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Abstract

Although great progress has been made to advance the scientific understanding of oil spills, tools 

for integrated assessment modeling of the long-term impacts on ecosystems, socioeconomics and 

human health are lacking. The objective of this study was to develop a conceptual framework 

that could be used to answer stakeholder questions about oil spill impacts and to identify 

knowledge gaps and future integration priorities. The framework was initially separated into 

four knowledge domains (ocean environment, biological ecosystems, socioeconomics, and human 

health) whose interactions were explored by gathering stakeholder questions through public 

engagement, assimilating expert input about existing models, and consolidating information 

through a system dynamics approach. This synthesis resulted in a causal loop diagram from 

which the interconnectivity of the system could be visualized. Results of this analysis indicate that 

the system naturally separates into two tiers, ocean environment and biological ecosystems versus 

socioeconomics and human health. As a result, ocean environment and ecosystem models could 

be used to provide input to explore human health and socioeconomic variables in hypothetical 

scenarios. At decadal-plus time scales, the analysis emphasized that human domains influence 

the natural domains through changes in oil-spill related laws and regulations. Although data gaps 

were identified in all four model domains, the socioeconomics and human health domains are the 

least established. Considerable future work is needed to address research gaps and to create fully 

coupled quantitative integrative assessment models that can be used in strategic decision-making 

that will optimize recoveries from future large oil spills.

Keywords

Oil spills; Impact and damage assessment; Integrated assessment modeling; Systems dynamics; 
Causal loop diagrams
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1. Introduction

On April 20, 2010, the Deepwater Horizon (DWH) oil drilling platform exploded, killing 

11 people and injured 17 others, and causing a deep-sea blowout. This led to one of the 

largest oil spills in history, releasing natural gas plus an estimated 5 million barrels of oil 

into the Gulf of Mexico (GoM) before the well was capped 87 days later [103]. As part 

of the response, 2 million gallons of dispersant were applied at the deep sea and at the sea 

surface [156].

The DWH oil spill was notable for its immense impact, and for being the deepest (~1500 

m) major oil spill to date. Despite advances in drilling safety, the likelihood of a range of 

spills of various sizes is still a danger for which preparation, response, and recovery plans 

are needed, given the lessons learned from the DWH accident. To this end, a number of 

tools are available. Models for operational oil spill forecasting, including ocean, wave and 

weather forecasting for predicting oil movement and concentration [12] tend to employ 

short time horizons, making predictions hours to weeks into the future. They also are 

typically used to guide emergency response activities and immediate cleanup efforts (e.g., 

by answering questions such as where to deploy equipment for shoreline removal of oil). 

These operational models can be quickly configured to investigate tactical questions as 

new questions arise. In contrast, broader models that estimate the effects of oil spills on 

society (i.e., integrating ocean environment, biological ecosystems, socioeconomics and 

human health knowledge domains) can be employed for damage assessment and strategic 

planning. These models are intended to operate over longer time horizons, from months 

or years to decades. They tend to be more interdisciplinary in nature, because they require 

integration across broad knowledge domains. Although environmental assessments depend 

strongly on quantitative models that can incorporate knowledge from a wide range of 

disciplines, fully coupled assessment models that consider quantifiable aspects of human 

dimension are scarce, and while a few quantitative interdisciplinary models have been 

developed [6,15,48,68,119], they have not been connected under a single framework. This 

paper addresses efforts towards this end and lays out a framework of how the long-term 

analysis of oil impacts can be integrated and implemented for future strategic planning for 

optimizing long-term recovery from major oil spills.

System Dynamics [58–60], as an organizing principle, was used to drive the synthesis effort. 

In simple terms Forrester [60] described System Dynamics as, “Interpreting real life systems 

into computer simulation models that allow one to see how the structure and decision-

making policies in a system create its behavior.” System Dynamics is a methodology for 

addressing complex interdependent and non-linear systems that are governed by sequences 

of interacting causes and effects, also called feedback loops. Ideally, primary determinants 

of behavior should be endogenous, i.e., there should be few external driving forces. This 

principle is well suited for our purpose [123], given that we wish to consider how the entire 

GoM (nature and humans) is impacted by an oil spill. The method has proven well suited for 

policy analysis in general because feedbacks tend to exist at multiple points in the political 

system [116,175].
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The conceptualization phase of building a System Dynamics model often includes the 

development of Causal Loop Diagrams (CLDs), which aid in visualizing interconnections 

among the systems to be linked [22]. CLDs are shown as flow diagrams in which the nodes 

represent variables, and links, including directional arrows, represent causal influences. 

