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ABSTRACT Enterococcus faecium, a common resident of the human gastrointestinal 
tract, is also a major pathogen. Prompt initiation of appropriate treatment is essential 
to improve patient outcome in disseminated E. faecium infections. However, ampicillin 
resistance is frequent in this species, rendering treatment difficult. We used a com­
prehensive approach, including clinical data review, whole-genome sequencing, and 
mass spectrometry, to characterize ampicillin-susceptible (EFM-S) and ampicillin-resist­
ant (EFM-R) isolates. We included all patients with culture-confirmed E. faecium infection 
attending our hospital over a 16-month period. A comparison of 32 patients infected 
with EFM-S strains and 251 patients infected with EFM-R strains revealed that EFM-R 
isolates were strongly associated with a longer hospital stay, history of prior hospitaliza­
tion, and the carriage of multidrug-resistant organisms. An analysis of the genomes of 
26 EFM-S and 26 EFM-R isolates from paired patients revealed a population structure 
almost perfectly matching ampicillin susceptibility, with resistant isolates in clade A1, 
and susceptible isolates in clades A2 and B. The clade B and A2 isolates mostly came from 
digestive or biliary tract samples, whereas clade A1 isolates were mostly obtained from 
urine and blood. Finally, we built a custom database for matrix-assisted laser desorp­
tion/ionization time-of-flight mass spectrometry (MALDI-TOF MS), which differentiated 
between clade B and clade A1/A2 strains with high-positive and high-negative predictive 
values (95.6% and 100%, respectively). This study provides important new insight into 
the clinical features and clades associated with EFM-S and EFM-R isolates. In combination 
with MALDI-TOF MS, these data could facilitate the rapid initiation of the most appropri­
ate treatment.

IMPORTANCE Enterococcus faecium is an important human pathogen in which the 
prevalence of ampicillin resistance is high. However, little is known about the clinical 
characteristics of patients infected with ampicillin-resistant and ampicillin-susceptible 
strains. Indeed, current knowledge is based on genus-wide studies of Enterococcus or 
studies of very small numbers of susceptible isolates, precluding robust conclusions. 
Our data highlight specific clinical features related to the epidemiology of EFM-S and 
EFM-R strains, such as length of hospital stay, history of prior hospitalization, carriage of 
multidrug-resistant organisms, and type of sample from which the isolate was obtained. 
The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 
with a custom-built database may make it possible to distinguish clade B isolates, which 
are typically susceptible to ampicillin, from clade A1/A2 isolates (A1 being typically 
resistant), thereby facilitating the management of these infections.
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E nterococci are Gram-positive cocci belonging to phylum Firmicutes, which includes 
more than 60 different species. Two of these species, Enterococcus faecalis and 

Enterococcus faecium, are the most prevalent species in humans. They are closely 
associated with the human intestinal microbiota and may cause a wide range of 
infections (1). E. faecium has been divided into two main clades: A and B (2–4). Clade A 
contains hospital- and animal-associated isolates, which were initially classified into two 
different clades: A1 and A2, respectively (2). Given the particular adaptation capacities of 
E. faecium, it was suggested that these specific clones emerged from animal strains under 
antibiotic-selective pressure about 75 years ago (2, 5). However, further studies on larger 
numbers of strains did not support this subdivision, instead identifying a basal group of 
strains corresponding to clade A2 and a rapidly evolving clone corresponding to clade 
A1 (3). By contrast, clade B is mainly associated with community-acquired infections 
(6). Some authors have even recently proposed that it should be reassigned to species 
Enterococcus lactis (7).

The antimicrobial arsenal for dealing with enterococci is limited. As a result, empirical 
treatment options for enterococcal infections are also generally limited and based on 
broad-spectrum antibiotics active against Gram-positive bacteria, such as vancomycin. 
Indeed, vancomycin is frequently required to treat multidrug-resistant strains, such as 
ampicillin-resistant E. faecium clones from hospitals (8). In this species, the overproduc­
tion of low-affinity penicillin-binding protein 5 (PBP5) is frequently associated with a 
decrease in susceptibility to ampicillin. This phenomenon, which is dependent on both 
rearrangements upstream from pbp5 and point mutations/insertions (mostly at positions 
466 and 485), is closely associated with the ampicillin-resistant strains of the A1 clade, 
and sometimes of the A2 clade, and is not observed in the ampicillin-susceptible strains 
of clade B (9). E. faecium bacteremia increased between 2001 and 2014 in Europe and 
between 2001 and 2010 in the United States (10). This increase may have led to an 
increase in the use of broad-spectrum antibiotics (e.g., vancomycin) as an empirical 
option in hospitals, in the absence of rapid results concerning antibiotic susceptibility. 
The excessive use of broad-spectrum antibiotics not only has ecological consequences 
but may also not be the most effective therapeutic approach. Conflicting results have 
been published (11), but some studies have reported better outcomes with amoxicillin-
based treatments in patients infected with susceptible strains (12, 13).

