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ABSTRACT Third-generation cephalosporin-resistant Enterobacterales is a major threat 
for newborns in neonatal intensive care units (NICUs). The route of acquisition in 
a non-outbreak setting should be investigated to implement adequate infection 
prevention measures. To identify risk factors for colonization with and to investi­
gate the transmission pattern of third-generation cephalosporin-resistant Enterobac­
terales in a NICU setting. This monocentric observational cohort study in a tertiary 
NICU in Heidelberg, Germany, enrolled all hospitalized neonates screened for cepha­
losporin-resistant Enterobacterales. Data were collected from 1 January 2018 to 31 
December 2021. Weekly screening by rectal swabs for colonization with third-gener­
ation cephalosporin-resistant Enterobacterales was performed for all newborns until 
discharge. Whole-genome sequencing was performed for molecular characterization 
and transmission analysis. In total, 1,287 newborns were enrolled. The median length 
of stay was 20 (range 1–250) days. Eighy-eight infants (6.8%) were colonized with 
third-generation cephalosporin-resistant Enterobacterales. Low birth weight [<1500 g 
(adjusted odds ratio, 5.1; 95% CI 2.2–11.5; P < 0.001)] and longer hospitalization [per 
30 days (adjusted odds ratio, 1.7; 95% CI 1.5–2.0; P < 0.001)] were associated with 
colonization or infection with drug-resistant Enterobacterales in a multivariate anal­
ysis. Enterobacter cloacae complex was the most prevalent third-generation cephalo­
sporin-resistant Enterobacterales detected, 64.8% (59 of 91). Whole-genome sequencing, 
performed for the available 85 of 91 isolates, indicated 12 transmission clusters involving 
37 patients. This cohort study suggests that transmissions of third-generation cephalo­
sporin-resistant Enterobacterales in newborns occur frequently in a non-outbreak NICU 
setting, highlighting the importance of surveillance and preventive measures in this 
vulnerable patient group.

IMPORTANCE Preterm newborns are prone to infections. Therefore, infection pre­
vention should be prioritized in this vulnerable patient group. However, outbreaks 
involving drug-resistant bacteria, such as third-generation resistant Enterobacterales, 
are often reported. Our study aims to investigate transmission and risk factors for 
acquiring third-generation cephalosporin-resistant Enterobacterales in a non-outbreak 
NICU setting. Our data indicated that premature birth and low birth weight are 
significant risk factors for colonization/infection with third-generation cephalosporin-
resistant Enterobacterales. Furthermore, we could identify putative transmission clusters 
by whole-genome sequencing, highlighting the importance of preemptive measures to 
prevent infections in this patient collective.
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N eonatal infections and sepsis are among the leading causes of mortality in 
newborns (1–3). Especially premature infants and those with low birth weight 

are vulnerable to infections and sepsis (4, 5). Although antibiotics are available for 
treatment, the emergence of third-generation cephalosporin-resistant Enterobacterales 
is an imminent threat to be taken seriously (6, 7). Due to the clinical impact of such 
bloodstream infections and sepsis on this vulnerable patient group, emphasis is set on 
preventing transmission of colonization and infection with third-generation cephalo­
sporin-resistant Enterobacterales (8). Regular screening regimens have been implemen­
ted in Germany in 2013, even in non-outbreak settings, aiming to anticipate and timely 
detect the emergence of these drug-resistant pathogens (2, 9, 10).

Thus, active screening and surveillance measures are usually part of the standard 
infection prevention and control measures in most neonatal intensive care units (NICUs) 
in Germany. However, molecular characterization by whole genome sequencing (WGS) 
is typically only performed on sporadic occasions or upon outbreak suspicion. In most 
cases, the prevalence of third-generation cephalosporin-resistant Enterobacterales in 
this patient group is considerably low. Furthermore, a significant proportion is acquired 
via maternal-neonatal transmission, questioning the necessity of constantly monitoring 
of patient-to-patient transmissions (11, 12). Nonetheless, outbreaks of drug-resistant 
Enterobacterales have been reported numerously and should be prevented.