Specific information about nonlinear functional forms and state variables is neglected in 

CLDs for simplicity. The CLDs thus provide a high-level qualitative overview of the system, 

making them ideal for synthesizing complex and interconnected systems in a way that 

is easily understandable. Because CLDs are simple and visually intuitive, they can be 

co-developed with experts unfamiliar with the method of System Dynamics.

This paper focuses on the development of the CLD for the GoM system in the context of 

oil spill impacts. Additionally, the intention is for the CLD to be applicable to oil spills in 

general, while using DWH as an example to guide its development.

To describe the development of the CLD and its interpretation this paper is organized in 

the following sections: Section (1) Introduction; Section (2) Societal questions, stakeholder 

needs, and expert input that helped guide this synthesis; (3) Development of the CLDs; (4) 

Analysis of the CLD in light of the societal questions posed in Section 2; (5) Mapping of 

existing models onto the CLD, to identify gaps in understanding and model development 

(based on the stakeholder needs identified in Section 2); (6) Describe a roadmap for future 

applications, and (7) Summary and conclusion.

2. Societal questions and stakeholder needs

Many questions have been raised by stakeholders and concerned citizens over the years 

about the long-term impacts of the DWH oil spill. A number of these questions were 

consolidated by the GoM Sea Grant Oil Spill Science Outreach Team [78] who engaged 

with stakeholders to learn about their oil spill science-related questions and concerns. 

The team engaged with target audiences (Table 1) and the general public during the 

first year through one-on-one discourse, small group meetings, and large group input 

sessions. In 2014 and 2016, the team conducted two Social Network Analyses to 

understand how credible, relevant, and timely oil spill science information flowed through 

a network of people from these specific target groups in the GoM. Survey participants 

used the opportunity to share topics of interest ([139–141], See https://gulfseagrant.org/

oilspilloutreach). The team also compiled audience feedback data from evaluations 

completed before and after 30 oil spill science seminars and workshops (Table 2).

To obtain additional feedback from oil spill decision makers representing industry and the 

oil spill response, restoration, and environmental monitoring communities, an expert panel 

was coordinated in 2020 by Sea Grant (see Supplementary materials for details). Needs 

identified by this panel included:

• A cross-disciplinary model that can quickly be repurposed for new geographic 

areas and be applicable on a wide range of scales both nationally and 

internationally.
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• Models that can track the oil transport and fate from the time a spill occurs all the 

way to and through the damage assessment process and system recovery (NOS 

2020).

• Models that look at cleanup strategies and their potential impacts

• Models that could accommodate additional considerations such as air quality 

components, different oil types, and freshwater-salinity fronts,

• Provide for improved baseline data so that impacts of oil spills can be better 

assessed.

• Maintenance of data repositories and its accessibility for future modeling needs.

Stakeholder questions consolidated by Sea Grant during its early outreach efforts (Table 2) 

were generally focused on practical issues, including topics related to impacts on human and 

ecological health and a desire to understand the ultimate disposition of the oil. Similarly, 

but in a broader sense, experts from the 2020 Sea Grant outreach effort emphasized the 

need for practical models that can be quickly repurposed to answer questions associated 

with specific scenarios once they occur. The need for baseline data and data repositories to 

be used for model development was also emphasized. In the end the experts underscored 

the need to understand the extent of damages caused by the spill, including impacts of oil 

spills on seafood resources, impacts on ecosystems, the ultimate disposition of the oil, and 

also the safety of recreational resources. With this concept in mind, the CLD was developed 

to address assessment of damages to the environment, ecosystems, and human health, in 

addition to their socioeconomic consequences. Although this manuscript focuses on the need 

for integrated models, it is understood that stakeholders are interested in the outcomes that 

models attempt to capture as opposed to the underlying processes associated with the model. 

The user community for the proposed integrated models include high level decision makers 

who have responsibilities for maintaining community well-being, such as elected officials 

and public health officials.

3. Development of the Causal Loop Diagram (CLD)

3.1. Creating the CLD

Many of the stakeholder and expert panel questions focused on the impacts of the spill 

and needs for interventions to reduce or prevent impacts. Interventions mentioned included 

dispersant use, clean up to protect wildlife and natural resources, freshwater diversions to 

influence the movement of the oil, and fishery closures to control seafood safety. Four 

knowledge domains (Fig. 1) were recognized as a starting point to identify the fields of 

science needed to address both spill impacts and effects of interventions. These knowledge 

domains include the following:

• Ocean Environment. Oceanic and atmospheric transport and biogeochemical and 

thermodynamic transport and fate processes.

