and memory.113 Though
there exist controversies on previous reports that highlight
neurogenesis in the adult human brain due to various technical
drawbacks and limitations in the availability of experimental
post-mortem human brain tissue samples, recent studies have
established the experimental proofs for the existence of NSCs

Figure 1. Schematic representation of the hippocampus in healthy vs COVID-19 condition in association with the
respective cognitive status: The figure represents the neural stem cell-mediated neurogenic process in the hippocampus in healthy
condition responsible for learning and memory and impaired neurogenesis in the hippocampus in COVID-19 state due to neuroinvasion of
SARS-CoV-2 and neuroinflammation leading to dementia.
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and neurogenesis in the hippocampus of the human brain
using bromodeoxyuridine (BrdU), carbon dating, neuro-
sphere culture and immunohistochemical methods, and
further, adult neurogenesis has also been identified to occur in
the hypothalamus, cortex, amygdala and striatum.20,106,114-117

Markedly, hippocampal neurogenesis has been known to be
positively regulated bymany factors including physical activity,
enriched environment, nutrients, cell cycle stimulating cyto-
kines, neurotrophic factors and some antipsychotic
drugs.118-120 However, ageing, stress, depression, anxiety-like
disorders and neurodegenerative disorders have been known to
suppress the proliferative and differentiation capacities of NSCs
in the hippocampus leading to progressive memory
loss.19,22,24,28,121 Notably, cognitive decline and memory loss
noticed in AD, PD and HD have been known to be the result of
impaired neurogenesis.22,122-124 Besides, ample reports indicate
that stress, neuroinflammation and viral infections lead to the
inactivation of the proliferative potential of NSCs, thereby
suppressing neurogenesis and cognitive function.120,125,126

Though cerebral stroke, epileptic seizure, neurodegenerative
disorders and psychiatric problems induce reactive neuro-
genesis in the hippocampus at an early stage of these diseases,
survival and the functional integration of new neurons appear to
be diminished as the disease progresses.19,22,24,127-130 The el-
evated levels of proinflammatory cytokines resulting from the
pathogenic process of neurological diseases and abnormal
levels of stress hormones have been proposed to inhibit the
proliferation and neuronal differentiation of NSCs and interfere
with the functional integration of new-born neurons in the
hippocampus.24,25,27,118 Further, the decline in the level of
neurogenesis has been known to be associated with memory
impairment in the aforementioned neuropathogenic condition
due to neuroinflammation17 which might be highly relevant to
COVID-19. Notably, experimental evidence strongly indicates
that SARS-CoV-2 has the potential to infect the hiPSC-derived
NSCs and the brain organoids.101,103,131 Moreover, recent
immunohistochemical examinations suggest that SARS-CoV-
2 infection leads to impaired hippocampal neurogenesis in
post-mortem brain samples of COVID-19 victims and SARS-
CoV-2-infected experimental animals, where increased levels
of cytokines like IL-1β and increased microglial activation
have also been reported in brain regions including the hip-
pocampus.52 The increased levels of cytokines like trans-
forming growth factor beta (TGF)-β and IFN-γ and ILs are
responsible for cytokine storm and neuroinflammation in
COVID-19.132 Previously, Kandasamy et al. have demon-
strated that elevated level of TGF-β signalling disrupts the
proliferation and differentiation potentials of NSCs leading to
aberrant neurogenesis in the hippocampus of experimental
animal brains.17,26,106 Taken together, neuroinflammation has
been clearly known to affect the neurogenic potential of NSCs
and integration of the neuroblast in the hippocampus, contrib-
uting to abnormal regenerative plasticity, ultimately leading to
cognitive impairments.17,106,133 While hippocampal neuro-
genesis is responsible for learning and memory, occurrence and

progression of cognitive deficits and dementia have clearly been
attributed to impairment in hippocampal neurogenesis.20,123,134

Considering the aforementioned facts, it can be proposed that the
SARS-CoV-2-mediated stress, depression, emotional and psy-
chological trauma, sequence of comorbid neuropathological
alterations and neuroinflammation might drastically alter the
neurogenic potential of NSCs in the hippocampus of the brain.
Further, the resulting aberrant neurogenesis in the hippocampus
can be a potential cause of dementia in a significant portion of
COVID-19 patients and survivors as the dysfunctional and
degenerating neurons are least likely to be replenished (Fig 1).
Thus, there is an urgent need of detailed scientific attention on
abnormal regulation of hippocampal neurogenesis relating to
cognitive impairment in COVID-19.

Conclusion

While the rising mortality resulting from COVID-19 world-
wide has become an issue of serious concern, a significant
portion of COVID-19 survivors appears to have an increased
risk of various neurological deficits and dementia. As elevated
levels of stress hormones and proinflammatory molecules in
the brain have been reported to impair hippocampal neuro-
plasticity, clinical signs of comorbid neuropathogenic con-
dition noticed in subjects with COVID-19 might be linked to
defects in the NSC potentials accounting for aberrant neu-
rogenesis in the hippocampus. As the failure in neuro-
regenerative process in the hippocampus has been identified as
a major pathogenic determinant of cognitive decline , COVID-
19 might represent a potential risk factor for mental health
issues and dementia due to neuroinflammation and deterio-
ration of hippocampal neurogenesis. Thus, therapeutic strat-
egies and implementation of regenerative medicine to prevent
and defend the neuroregenerative failure in the hippocampus
is highly crucial to manage the possible occurrence of de-
mentia in COVID-19 patients and survivors.
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