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An A1400G mutation of the rrs gene was identified in Mycobacterium tuberculosis (MTB) strain ATCC 35827
and in 13 MTB clinical isolates resistant to amikacin-kanamycin (MICs, >128 mg/ml). High-level cross-
resistance may result from such a mutation since MTB has a single copy of the rrs gene. Another mechanism(s)
may account for high-level amikacin-kanamycin resistance in two mutants and lower levels of resistance in four
clinical isolates, all lacking the A1400G mutation.

We examined resistance in Mycobacterium tuberculosis
(MTB) to the deoxystreptamine aminoglycosides amikacin
(AK) and kanamycin (KM) in contrast to its resistance to
streptomycin (SM), a streptidine drug. In MTB cross-resis-
tance occurs between AK and KM (2) but not between
AK-KM and SM (21).

High-level SM resistance in MTB is associated with alter-
ations of the ribosomal target site resulting from mutations in
the rpsL gene of the S12 ribosomal protein or in the 530 or 915
region of the rrs gene of the 16S rRNA (4, 6–9, 13, 16, 17). In
Escherichia coli, ribosomal binding of KM is affected by muta-
tion in the 1400 region of the rrs gene (14), and mutations in
this region produce resistance to various aminoglycosides (5).
We had identified an A1400G mutation in the rrs gene in a
KM-resistant strain of MTB (ATCC 35827) (1). To study fur-
ther the mechanism(s) of AK-KM resistance, we selected AK-
resistant mutants of H37Rv (a standard susceptible strain of
MTB) and characterized the 1400 region of the rrs gene in
these mutants and in clinical isolates of MTB resistant to
AK-KM. A subsequent report (19) noted a similar mutation in
AK-resistant strains of Mycobacterium smegmatis, M. bovis, and
MTB.

(This study was presented in part at the 36th Interscience
Conference on Antimicrobial Agents and Chemotherapy, New
Orleans, La., September 15 to 18, 1996 [1].)

H37Rv served as the wild-type strain of MTB susceptible to
all drugs. ATCC 35827 is an in vitro mutant of H37Rv resistant
to KM. Aminoglycoside-resistant mutants of H37Rv were se-
lected on Middlebrook 7H10 agar plates containing SM and
AK at 1, 2, 4, and 8 mg/ml. Inoculum titers were determined by
plating diluted aliquots of cells onto drug-free agar. Seventeen
clinical isolates of MTB resistant to various antituberculosis
agents, including AK and KM, were obtained from PHRI TB
Center, New York, N.Y. Testing of susceptibility to AK, KM,
and SM was performed twice by the proportional method (11).
Susceptibilities of clinical isolates to other drugs were deter-
mined in various clinical laboratories. Resistance to AK, KM,

or SM was defined as an MIC of .2 mg/ml. Resistance to other
antituberculosis agents was as described elsewhere (11, 20).

Chromosomal DNA from each MTB strain was genotyped
by using a standardized Southern blot hybridization method
based on the insertion sequence IS6110 (22). DNA fingerprint
patterns were compared by using a scanning densitometer with
the BioImage Whole Band Analyzer software (version 3.3),
and the strains were catalogued as described elsewhere (12).
PCR amplification of the genomic DNA was performed with
primers ML51 and ML52 for the rpsL gene (306-bp product)
(9). Flanking primers RRS30 (GGCTCCCTTTTCCAAAGG
GAG) and RRS1539 (GGGGCGTTTTGCTGGTGCTCC)
were used to amplify the entire rrs gene (1,589-bp product)
(10), or primers RRS1096 (GCGCAACCCTTGTCTCATGT
TG) and RRS1539 were used to amplify just the 1400 region
(464-bp product) of this gene (10). Amplification was carried
out for 40 cycles (1 min at 94°C, 1 min at 60°C, and 1 min at
72°C) using Taq polymerase. PCR products were cloned (18)
with the pGEM-T vector system (Promega). Plasmid DNA of
selected clones was sequenced by using T7 DNA polymerase
(Sequenase 2.0; USB). Analysis of nucleotide sequences was
performed with PC Gene software (IntelliGenetics). PCR am-
plification of DNA from each isolate was done in duplicate,
and each product was sequenced. Numbering of nucleotides
was based on the MTB rpsL and rrs genes (9, 10).

Mutants of parental strain H37Rv (MICs of AK, KM, and
SM 5 1 mg/ml) appeared at a frequency of 2 3 1026 on agar
containing 2 mg of AK or SM per ml. At 4 mg/ml of either drug,
the frequency was 2 3 1028. No mutants (,1029) were ob-
tained at 8 mg of AK or SM per ml.

Strain ATCC 35827 (Table 1) and strains A2B and A4B
selected from H37Rv at 2 and 4 mg of AK per ml, respectively,
displayed resistance to both AK and KM, but only modest
cross-resistance to SM. The 17 clinical isolates (Table 1) in-
cluded 14 strains differentiated on the basis of IS6110 DNA
fingerprinting and displayed either low-level (MIC, 4 to 64
mg/ml) (four isolates) or high-level (MIC, .256 mg/ml) (13
isolates) cross-resistance to AK and KM. All 17 isolates were
resistant to SM. Phenotypic differences in drug susceptibility
among isolates within strain designations W and W1 may in-
dicate these isolates are possibly different strains.