In this context, it would be useful to be able to precisely identify the E. faecium 
strains responsible for severe infections. The clinical and epidemiological data associated 
with resistance (e.g., nosocomial acquisition) (14) must be taken into account when 
selecting the most appropriate treatment. However, tools accelerating the identification 
of enterococcal species could also provide a robust and complementary means of 
improving this choice.

The objective of this study was to identify the risk factors associated with the isolation 
of ampicillin-susceptible (EFM-S) or -resistant (EFM-R) E. faecium from infected patients 
and to determine whether susceptibility could be predicted from the precise identifica-
tion of E. faecium to clade level by MALDI-TOF mass spectrometry as part of the routine 
bacterial identification protocol.

MATERIALS AND METHODS

Study design

We retrospectively included all patients with a documented E. faecium infection tested 
for ampicillin susceptibility between 1 January 2020 and 20 April 2021 at the Bacteriol­
ogy Unit of Henri Mondor Hospital (Créteil, France), a 2,814-bed tertiary-care hospital. 
Isolates obtained during screening for vancomycin-resistant E. faecium (VRE) carriage 
were excluded. During the study period, bacterial identification was routinely performed 
with MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass 
spectrometry), with the MALDI Biotyper system (Bruker). Ampicillin susceptibility was 
determined by the disk diffusion method, with a disk loaded with 2 µg of ampicillin, or 
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by the broth microdilution method (MicroScanSystem, Beckman Coulter). The isolates 
were classified as susceptible or resistant to ampicillin according to CA-SFM (Comité 
de l’Antibiogramme de la Société Française de Microbiologie, CA-SFM V2.0 Mai 2019) 
recommendations based on EUCAST (European Committee on Antimicrobial Susceptibil­
ity Testing) guidelines.

We first focused on the clinical characteristics of the patients infected with EFM-S 
or EFM-R isolates. We took into account only the first episode for each patient inclu­
ded. We reviewed the demographic and clinical data for the patients with electronic 
medical records and a standardized form (Table S1). The data collected included sex, age, 
comorbid conditions (cardiovascular risk factors, solid cancer, hemopathy, cardiovas­
cular diseases, autoimmune and systemic diseases, solid organ transplantation, and 
chronic kidney disease), prior hospitalization for more than 24 hours over the preceding 
year, reasons for consultation, multidrug-resistant organism (MDRO) carriage. We also 
collected data about the length of stay in the hospital and the medical ward in which 
the patient was staying at the time of sampling. Clinical outcome (i.e., vital status) was 
monitored for up to 30 days, for all the included patients.

We then compared the sources of isolates and the polymicrobial nature of the 
infection as a function of ampicillin susceptibility. In this context, we included all isolates 
from all episodes occurring in all patients over the study period. Only redundant isolates 
obtained from the same clinical sample during a given episode were excluded. We 
encountered no cases of differences in susceptibility between isolates collected from the 
same source during the same episode.

Collection of isolates for whole-genome and MALDI-TOF MS analysis

All available EFM-S isolates (n = 26) identified over the survey period were thawed and 
paired with EFM-R isolates (n = 26) from patients of the same sex and similar age. The 
identification obtained with the MALDI-TOF MS Biotyper system (Bruker) and ampicillin 
susceptibility (disk diffusion method) was checked for all these isolates by the broth 
microdilution method (see above). The isolates were then subjected to whole-genome 
sequencing on an Illumina NextSeq sequencer (paired-end 150 bp reads).