The current gold standard for the molecular typing of bacteria is WGS. It has been 
demonstrated on numerous occasions that integrating of WGS is beneficial in elucidating 
and tracing back outbreak scenarios and transmission events (13, 14). Although the 
costs of performing WGS have dropped over the last few years, there is still some 
reluctance to integrate WGS for active and systematic surveillance in clinical practice. 
Over the past years, weekly screening has been implemented in the NICU of our tertiary 
hospital to screen hospitalized newborns for colonization with Staphylococcus aureus, 
third-generation cephalosporin-resistant and carbapenem-resistant Enterobacterales 
since colonization with these bacteria is associated with an increased risk of acquiring 
infections (15). However, molecular typing was only performed upon suspicion due to 
the accumulation of detection or certain antibiotic susceptibility patterns (16). Therefore, 
we wonder whether our surveillance approach adequately identifies transmission events 
and whether systematic WGS (i.e., performing WGS on all isolates) would improve our 
surveillance measures.

To answer this question, we conducted an observational cohort study to identify 
clinical characteristics and parameters associated with third-generation cephalosporin-
resistant Enterobacterales colonization. Further, we sequenced all available third-genera­
tion cephalosporin-resistant Enterobacterales isolated at our NICU over 4 years between 
1 January 2018 and 31 December 2021 to investigate the number and magnitude of 
transmission events as a potential acquisition route for colonization with third-genera­
tion cephalosporin-resistant Enterobacterales in this vulnerable patient group.

RESULTS

In total, 1,287 newborns were treated in the neonatal intensive care unit of our tertiary 
care hospital. The baseline characteristics of the study population are summarized and 
displayed in Table 1. Overall, the mean length of hospitalization was 34.6 days (range 
0–355 days). The median time to first detection of third-generation cephalosporin-resist­
ant Enterobacterales was 24 days (range 3–150 days). Colonization and infection with 
third-generation cephalosporin-resistant Enterobacterales were detected in 88 of 1,287 
(6.8 %) newborns and were associated with higher odds for neonatal sepsis (OR = 
6.6, 95% CI, 2.9–15.0), P < 0.001) and longer hospitalization (median 79 days, IQR, 
19–201 days versus 18 days, IQR, 1–194 days). Newborn sepsis is defined according 
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to clinical and laboratory parameters as defined by the national infection surveillance 
system (NEO KISS) (17). In our study period, 9 of 88 (10.2%) colonized newborns had 
an infection with third-generation cephalosporin-resistant Enterobacterales, of which six 
were bloodstream infections, two were meningitis, and one was wound infection. All 
newborns recovered from their infections.

Premature (<37 gestation weeks) birth (OR = 3.3, 95% CI 1.6–6.9, P = 0.002), birth­
weight of <1500 g (OR = 10.7, 95% CI 6.2–18.5, P < 0.001), and delivery via cesarean 
section (OR = 2.1, 95% CI 1.2–3.7, P = 0.01) were significant factors associated with 
colonization with third-generation cephalosporin-resistant Enterobacterales in our study 
population. In a multivariate logistic regression analysis, birth weight under 1,500 g and 
length of stay were the independent and strongest effect modifiers (adjusted OR = 5.1, 
95% CI 2.2–11.5, P < 0.0.001 and adjusted OR for length of stay per 30 days = 1.7, 95% CI 
1.5–2.0, P < 0.001, Table 1).

Bacterial species identified

Overall, 91 Enterobacterales isolates from 88 patients were collected throughout the 
4-year study period. Only the first detection per patient per species was considered for 
the end analysis. Three patients (3/88, 3.4%) were colonized with two different third-gen­
eration cephalosporin-resistant Enterobacterales. The most common Enterobacterales 
isolated was Enterobacter cloacae complex (59/91, 64.8%), followed by Citrobacter freundii 
(10/91, 11.0%), Klebsiella aerogenes (9/91, 9.9%), Escherichia coli (7/91, 7.7%), Serratia 
marcescens (5/91, 5.5%), and Citrobacter braakii (1/91, 1.1%). Eight-nine of ninety-two 
bacterial isolates were able to be recovered for WGS (3/59 E. cloacae complex were 
non-recoverable, Fig. 1). The mechanism of third-generation cephalosporin resistance 
was mainly intrinsic for E. cloacae complex, K. aerogenes, S. marcescens, and Citrobacter 
sp. Only the E. coli isolates harbored mobile resistance genes encoding for extended-
spectrum beta-lactamases (blaCTX-M-15). An overview of the resistome (resistance genes 
detected from WGS) is provided in Fig. S1.