• Biological Ecosystems. Interconnectivity of organisms geographically and within 

and between trophic levels.
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• Socioeconomics. Evaluating market impacts across different economic sectors as 

well as non-market societal impacts.

• Human Health. Acute and chronic physical and mental health impacts, including 

physiological and psychological consequences of protracted and cumulative 

stress.

These four domains served as the starting point for initializing the CLD. They roughly 

separate the subject of oil spill impact modeling into a distinct set of related and 

overlapping disciplines. For example, ocean environment modeling requires expertise from 

oceanography, climate science, and contaminant transport, plus contributions from the 

physical, geological, chemical, and biological sciences. Biological ecosystems involve 

a core expertise from the biological sciences including the sub-disciplines of ecology, 

microbiology, marine sciences, zoology, botany, fisheries, and veterinary sciences, with 

cross-over to the physical, geological, and chemical sciences. Socioeconomics include the 

sub-disciplines of economics, anthropology, sociology, psychology, and communication 

studies. Human health includes the sub-disciplines of environmental health science, 

public health, medicine, physiology, applications of genomics and other “omic” sciences, 

biostatistics/bioinformatics. All domains require the application of rigorous mathematical 

and statistical methods and computer science. The complexity of the impacts of an oil spill 

is thus demonstrated by the knowledge needs from many different disciplines.

While recognizing the interconnectedness among disciplines, information was consolidated 

about the latest models by reviewing the literature and gathering input from experts 

representing each of the four domains of knowledge. Pre-existing review articles that 

discussed recent advances in oil-spill research were focused on ocean environment [144], 

biological ecosystems [7,17] and human health [50,89,137]. Among these Spaulding [144] 

and Ainsworth et al. (in press) provided in-depth reviews of available models describing 

advances in ocean environment models, and how ocean environment models have been 

interfaced with biological ecosystem models. Ainsworth et al. (in press) emphasizes the lack 

of quantitative models available in the human health and socioeconomics domains.

Given that modeling in human health and socioeconomics domains are characterized 

by larger gaps and fewer linkages within existing quantitative models, below we focus 

on representative modeling capacities within these two domains which expand upon the 

descriptions from the above-mentioned literature reviews.

3.2. Current models in human health and socioeconomics

Although considerable evidence has been collected to link human 

health impacts (both physical and mental) to oil spills 

[3,4,27,47,53,73,87,88,97,102,107,114,118,134,137,151,168,170,172], quantification of the 

links has been limited. Exceptions include a few physical health models based upon 

risk assessment approaches or Bayesian statistics. For example, the Beach Exposure And 

Child HEalth Study (BEACHES) evaluated risks to children from oil-contaminated beaches 

where the hazard was identified as the chemical constituents of oil [54,55,153]. Once 

the concentrations were established through oceanographic models or empirical evidence 

[106,171], then the beach play activities of the children were simulated as scenarios for 
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possible exposure [54,56] and used to compute health risk [8,18]. In the context of seafood, 

risk assessments evaluated levels of the more toxic component of oil, polycyclic aromatic 

hydrocarbons (PAHs), but recognized that toxicological data is missing for alkylated PAH 

forms limiting the strength of risk assessment approaches due to lack of toxicological data 

[53,167,168]. Groth et al. [75] utilized a Bayesian hierarchical linear model to estimate 

exposures to oil spill workers to specific volatile oil components based upon measured levels 

of total hydrocarbons. They conclude that correlations between total hydrocarbon levels and 

volatile chemical components may be useful for estimating worker exposure.

In the context of mental health, conceptual and semi-quantitative models have been 

established to evaluate cause (direct and secondary disaster effects) and effect (resilience and 

recovery within a community as measured by economic and housing stability, physical and 

mental well-being, and social role adaptation) [1,2,79,100,117]. For example, Guo et al. [76] 

have utilized structural equation modeling to evaluate hypotheses between place attachment 

and community resiliency. Indices have been developed to relate community well-being 

and resilience to environmental, economic, and social factors [143,148,149]. A critical 

area of study in the context of mental health impacts is the potential cumulative nature 

of stress [115]. Within the literature, the term allostatic load has been used to define the 

cumulative impacts of repeated and multiple mental health stressors in a person’s life that 

results in adverse mental and physical health outcomes [61,71,80,100,101,132,138]. Models 

that integrate mental health consequences should consider the allostatic load experienced 

by a community [30,57], especially if impacted by multiple disasters. Koliou et al. [85] 

emphasize, in the context of community resilience to natural hazards, the need to integrate 

physical, social, and economic aspects of community resilience. They further emphasize 

the need to include interdependencies and system recovery which are yet to be quantified. 