Whole-genome analysis

Genomes were assembled with shovill 1.0.4 (15), SPAdes v3.13.1 (16), trimmomatic v0.39 
(17), lighter v1.1.2 (18), FLASH v1.2.11 (19), bwa v0.7.17 (20), pilon v1.23 (21), and 
samtools v1.9 (22). The quality of the assemblies was then checked with CheckM (23) 
using the taxonomy-specific workflow (species “E. faecium”) to ensure a completeness 
exceeding 95% and less than 5% contamination. Multi-locus sequence typing (MLST) 
was performed with mlst (24). We also retrieved the 72 genomes representative of the 
diversity within E. faecium available from the study by Lebreton et al. (2) to obtain a 
broader overview of this species. These genome sequences were combined with our 
newly sequenced genomes, and Roary v3.12.0 (25) with standard parameters was used 
to generate a pangenome. The core gene alignment was used to construct a phyloge­
netic tree with FastTree v2.1.8 (26), with a general time-reversible evolution model and a 
gamma distribution of rates across sites. This tree was annotated with Itol (27) and was 
used to assign the genomes to the previously described clades A1, A2, and B. We also 
searched for mutations of PBP5, focusing on the two positions close to the active site 
considered to be responsible for increasing resistance to ampicillin (i.e., insertion after 
S466 and/or mutation at position M485) (6, 28–31). We also characterized the genetic 
environment of pbp5 based on the nomenclature proposed by Montealegre et al. (9). 
A new letter was assigned to each new environment detected. In a few genomes, the 
pbp5 gene or its upstream and downstream sequences were too fragmented to define 
the environment (Table S2). Whole-genome sequences are available from Bioproject 
PRJEB56579.
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Construction and evaluation of the custom-built MALDI-TOF MS database

Based on the susceptibility testing results and the whole-genome sequencing analysis, 
10 EFM-R and 17 EFM-S isolates corresponding to clades A1 (n = 10), A2 (n = 10), and B 
(n = 7) were selected for the construction of a custom-built MALDI-TOF MS database with 
MBT Compass RUO v4.1, FlexAnalysis v3.4, MBT compass explorer v4.1, and the MALDI 
Biotyper (Bruker). Proteins were extracted with the Mass Spectrum Profile (MSP) Creation 
protocol (V1.1, Bruker). Briefly, we collected fresh colonies with a 1-µL inoculation loop 
and mixed them with 300 µL LC-MS water. We then denatured the proteins by adding 
900 µL pure ethanol. After careful vortexing and centrifugation (13,000 × g, 2 min), we 
discarded the supernatant and performed another centrifugation to remove the residual 
ethanol. The pellets were then dried at room temperature and were dissolved and 
thoroughly mixed in 30 µL each of 70% formic acid and acetonitrile. This solution was 
then centrifuged at 13,000 × g for 2 min. Finally, we spotted 1 µL of the supernatant onto 
an MSP 96 target BC steel plate for each of the eight replicates. We allowed the spots 
to dry and then coated the plate with 1 µL HCCA matrix solution (α-cyano-4-hydroxy­
cinnamic acid; Bruker, Germany). Mass spectra were obtained according to the MALDI 
Biotyper protocol (V.2.4, Bruker) and were carefully inspected with FlexAnalysis software. 
Spectra with a mass peak deviation >0.05%, outlier peaks, and flatlines were eliminated, 
and the remaining spectra were combined to generate a single mass spectrum for each 
strain in MBT compass explorer, with the default parameters. The mass spectra were 
used to generate a new local database, available from the MALDI Biotyper Compass RUO 
software. We also constructed a dendrogram from these MSPs on the MALDI Biotyper 
Compass RUO (Euclidean distance, complete linkage) to check the clustering of isolates.

The performance of the local database was then evaluated according to the routinely 
used procedure for all 52 isolates, including the 27 isolates used to construct the 
database. For each strain, colony fragments from overnight cultures on blood agar at 
35°C ± 2°C were spotted onto a target and overlaid with 1 µL HCCA-matrix. The spectra 
obtained on the MALDI biotyper were compared with the data in the newly generated 
database, with MALDI Biotyper Compass RUO software. The algorithm generated a log 
score value ranging from 0 to 3.0, with a log score ≥2.0 indicating a “high confidence 
identification” at species level, according to the MALDI Biotyper Compass IVD protocol 
(V4.2, Bruker). For an identification to be considered valid, it had to meet the follow­
ing criteria: a log score ≥2.0 and concordance of the first two identification scores for 
ampicillin susceptibility and clade membership. Positive and negative predictive values 
were calculated for each of these parameters separately.