Epidemiology and transmission

The transmission analysis based on SNP was performed and presented for each species, 
respectively. Transmission clusters are defined as isolates with ≤16 SNPs for E. hormae­
chei, 2 for C. freundii, 19 for K. aerogenes, and 4 for E. coli based on the method of Duval 

TABLE 1 Baseline and clinical characteristics of the study populationg,h

Totala Third-generation cephalosporin-resistant 
Enterobacteralesa

Crudeb Adjustedc

n (%) yes, n = 88 n = 1199 OR (95% CI) P OR (95% CI) P
n (%) n

Female 577 (44.8) 42 (47.7) 535 (44.6) 1.1 (1.7–1.8) .6 NA NA
Gestation age <37 weeks 982 (76.3) 80 (90.9) 902 (75.3) 3.3 (1.6–6.9) .002 0.5 (0.2–1.4) 0.2
Birth weight <1500 g 407 (31.6) 71 (80.7) 336 (28.0) 10.7 (6.2–18.5) <0.001 5.1 (2.2–11.5) <0.001
Cesarean deliveryd 903 (70.5) 72 (82.8) 831(69.6) 2.1 (1.2–3.7) .01 1.4 (0.7–2.6) 0.4
Multiple gestations 297 (23.1) 26 (29.9) 271 (22.6) 1.5 (0.9–2.4) .1 NA NA
Sepsise 30 (2.4) 9 (10.8) 21 (1.8) 6.6 (2.9–15.0) <0.001 NA NA
Antibiotic exposuref 982 (77.4) 74 (86.1) 908 (76.8) 1.8 (1.0–3.5) .05 1.1 (0.6–2.2) 0.8
LOS (per 30 days)d 20 (1–250) 79 (19–201) 18 (1–194) 2.1 (1.3–2.4)d <0.001 1.7 (1.5–2.0) <0.001
aUnless otherwise indicated, data are expressed as number (%) of patients.
bRatio of odds of rectal colonization, calculated using a univariate logistic regression model.
cRatio of odds of rectal colonization, calculated using a multivariate logistic regression model, with birthweight, gestation age, delivery mode, antibiotic exposure and length 
of stay (per 30 days). Mean inflation factor was 1.41 (range 1.04–1.89), indicating no collinearity.
dSix missing data; 1 from colonized and 5 from non-colonized newborns.
eThirty-seven missing data; 5 from colonized and 32 from non-colonized newborns; sepsis categorization based on clinical parameters/symptoms.
fNineteen missing data; 2 from colonized and 17 from non-colonized newborns.
gOne missing data from 1 colonized newborn, odds ratio calculated per 30 days hospitalization.
hOR, odds ratio; LOS, length of stay; NA, not applicable.
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et al. (18) Overall, we identified 12 putative transmission clusters involving 37 newborns 
across the various bacterial species. The largest clusters consisted of 13 and 5 newborns, 
whereas the other clusters only consisted of 2–3 newborns. The hospital hygiene only 
detected the two largest clusters and failed to identify all 13 patients as part of the most 
prominent transmission cluster (10 patients were correctly classified and 3 patients were 
misclassified).

Enterobacter cloacae complex

The epidemiological curve suggested that there is an overrepresentation of Enterobacter 
hormaechei, suggesting that a potential outbreak or at least multiple transmission events 
(Fig. 1). Of 59 isolates, 56 were sequenced. Identification based on the assembled 
genomes revealed that most isolates were Enterobacter hormaechei (n = 51), followed 
by Enterobacter asburiae, Enterobacter cloacae subspecies cloacae, Enterobacter kobei (n = 
2 each), and Enterobacter bugadensis (n = 1). The phylogeny of E. hormaechei, along with 
detected AMR genes, plasmids, and ward occupancy are displayed in Fig. 2. Resistance 
toward third-generation cephalosporin was mainly mediated by AmpC (blaACT). We 
identified four potential transmission clusters. Two patients are involved in transmission 
cluster A (ST158) with zero SNP between isolates. Cluster B (ST419) consists likewise of 
two patients with zero SNP between both isolates. Cluster C (ST78) is the largest cluster 
involving 13 patients with 0–15 SNPs between isolates. The last transmission cluster D 
(ST295) consists of isolates from two patients with three SNP difference between the 
isolates. The transmission cluster as defined by WGS correlates with the spatiotemporal 
overlap in the ward occupancy. Both patients in cluster A overlapped by 211 days, in 
cluster B overlapped by 81 days, and in cluster D with 79 days overlap. For cluster C, not 
all patients overlap with each other. The first three patients (which were not identified as 
potential outbreak via the traditional screening) and the last 10 patients (in chronological 
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FIG 1 Overview of third-generation cephalosporin-resistant Enterobacterales included in the study. Non-recoverable isolates are indicated by an asterisk (*).
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order) had overlapping ward occupancy ranging from 6 to 173 days, but the two groups 
did not share a spatiotemporal overlap. In patients colonized by E. hormaechei, one 
sibling pair was colonized by the same clone (in cluster C), but two other twins were 
both colonized by different clones of E. hormaechei. For E. asburiae, both isolates were 
closely related with three SNPs (ST657) so that transmission was very likely. There were 
no putative transmissions for both E. cloacae subspecies cloacae and E. kobei.