One of the few conceptual models that integrates physical and mental health outcomes, 

including considerations for allostatic loads, is the Disaster-Pressure State-Ecosystem 

Services-Response-Health (DPSERH) model that describes the interdependencies between 

ecosystem services, individual and community health, and the cumulative stress impacts 

after disasters [135].

Like human health, socioeconomics lag in depth and breadth of quantitative models as 

compared to those available in ocean environment and biological ecosystems, in part due 

to a lack of high-resolution, longitudinal socioeconomic monitoring and data collection. 

Challenges exist in matching the spatial and temporal scales of these data sets with those 

used in biogeophysical modeling. For integrated modeling results to be useful, researchers 

should consider “decision-making relevant scale (DMRS)” [159,173] whether they are 

for assessing jurisdictional, institutional, management, and local impacts [29]. Extensive 

social and economic datasets exist and are available for use and incorporation into models 

[62,105,108,142,154]. For example, existing datasets include: the Census data (census.gov) 

as well as its produced American Community Survey (ACS) Public Use Microdata Sample 

(PUMS) files, Electronic Medical Records (https://digital.ahrq.gov/key-topics/electronic-

medical-record-systems), and marine surveys available through the National Oceanographic 

and Atmospheric Administration (NOAA) (fisheries.noaa.gov). However, use of these 

aggregated datasets to fully understand social resilience or vulnerability at the local, sub-

county or neighborhood scale is difficult [122]. Community resilience is inherently local, 
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with high degrees of variability across communities just a few miles (or blocks) apart. 

Existing available datasets do not capture spatial or temporal variability within counties or 

census tracts, nor do they differentially weigh socioeconomic factors by local community 

prioritizations and needs [63].

Traditionally, efforts to estimate economic losses associated with oil spills have focused on 

assessing lost passive use values using contingent valuation methods [11,28,74,81,95,96,98]. 

Alternatively, input-output analysis methods can be implemented using current software 

tools and databases ([49,84,155]).

Studies related to the economic impacts of the DWH oil spill employed a wider variety of 

methodologies [90,125]. For example, Sumaila et al. [147] and Carroll et al. [26] evaluated 

the negative economic impacts of DWH on commercial and recreational fishing and marine 

aquaculture through the seafood value chain using economic impact models for the entire 

Gulf Coast region. The former study estimated total economic losses for all sectors to be 

$8.7 billion and the latter study estimated that the short-run impacts on the Gulf seafood 

industry from the DWH oil spill resulted in reduced income ranging from $22 to $310 

million. Another study used spatial databases of annual reported commercial catch prior to 

the spill to estimate impacts of the oil spill on commercial fisheries in the Gulf Coast region 

resulting in an estimated minimum loss in annual landed value of $247 million for U.S. Gulf 

fisheries [99]. Another example employed estimates from the Atlantis ecosystem model to 

evaluate the short- to medium-term shifts in commercial and recreational fishing activity due 

to fishery closures resulting from the DWH spill, and input-output analysis to determine the 

economic impacts of these changes [41]. Another study developed a multi-modal predictive 

framework integrating (1) blowout simulations (2) data of fishing fleets targeting benthic 

and pelagic ecosystems, and (3) a social vulnerability index derived from U.S. Census 

Bureau data. This framework was used to anticipate the relative revenue loss between coastal 

communities in the GoM [14].

In terms of tourism- and recreation-related losses, one example estimates the economic 

impacts of canceled recreational trips to Northwest Florida after the DWH spill. A survey 

process was used to determine average lost visitor spending per household, which allowed 

researchers to calculate estimated total foregone spending. These figures were then used to 

model broader regional economic losses of U.S.$ 1.3 billion for the region due to canceled 

visitor trips [40]. Others developed a series of random utility models for site choice among 

saltwater anglers in the Southeastern U.S. to estimate recreational user losses resulting from 

the DWH oil spill [9,10] with results suggesting that total monetary loss from recreational 

anglers was U.S. $585 million.

The wide range of estimated impacts in the examples listed above suggests a high degree 

of uncertainty and the effect of varying approaches. In the next phase of development 

socioeconomic modeling efforts should focus on a better understanding of the social 

dynamics that drive the wide variety of socioeconomic impacts associated with oil 

spills, the development of best practices related to socioeconomics data collection/use 

and methodological approaches, and the implementation of dynamic regional economic 
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modeling frameworks to fully integrate the simulation of the broad range of community 

health and socioeconomic impacts, given their reliance upon another [131,166].