Statistical analyses

Statistical analyses were performed with GraphPad Prism v.5. and Stata v.16.0. Categori­
cal variables are expressed as numbers (and percentages, %) and were compared in 
Fisher’s exact tests. Continuous variables are expressed as medians (and interquartile 
range; IQR) and were compared in Mann-Whitney U tests. A P-value <0.05 was consid­
ered statistically significant.

Logistic regression analysis was performed to identify the factors independently 
associated with EFM-S isolates. We excluded variables from the multivariate analysis 
if their P-value in the univariate analysis was >0.15. We used the Wald test for system­
atic evaluations of the interactions between each of the variables in the final model. 
Collinear variables were excluded from the multivariate analysis. The number of relevant 
variables reported in the final multivariate model was adapted to the number of events 
to calculate odds ratios (1 variable: 10 patients).

RESULTS

Clinical characteristics of the patients infected with EFM-S and EFM-R

The demographic and clinical characteristics of the 283 patients infected with EFM-S (n 
= 32) or EFM-R (n = 251) are shown in Table 1. The proportion of women was higher in 

Research Article Microbiology Spectrum

September/October 2023  Volume 11  Issue 5 10.1128/spectrum.04545-22 4

https://doi.org/10.1128/spectrum.04545-22


the EFM-S group (59.4% vs 37.5%, P = 0.02). Patients with EFM-S were more frequently 
hospitalized in digestive surgery units (50.0% vs 7.6%, P < 0.0001). Those with EFM-R 
were hospitalized for a longer period (16 vs 5 days, P < 0.001), were more likely to have 
a history of prior hospitalization during the preceding year (76.1% vs 40.6%, P < 0.0001), 
and were more frequently MDRO carriers (64.9% vs 10%, P = 0.001). Moreover, EFM-R 
patients were more likely to suffer from hemopathy (23.1% vs 6.3%, P = 0.04) and require 
intensive care (23.9% vs 3.1%, P = 0.005).

The multivariate logistic regression analysis revealed that hospitalization in a 
digestive surgery unit was significantly associated with infection with EFM-S isolates 
(Table 2). Conversely, prior hospitalization and the duration of hospital stay were 
associated with the risk of EFM-R detection.

Characteristics of EFM-S and EFM-R isolates

Overall, 372 isolates of E. faecium were grown from various clinical samples during the 
study period. These isolates included 151 obtained from a patient from whom another 
isolate was also obtained. There were 61 patients with multiple isolates. We found that 
116 of these multiple isolates were associated with the same episode as the other 
isolate or isolates from the same patient. In total, multiple isolates were available for 
48 episodes: 22 episodes involved isolates from different sources (n = 48 isolates), 19 

TABLE 1 Overall baseline characteristics of patients with EFM-S or EFM-R isolatesb

EFM-Sc (n = 32) EFM-R (n = 251) P-valued

Male—no (%) 13 (40.6) 157 (62.5) 0.02
Age—median (IQR), years 76 (54–83) 69 (58–80) 0.33
Hospital department in which sampling occurred—no (%)
  Surgical unit 20 (62.5) 53 (21.1) <0.0001
   Digestive surgery 16 (50.0) 19 (7.6) <0.0001
   Urology 3 (9.4) 13 (5.2) 0.40
   Vascular surgery 1 (3.1) 14 (5.6) 1.00
  Non-surgical unit 9 (28.1) 101 (40.2) 0.25
   Hematology 1 (3.1) 33 (13.1) 0.15
   Hepato-gastroenterology 4 (12.5) 19 (7.6) 0.31
   Oncology 2 (6.3) 9 (3.6) 0.36
   Geriatric service 2 (6.3) 17 (6.8) 1.00
  Intensive care unit 1 (3.1) 60 (23.9) 0.005
  Rehabilitation service 2 (6.3) 31 (12.4) 0.40
Underlying comorbid conditions—no (%)
  None 3 (9.4) 5 (2.0) 0.05
  Cardiovascular risk factors 16 (50.0) 168 (66.9) 0.08
  Solid cancer 11 (34.4) 67 (26.7) 0.40
  Hemopathy 2 (6.3) 58 (23.1) 0.04
  Cardiovascular diseases 11 (34.4) 115 (45.8) 0.26
  Autoimmune and systemic disease 4 (12.5) 24 (9.6) 0.54
  Solid organ transplant 1 (3.1) 21 (8.4) 0.49
  Chronic kidney disease 5 (15.6) 32 (12.7) 0.59
Prior hospitalization within the preceding year—no. (%) 13 (40.6) 185/243 (76.1) <0.0001
MDRO carriage in the preceding year—no. (%) 1/10 (10.0) 72/111 (64.9) 0.001
Duration of hospital stay during which sampling occurred—median (IQR), days 5 (1–10) 16 (6–29) <0.0001
Patients hospitalized for more than 48 hours at the time of sampling—no. (%) 19 (59.4) 210 (83.7) 0.003
Deatha—no. (%) 7 (21.9) 104 (41.4) 0.04
aClinical outcomes (vital status) were monitored until 20 May 2021.
bThe denominators of the patients included in this analysis are shown if different from the total number for the corresponding group. Each patient was counted only once, 
and none of the patients belong to both groups.
cEFM-S, E. faecium ampicillin-susceptible; EFM-R, E. faecium ampicillin-resistant; no., number; IQR, interquartile range; MDRO, multidrug-resistant organism.
dA P-value <0.05 was considered statistically significant.
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involved isolates from the same source (n = 41 isolates), and 7 episodes involved isolates 
from both the same and different sources (n = 27 isolates).