Citrobacter freundii

For C. freundii (n = 8), WGS analysis indicated a transmission event involving two patients 
(ST98) with two SNPs between isolates (Fig. 3A, cluster A). Both patients stayed in the 
same ward with a time overlap of 113 days, thus suggesting that a transmission event 
was likely and plausible. We detected one Citrobacter europaeus and one Citrobacter 
portucalensis. All C. freundii in our collection harbor various variants of the cephamyci­
nase gene, blaCMY (Fig. 3A).

Klebsiella aerogenes

Altogether, we isolated nine K. aerogenes in our study period. WGS analysis suggested 
two putative transmission clusters; involving two patients (five SNPs between isolates) 
in the first cluster (cluster A) and five patients in cluster B with 5–15 SNPs between 
the isolates within the cluster. In Cluster A, both patients had 42 days of overlap in 
hospitalization in the same ward. In Cluster B, the ward occupancy overlapped between 
32 and 66 days (Fig. 3B). In all the K. aerogenes isolates, the chromosomal AmpC (blaACT) 
was the most likely mediator of cephalosporin resistance.
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Escherichia coli

Of the seven patients with third generation cephalosporin-resistant E. coli, two patients 
were involved in a transmission cluster of ST69 E. coli harboring blaCTX-M-15 and blaTEM-1 
with four SNPs between isolates. There were 27 days of overlap in ward occupancy (Fig. 
3C). None of the patients have siblings.

Serratia species

We detected three patients with Serratia nevei and two patients with Serratia ureilytica. 
The close genetic relatedness of all three S. nevei isolates with two to four SNPs indicated 
a transmission cluster. There were 74–105 days of overlap in ward occupancy. Similarly, 
the two S. ureilytica isolates were also closely related with six SNPs between them. Both 
patients with S. ureilytica stayed in the same ward with 30 days overlap.

DISCUSSION

Hospitalized newborns, especially those with low birth weight (premature) are vul­
nerable to infections due to various nosocomial pathogens, which correlates with 
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high morbidity, longer hospitalization, and mortality. The most relevant and dreaded 
pathogens associated with neonatal sepsis is Staphylococcus aureus and gram-nega­
tive rods (15, 19, 20). Therefore, the German national guidelines for hospital hygiene 
and infection prevention (KRINKO) recommends regular screening as means of active 
surveillance to timely identify potential transmission chains for S. aureus and drug-resist­
ant (cephalosporin- and carbapenem-resistant) gram-negative rods. However, active 
molecular surveillance is not the current gold standard in the clinical routine. Due to the 
high cost, low prevalence of third-generation cephalosporin-resistant Enterobacterales 
and considerably large amount of efforts and resources needed to implement active 
molecular surveillance using WGS, the cost-effectiveness is much debated (21, 22).

In our study, we identified 12 transmission clusters involving 37 newborns over a 
period of 4 years. Although two transmission clusters involved a significant number of 
patients (ST78 E. hormaechei with 13 patients and K. aerogenes with 5 patients), most 
transmission clusters involved only two to three patients and were therefore difficult 
to detect. Indeed, the hospital hygiene team only identified the two largest clusters as 
outbreak clusters based on routine microbiology results and epidemiological overlap. 
Even so, in the largest cluster involving 13 patients, only 10 of the 13 patients were 
identified as a potential outbreak cluster since the first 3 patients (in chronological order 
of detection) did not have any spatiotemporal overlap with the remaining 10 patients. 
Therefore, our study demonstrated that small transmission events involving only two to 
three patients were missed by the current standard of practice. In the case of the ST78 E. 
hormaechei outbreak, timely initiation of infection prevention and control measures may 
have prevented this outbreak from reaching such a magnitude.