AK-resistant mutants A2B and A4B had no mutations in
either the rpsL or rrs gene. However, strain ATCC 35827,
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which is resistant to KM, displayed an A1400G mutation in the
rrs gene (10) and had the wild-type rpsL gene. The same
A1400G mutation was noted in all 13 clinical isolates with
MICs of AK-KM of .256 mg/ml. None of our four clinical
isolates with MICs of AK-KM of #64 mg/ml displayed any
mutation in the 1400 region.

Mutants of strain H37Rv resistant to SM or AK appeared at
frequencies of 2 3 1026 and 2 3 1028 at concentrations two
and four times the parental MICs, respectively. The magnitude
of frequencies for both SM (streptidine drug) and AK (deoxy-
streptamine drug) suggests that resistance to each subclass of
aminoglycoside results from a single mutation. We found no
mutants of H37Rv in the presence of SM and AK at 8 mg/ml,
yet mutants A2B and A4B, selected with 2 and 4 mg of AK per
ml, respectively, displayed MICs of AK of 64 to .128 mg/ml.
The reason for our failure to obtain mutants by using 8 mg of
AK per ml is not clear.

Mutants and clinical isolates displayed cross-resistance to
AK and KM. The fourfold rise in MICs of SM among the
AK-KM-resistant mutants is comparable to that noted in KM-
resistant MTB (21). The SM resistance in many of the clinical
isolates is associated with a mutation in the rpsL gene that
produces a Lys-43-Arg mutation in the S12 ribosomal protein
(4). The presence of the A1400G mutation in these isolates
might contribute in part to the observed SM resistance.

Strain ATCC 35827, with high-level resistance to only AK-
KM, had an A1400G mutation of the rrs gene of the 16S rRNA
(10) (corresponding to position 1408 in the E. coli rrs gene) (5,
15). All 13 clinical isolates (10 different strains) with MICs of
AK-KM of .256 mg/ml had this mutation. Ribosomal binding
of KM in E. coli occurs in the 1400 region (15), and methyl-
ation of adenine at this position (1408) in Streptomyces tenji-

mariensis results in resistance to KM and apramycin (3, 5).
MTB has only a single copy of the rrs gene (10), so such a point
mutation results in resistance to AK-KM. A recent report (19)
supports these findings. The same A-to-G mutation at position
1408 (E. coli numbering) was present in in vitro mutants of M.
smegmatis and M. bovis resistant to AK, gentamicin, and to-
bramycin (MICs, .500 mg/ml) and in eight AK-KM-resistant
clinical isolates of MTB (19). Allelic exchange experiments in
an M. smegmatis mutant harboring a single rRNA operon dem-
onstrated that the A1408G mutation confers resistance to AK,
gentamicin, and tobramycin (19). Therefore, it seems that
high-level resistance to both AK and KM in our MTB isolates
results from a point mutation in the 1400 position of the rrs
gene.

Resistance to AK-KM apparently arises also from a muta-
tion(s) in another gene(s), as in mutants A2B and A4B (MICs
of AK-KM of 64 to .128 mg/ml). A similar mechanism or
another mechanism(s) may account for AK-KM resistance in
the four clinical isolates with MICs of AK-KM of #64 mg/ml
and no mutations in the 1400 region of the rrs gene, although
we have not ruled out mutation in the other 73% of the nu-
cleotide sequence of the gene that was not examined.
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M. tuberculosisa
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Drug susceptibility profileb

Mutation in the
rrs genec

AK KM SM INH RIF EMB PZA ETH CIP CAP CYC

H37Rv (wild type) 1 1 1 S S S S NA S NA NA None
ATCC35827 (in vitro KMr mutant) .128 .128 8 S S S S NA S NA NA A1400G
A2B (in vitro AKr mutant) 128 .128 4 S S S S NA S NA NA None
A4B (in vitro AKr mutant) 64 128 4 S S S S NA S NA NA None

TN758 (P) 8 4 R R R S NA R S R R None
TN933 (CB) 8 4 R R R R NA NA NA NA NA None
TN2793 (C) 32 32 R R R R R R S R R None
TN718 (AY) 64 32 R R R R R R S S S None
TN4728 (BN) .256 .256 R R S S NA S S R S A1400G
TN810 (001/19) .256 .256 R R R R R S S S S A1400G
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TN4800 (W33) .256 .256 R R R R NA R S R S A1400G

a Clinical isolates are indicated by the prefix TN and have the genotyped strain designation in parentheses.
b INH, isoniazid; RIF, rifampin; EMB, ethambutol; PZA, pyrazinamide; ETH, ethionamide; CIP, ciprofloxacin; CAP, capreomycin; CYC, cycloserine; S, susceptible;

R, resistant; NA, not available. The drug concentrations tested were as described in the text.
c The entire rrs gene of H37Rv and the in vitro mutants were sequenced. Only region 1119 to 1536 of the rrs gene of the clinical isolates was sequenced. The numbering

of base 1400 refers to M. tuberculosis (11).
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