In total, 38 isolates (10.2%) were ampicillin susceptible, and 334 (89.8%) were 
ampicillin resistant. Most of the EFM-S isolates were isolated from digestive samples 
(n = 27/38; 71.1% vs 15.0% n = 50/334 for EFM-R isolates; P < 0.0001). EFM-S isolates were 
more frequently obtained from biliary samples (36.8% vs 4.2%, P < 0.0001), peritoneal 
fluid (15.8% vs 2.7%, P = 0.002), and abdominal mass (18.4% vs 5.1%, P = 0.006) than 
EFM-R isolates. They were also more frequently obtained from polymicrobial cultures 
(78.9% vs 42.2%, P < 0.0001). Conversely, EFM-R isolates were more frequently obtained 
from blood cultures (21.6% vs 5.3%, P = 0.02) and urinary samples (50.0% vs 21.1%, P 
= 0.001) than EFM-S isolates. Vancomycin resistance was detected in only two EFM-R 
isolates and none of the EFM-S isolates.

Clade organization, genetic variation, and clinical characteristics associated 
with a subset of 52 isolates

In total, 52 isolates were selected for further analysis, including the 26 isolates available 
from the 38 EFM-S isolates identified over the survey period. The remaining 12 EFM-S 
strains were not available due to the short shelf-life of isolates for some samples (e.g., 
urinary samples). We paired these 26 EFM-S isolates with 26 EFM-R isolates from patients 
of the same age and sex. All these isolates were then sequenced with Illumina short-read 
technology and analyzed. Core genome phylogenetic analysis of these genomes and 
those from the data set of Lebreton et al. (2) identified the three previously described 
clades: A1, A2, and B (Fig. 1). Two genomes, EnGen0002 and 1_231_408, could not be 
classified and were considered to be hybrid genomes, as suggested by Lebreton et al. (2). 
The organization of the population into clades almost perfectly matched the distribution 
of ampicillin susceptibility of our isolates: 7/7 EFM-S clade B, 26/27 EFM-R in clade A1, 
and 18/18 EFM-S isolates in clade A2 (Fig. 1; Table S2). As expected, all clade B genomes 
displayed pattern A for the pbp5 genetic environment, with no insertion at position 
466' and methionine at position 485 (Fig. S1 and S2; Table S2). Interestingly, the only 
ampicillin-susceptible genome in clade A1 (EFM-S-25) also displayed pattern A, with no 
mutations at positions 466′ and 485, ruling out an error in our data set. None of the 
other genomes in clade A presented pattern A; all were mutated at position 485 (M485A 
or M485T), and many had an insertion at position 466′ (n = 37/48). Finally, the resistant 
strains of the A2 clade displayed at least two characteristics of the non-A pattern, the 
insertion at position 466′ and the mutation at position 485. The only exception was 
the EnGen0052 genome. However, Montealegre et al. had already noted a discrepancy 
for this strain (9), which they found to display pattern C in a PCR-based approach, 

TABLE 2 Factors associated with infection with ampicillin-susceptible EFM isolates

Univariate analysis Multivariate analysis

Variables OR (95% CI) P-value OR (95% CI) P-value

Male 0.41 (0.19–0.87) 0.02
Agea (years)
Hospital department at the time of sampling