For effective infection prevention and control measures, it is important to understand 
the transmission route and dynamics. In the NICU, direct patient-to-patient transmission 
is highly unlikely since the mobility of newborns is limited. Other potential routes 
of transmission are through sharing of equipment, environmental contamination, and 
healthcare worker-mediated transmissions (23, 24). In the NICU, especially for preterm 
newborns, skin-to-skin contact through kangaroo care is encouraged so that kanga­
roo care should be considered as potential routes of acquisition for third-generation 
cephalosporin-resistant Enterobacterales (25).

In line with other studies, preterm, low birth weight, and length of stay are asso­
ciated with third-generation cephalosporin-resistant Enterobacterales positivity in our 
study (26–28). Interestingly, cesarean delivery was also significantly associated with 
third-generation cephalosporin-resistant Enterobacterales positivity. The colonization 
of the vaginal tract with extended-spectrum beta-lactamase producing Enterobacteria­
ceae (ESBL) has been demonstrated to be a significant risk factor for infant coloniza­
tion with ESBL (27–29). Antibiotic prophylaxis during cesarean section or post-natal 
antibiotic therapy may promote the selection of third-generation cephalosporin-resist­
ant Enterobacterales in both the mother and the newborn (28). The most abundant 
species in our isolate collection were E. cloacae complex and K. aerogenes. Both 
species harbor the inducible chromosomal ampC gene, which can be upregulated 
upon exposure with cephalosporins. Thus, exhibiting third-generation cephalosporin-
resistant phenotype and hence providing a plausible explanation for the abundance 
of these species (16, 30). Only a minor proportion of isolates harbor an ESBL gene, 
such as blaCTX-M, as a resistance mechanism, so antibiotic use may be an important 
key driver of third-generation cephalosporin-resistant Enterobacterales in this patient 
population. Furthermore, sepsis is associated with third-generation cephalosporin-resist­
ant Enterobacterales positivity in this study. This observation lends support to the 
hypothesis on the emergence of third-generation cephalosporin-resistant Enterobac­
terales due to antibiotic exposure since empirical therapy with antibiotics is often 
administered for suspected neonatal sepsis based on risk factors and clinical assessment 
(31).

Our study has some limitations. In microbiological diagnostics, only one representa­
tive colony is picked for species identification and antibiotic susceptibility testing, so this 
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algorithm does not consider a heterogeneous population of the same species; hence, 
random colony picking may have underestimated the magnitude of transmission events. 
In the study, we did not include isolates from environmental sampling, the parents, and 
healthcare workers so that a complete analysis to elucidate the transmission route is not 
possible. Nevertheless, we could demonstrate that incorporating WGS into the active 
surveillance measures can detect silent transmissions, which may improve infection 
prevention strategies.

This cohort study could confirm published data on risk factors for colonization 
and infection with third-generation cephalosporin-resistant Enterobacterales. Our data 
indicate that colonization with third-generation cephalosporin-resistant Enterobacter­
ales is associated with increased odds of the clinical presentation of neonatal sepsis. 
Furthermore, molecular characterization using WGS revealed that transmission between 
patients could occur and remain undetected, highlighting the importance of systematic 
surveillance to guide infection prevention measures in this vulnerable patient group.

MATERIALS AND METHODS

Study population and study setting

For this cohort study, we enrolled all newborns admitted to the NICU of the Heidelberg 
University Hospital from 1 January 2018 to 31 December 2021. The NICU is equipped 
with 24 stationary beds, assembled as two 4-bed rooms and seven 2-bed rooms. 
The primary endpoint of this observational cohort study was colonization or infection 
with third-generation cephalosporin-resistant Enterobacterales during hospitalization. 
Secondary outcomes were the transmission of third-generation cephalosporin-resistant 
Enterobacterales in a non-outbreak setting and the risk factors of acquiring third-genera­
tion cephalosporin-resistant Enterobacterales during hospitalization.

Weekly rectal screenings of newborns for third-generation cephalosporin-resistant 
Enterobacterales were conducted from the time of birth to hospital discharge as part 
of the local infection control and screening policy for multidrug-resistant organisms 
in concordance with national recommendations from the Commission for Hospital 
Hygiene and Infection Prevention (KRINKO) of the Robert Koch Institute. The local ethics 
committee was consulted prior to study begin and waived individual informed consent 
owing to de-identified data (S474/2018). We adhered to the Strengthening the Reporting 
of Observational Studies in Epidemiology (STROBE) guideline in reporting the findings of 
our observational cohort study, wherever applicable.

Screening and infection prevention procedures

Screening and infection prevention procedures were performed according to the 
national guideline (10). Rectal/perianal screening using eSwab (Copan) for colonization 
with a third-generation cephalosporin-resistant gram-negative bacilli was performed 
weekly in the postnatal period. Basic hygiene measures were applied for any patient 
contact. These measures included consistent hand disinfection in accordance with the 
five World Health Organization indications and wearing disposable gloves and protective 
gowns to avoid contamination of staff where direct contact with blood, secretions, 
excrement, mucous membranes, or non-intact skin is expected.

Furthermore, the following infection prevention and control measures were 
implemented: (i) disposable apron for nursing rounds and in case of contamination risk 
of the body front; (ii) protective gown, if the child is carried; (iii) regular and hygiene 
training and compliance observations (at least once a year), on-site visits (at least once 
a year), and quality meetings with the infection control team (at least three times a 
year); (iv) 24 hours monitoring of automated hand disinfectant use at every bed site; (v) 
surgical face mask for the care of patients with methicillin-susceptible S. aureus (MSSA) 
or methicillin-resistant S. aureus (MRSA) to avoid droplet contamination; and (vi) isolation 
room and contact precautions for patients with MRSA or third-generation cephalosporin-
resistant or carbapenem-resistant gram-negative bacteria.
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Microbiological diagnostics

Specimens from weekly screenings were processed in the microbiological diagnos­
tics laboratory. Swabs were inoculated onto a chromogenic selective medium for 
ESBL (extended-spectrum beta-lactamase-producing gram-negative rods; ChromIDESBL, 
Biomérieux) and BD Columbia blood agar with 5% sheep blood (BD Diagnostics) as a 
growth control for sampling validity. Bacterial species identification was performed via 
matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF MS; Bruker). 
Antibiotic susceptibility testing was performed using VITEK2 (Biomérieux) and interpre­
ted according to the EUCAST guidelines in the respective year. A change in the inter­
pretation antibiotic susceptibility testing was implemented in 2019 according to the 
re-classification of “intermediate susceptibility” to “susceptible at higher exposure.” For 
this study, resistance to third-generation cephalosporins (ceftriaxone/cefotaxime) was 
defined as “resistant” according to the respective clinical breakpoints, “intermediate” 
were considered as “susceptible” isolates. Bacterial isolates were cryopreserved at −70°C 
for molecular typing.

Whole genome sequencing and data analysis

DNA extraction, library preparation, sequencing on a MiSeq Illumina platform (short-read 
sequencing, 2  ×  300 bp) and post-sequencing procedure were performed as previously 
described (32). Briefly, raw sequences were controlled for quality using fastp (v0·23·2 with 
parameters -q  =  30 and -l  =  45) and assembled with SPAdes 3.15.5 (with the option—
careful and—only-assembler) (33, 34). Draft genomes were curated by removing contigs 
with a length <500 bp and/or coverage <10×. The quality of the final draft was qual­
ity-controlled using Quast (v5.0.2) (35). The complete draft genomes were processed 
through available databases using Abricate (https://github.com/tseemann/abricate) to 
identify antimicrobial resistance (NCBI, CARD, ARG-ANNOT, ResFinder, and MEGARES 
databases) and plasmid type (PlasmidFinder database) to identify the Inc type of the 
plasmid (36, 37). The species identification of each draft genome was done using mash 
(sub-command screen) by screening each draft genome to a database composed of 
a representative genome of each species present in the Microbial Genomes resource 
(https://www.ncbi.nlm.nih.gov/genome/microbes/). Furthermore, each draft genome 
was aligned to its representative genome reference from the Microbial Genomes 
resource using SKA. The alignment was then analyzed with Gubbins 3.2.1 to define 
SNPs distance, and phylogenetic relationship was determined using the R package 
samestrains following the methodology of Duval et al. (18, 38).

Statistical analysis

We used univariable and multivariable logistic regression to estimate the change in the 
odds of colonization with third-generation cephalosporin-resistant Enterobacterales in 
the presence of putative risk factors of these outcomes, together with their 95% CIs, and 
tested against the null hypothesis (H0) with an odds ratio of 1.00 using an α of 0.05. 
Test of the collinearity for correlations of the variables was performed using the (variance 
inflation factor) command following a regression model with all relevant variables. The 
mean of the variance inflation factor was 1.84 (range 1.08–3.48), indicating no significant 
collinearity between variables. All statistics were performed in STATA, v17 (StataCorp 
LLC).
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