1.00 (0.98–1.03) 0.65

  Digestive surgery 12.21 (5.29–28.17) <0.001 8.68 (3.36–22.41) <0.001
  ICUc 0.10 (0.01–0.77) 0.03
Underlying comorbid conditions (≥1) 0.20 (0.04–0.86) 0.03
Hemopathy 0.22 (0.05–0.96) 0.04
MDRO carriage 0.06 (0.01–0.51) 0.01
Prior hospitalization during the preceding year 0.21 (0.10–0.46) <0.001 0.25 (0.10–0.61) 0.002
Duration of hospital stay during which sampling 

occurredb (days)
0.92 (0.88–0.96) <0.001 0.92 (0.88–0.97) 0.002

aPer one unit increase.
bIn whole numbers of days for each patient.
c ICU, intensive care unit; MDRO, multidrug-resistant organism; OR, odds ration; and CI, confidence interval.
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but pattern A based on whole-genome sequence analysis. We also observed four new 
patterns that we named F to I. Pattern F was found only in clade A1 (n = 15) and 
corresponds to a shortened msr gene (597 bp) with no ftsW upstream. Pattern G was 
also found only in clade A1 (n = 8) and consists of a reduced msr gene (642 bp) with an 
upstream ISEfm1. Pattern H, found in the A2 (n = 6) and A1 (n = 1) clades, was similar to 
pattern B but with no insertion sequence between msr and pbp5. Finally, pattern I was 
also similar to pattern B but with an IS1542 instead of an ISEfm1.

Most of the clade A1 isolates were obtained from urine (n = 15/27) or blood cultures 
(n = 6/27), and these isolates frequently belonged to ST80 (n = 8/27) and ST117 (n = 
11/27). Conversely, the isolates of clades B and A2 were mostly isolated from digestive or 
biliary tract-related samples (n = 6/7 and n = 14/18, respectively) and were more diverse 
in terms of ST (Table S2).

FIG 1 Core genome-based phylogenetic tree for the isolates. The 52 genomes from our study are shown in bold. The other genomes were obtained from the 

study by Lebreton et al. (2). The genomes were assigned to one of the previously described clades—A1, A2, or B—highlighted in salmon, purple, and blue, 

respectively. In the outermost circle, the colored circles and triangles represent ampicillin susceptibility, determined by disk diffusion methods or extracted 

from previous publications. Gray circles represent missing values. The tree is mid-point rooted between clade B and non-clade B genomes. The scale represents 

genetic distances in nucleotide substitutions per site.
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The clinical characteristics of the patients tended to differ between clades (i.e., for 
the patients corresponding to the 52 isolates sequenced, Table 3). Patients infected with 
isolates from clades A2 and B were more frequently hospitalized in digestive surgery 
units (61.1% and 42.9%, respectively, vs 7.4% in the clade A1) than those infected with 
clade A1 isolates. Their hospital stay was also shorter (1.5 and 5 days, respectively) than 
that of patients with clade A1 isolates (22 days). Moreover, prior hospitalization in the 
preceding year, MDRO carriage, and hospitalization for more than 48 hours were less 
frequent in the group of patients with clade A2 isolates than in those with clade A1 
isolates (33.3% vs 72.0%; 0% vs 70.0%; and 44.4% vs 85.2%, respectively).

Construction and evaluation of the performance of the MALDI biotyper 
database

For each of the 27 strains selected for database construction, more than 20 spectra 
fulfilled the necessary criteria according to the manufacturer’s recommendations (i.e., 
spectra without mass peak deviation >0.05%, outlier peaks, or flatlines). The individual 
spectra and the database generated from them are publicly available from Zenodo 
(https://doi.org/10.5281/zenodo.7936571). The dendrogram constructed from the MSPs 
showed that isolates from clade B clustered on one side and those from clades A1/A2 
clustered on the other (Fig. S3). We evaluated our newly created database to distinguish 
between the 52 isolates in terms of their ampicillin susceptibility and clade (Table 4). 
Ampicillin susceptibility was correctly predicted for 26/52 isolates (50%). Clade (A1, A2, or 
B) was correctly identified for 23/52 isolates (44.2%). Finally, in assessments of the ability 
to differentiate clade B from clades A1/A2, correct predictions were obtained for 50/52 
isolates (96.2%).

These good results can be explained by the differences observed between the spectra 
for clade B and A1/A2 isolates, as shown in Fig. S4. The two discrepancies resulted from 
(i) EFM-S-06 (clade B) and EFM-S-08 (clade A2) being identified as the best matches in the 
analysis of EFM-S-06 (clade B) and (ii) EFM-S-06 (clade B) and EFM-S-08 (clade A2) being 
identified as the best matches in the analysis of EFM-S-29 (clade A2). These discrepancies 
are thus due to the MSP of the EFM-S-06 isolate, which appears to be different from that 
of the other isolates of clade B (Fig. S3).

TABLE 3 Baseline characteristics of patients according to clades (sequenced isolates, n = 52)

Clade A1 (n = 27) Clade A2 (n = 18) Clade B (n = 7)

Male—no.b (%) 12 (44.4) 8 (44.4) 4 (57.1)
Age—median (IQR), years 75 (56.5–82.0) 76.0 (54.0–84.0) 78.0 (57.0–89.0)
Hospital department in which sampling occurred—no. (%)
  Digestive surgery unit 2 (7.4) 11 (61.1) 3 (42.9)
  Non-surgical unit 11 (40.7) 4 (22.2) 3 (42.9)
  Hepato-gastroenterology 4 (14.8) 4 (22.2) 0
  Intensive care unit 4 (14.8) 1 (5.6) 0
  Rehabilitation service 5 (18.5) 1 (5.6) 0
Underlying comorbid conditions—no. (%)
  None 1 (3.7) 3 (16.7) 0
  Cardiovascular risk factors 19 (70.3) 9 (50.0) 4 (57.1)
  Solid cancer 6 (22.2) 6 (33.3) 4 (57.1)
  Hemopathy 5 (18.5) 0 0
  Cardiovascular diseases 15 (55.5) 5 (27.8) 3 (42.9)
Prior hospitalization during the preceding year—no. (%) 18/25 (72.0) 6 (33.3) 5 (71.4)
MDRO carriage during the preceding year—no. (%) 7/10 (70.0) 0/6a 1/3 (33.3)
Duration of hospital stay during which sampling occurred—median (IQR), days 22 (8–46) 1.5 (0.75–8.5) 5 (3–15)
Patients hospitalized for more than 48 hours at the time of sampling—no. (%) 23/27 (85.2) 8/18 (44.4) 6 (85.7)
aThe denominators of patients included in this analysis are shown if they differ from the total number in the corresponding group.
bNo., number; IQR, interquartile range; MDRO, multidrug-resistant organism.
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Based on these results, our ability to distinguish between isolates on the basis of 
ampicillin susceptibility or clade (A1, A2, and B) appeared very low. However, performan­
ces were much better for distinguishing clade B from clade A1/A2, with very high-posi­
tive and -negative predictive values (95.6% and 100%, respectively).

DISCUSSION

We describe here an original analysis of EFM-S and EFM-R isolates responsible for 
infections based on a combination of clinical data review, whole-genome sequencing, 
and the characterization of bacterial mass spectra (MALDI-TOF MS). We first show that 
the patients with infections involving EFM-R can be clearly distinguished from those 
with infections involving EFM-S by the significantly longer hospital stay, more frequent 
history of hospitalization within the preceding year, and more frequent MDRO carriage 
in patients with EFM-R isolates, highlighting the link to the nosocomial environment. 
The association between ampicillin resistance and the hospital environment has already 
been established in Enterococcus spp. (14, 32), but only in studies considering the 
entire Enterococcus genus and including very few EFM-S isolates, precluding any robust 
conclusion regarding the particular case of E. faecium.

By sequencing and analyzing the genomes of a subset of 52 isolates, consisting of 
pairs of EFM-R and EFM-S isolates from matched patients, we were also able to integrate 
the clade to which these isolates belonged and the genetic variation associated with 
resistance. Indeed, we confirmed that the E. faecium population is organized into a 
limited number of clades—A1, A2, and B—highly congruent with the community or 
hospital origin of the isolates (2, 5, 33). Our data set also confirmed the association of 
clade B with ampicillin susceptibility and of clade A1 with ampicillin resistance. Clade A2 
has been shown to contain both susceptible and resistant isolates (9). The observation 
exclusively of susceptible isolates in this clade in our data set may reflect the limited 
number of isolates studied and/or the particular epidemiological features of our hospital. 
The observed genetic variants were well correlated with phenotype, with combinations 
of at least two of three features (non-A pattern, insertion after position 466 and mutation 
at position M485) being found in all resistant genomes. The inferred clades of our 
isolates also revealed epidemiological trends in the clinical characteristics of the patients 
from whom they were obtained. Nosocomial infection was suggested for patients with 
infections involving clade A1 isolates, who had a longer hospital stay, and were more 
likely to have been hospitalized in the preceding year and to display MDRO carriage. 
Interestingly, isolates from clades B and A2 were more frequently encountered in the 
samples of digestive or biliary tract origin, consistent with the commensal nature of the 
isolates of clade B (2). Such differences were also recently observed by Arredondo-Alonso 
et al. who highlighted the low prevalence of non-A1 isolates in hospitalized patients (4). 
However, these data do not reflect a link between resistance and virulence but rather the 
potential adaptation of clades to a specific environment.

Finally, we constructed a custom database for routine identification with the MALDI 
Biotyper (Bruker) system, using a subset of 27 isolates, and we evaluated its performance 
on 52 isolates. The proximity of the sister clades A1 and A2 made it impossible to 
discriminate between them. Consequently, we were also unable to distinguish between 
isolates on the basis of ampicillin susceptibility profile at the whole-population scale. 
Nevertheless, this database performed well for discriminating clade B isolates from those 
of clades A1/A2. These results were expected, given the significant genetic divergence of 
clade B from clades A1/A2, suggesting that they could almost be considered to belong 
to two different species (2, 7). In terms of clinical microbiology, this implies that the 

TABLE 4 Performance of the local database for distinguishing isolates on the basis of ampicillin susceptibility and clade membership

EFM-R/EFM-S (n = 26/26) Clade A1 (n = 27) Clade A2 (n = 18) Clade B/(A1 + A2) (n = 7/45)

Positive predictive value (%) 26.9 25.9 52.6 95.6
Negative predictive value (%) 73.1 72.0 42.4 100
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detection of EFM-S isolates by MALDI-TOF MS can be achieved only by identifying 
the subpopulation corresponding to clade B. Further investigations are required to 
identify peaks potentially specific for ampicillin resistance, as has been proposed for 
VRE detection (34, 35). However, it may be difficult to follow such an approach with the 
same protocol as for bacterial identification (HCCA matrix, m/z range 2,000–20,000) due 
to the mechanism of ampicillin resistance (overexpression and/or decreased affinity).

Clade B isolates appear to be less frequent than clade A1/A2 isolates in human 
infections, but their rapid and accurate identification in routine laboratory experiments 
may make it possible to prescribe the most appropriate antibiotic treatment (i.e., 
ampicillin) straight away. Indeed, some studies have suggested that the use of vancomy­
cin rather than ampicillin may lead to a poorer outcome in ampicillin-sensitive Enterococ­
cus infections (12, 13). Further studies are required to address this issue in the particular 
case of EFM-S and EFM-R strains. The use of MALDI-TOF MS to distinguish between 
clades B and A1/A2 could facilitate the setting up of prospective studies in this context.

Our study has several limitations, including its retrospective, single-center nature. 
Larger prospective studies, including more diverse hospitals and patients, will be 
required to confirm our results. Future studies should also try to decipher and con­
firm the clinical characteristics of patients associated with each clade through robust 
statistical tests. In addition, the inclusion of a larger number of isolates would make 
it possible to improve the MALDI-TOF database, to prevent discrepancies due to a 
divergent isolate from clade B. Nevertheless, the results obtained are consistent with the 
known ampicillin susceptibility profiles and clades of the isolates. Moreover, to the best 
of our knowledge, this is one of the few studies focusing solely on the E. faecium species. 
The lower frequency of EFM-S (10.2% here) isolates reported here may account for the 
lack of published data.

In conclusion, we think that combining clinical data with bacterial identification via 
our custom-built MALDI-TOF MS database would make it easier to distinguish between 
EFM-S and EFM-R isolates. MALDI-TOF MS is widely available for bacterial identification 
in clinical bacteriology laboratories. Our database could, therefore, be incorporated into 
routine use, facilitating early initiation of the most appropriate treatment. The early 
use of a narrow-spectrum antibiotic, such as ampicillin instead of glycopeptides, would 
prevent exposure to broad-spectrum antibiotics even for as little as 24 or 48 hours, which 
is known to increase the risk of acquiring multidrug-resistant bacteria.
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