Given the limitations in quantitative modeling in human health and socioeconomics, there 

are major challenges to understanding human health and social dynamics in order to model 

them in a credible way, to constructing such models, and then to coupling them to existing 

models of the ocean environment and biological ecosystem dynamics [23,113].

3.3. Converting the concepts within the four domains of knowledge into a CLD

Expert-participant input was sought to supplement the information from literature reviews 

and Sea Grant outreach efforts. (Details of this effort are available in section II of the 

supplemental text).

The CLD developed from these efforts (Fig. 2) reflect the four primary domains of 

knowledge (1) the ocean environment (upper center quadrant); (2) biological-ecosystems 

(upper right quadrant), this quadrant also includes ecosystem services; (3) socioeconomics 

(bottom right quadrant); and (4) human health (bottom left quadrant) and their associated 

linkages represented by colored-coded arrows (Fig. 2). The transport modeling components 

of the ocean environment that rely on hydrodynamic, atmospheric, and oil behavior and 

fate are represented by blue arrows. The components highlighted with gray arrows represent 

the response linkages necessary for establishing short-term operational models needed for 

response and the political and governance drivers that mandate the establishment of these 

short-term models. The interlinkages associated with biological ecosystems as illustrated by 

different organism biomasses and habitats are represented by the green arrows in the upper 

right quadrant. Significant connections between the upper half of the CLD and the lower half 

include seafood, ecosystem services, and interlinkages between oiled shorelines and tourism. 

The teal and pink arrows along the bottom of the diagram focus on the interlinkages with 

socioeconomics and human health components including income & employment, physical 

health, mental health, and productivity. The CLD illustrates the influence of the human 

systems on the regulatory framework and the linkages to response efforts.

3.4. Observations from the CLD within each domain of knowledge

3.4.1. Ocean environment—The CLD emphasizes that ocean environment models 

(upper center, blue circles and arrows) are interlinked with response planning which is 

highlighted within the upper left quadrant of the diagram (gray circles and arrows, Fig. 

2). This includes several short-term loops that represent responses to the spill in terms of 

immediate preparedness and cleanup efforts. The CLD also emphasizes the interlinkages of 

the ocean environment model with longer term feedback loops that are part of the integrated 

socio-ecological model, emphasizing that effects captured in operational models can 

ultimately influence individual health status, productivity and community health. Through 

perceptions of oil spills on welfare and risk, these longer-term impacts, influence the 

regulatory framework through which the operational models are mandated. Consequently, 

outputs from the short-term operational models not only influence how society responds 

rapidly to protect resources that are sensitive in the short term, but they also influence 

the longer term socioeconomics and human health domains, which in turn feedback to 
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the regulatory framework through public perceptions of oil spill effects, and hence affect 

operational responses. The CLD further emphasizes that perceptions are also influenced 

by the media coverage and the quality of information that is disseminated. The affected 

perceptions can then drive the regulatory framework which impacts planning, response 

capacity, and cleanup efforts, which then impacts the amount of oil remaining in the ocean. 

Thus the ocean environment domain influences the entire range of decision-making time 

scales, from the short-term, immediate response on the order of hours to days, to the longer 

term decadal scales through which official policy requires that ocean environment models be 

established in the interest of public welfare [161].

3.4.2. Biological ecosystems—The biological ecosystem submodel (Fig. 2, upper 

right quadrant, green circles and arrows) is highly simplified (as are several other causal 

loops). Oversimplifications include the lack of trophic levels and species interdependencies 

thereby omitting an explicit accounting of ecosystem diversity. In its current simplified form, 

the CLD emphasizes the interlinkages between oil and impacts on living organisms (e.g., 

[16]). It also emphasizes the interconnections of biological ecosystems with socioeconomics 

through perceived safety of seafood for human consumption and through contact with oil 

in beach sediments and marshes. Additionally, socioeconomic factors impact biological 

ecosystems through coastal development and its impacts on coastal habitats and the impacts 

of fisheries on foodwebs. The CLD also emphasizes that the contamination of biological 

ecosystems can be on-going due to the circulation of toxins in the water column and 

their release from buried material. These are all important messages for stakeholders to 

understand the cascade of effects triggered after a spill. It is important for injury assessment 

and restoration planning [111] to measure the persistent impacts in addition to the immediate 

acute toxicity and mortality effects. The diagram further emphasizes that the biological 

system provides important non-market ecosystem services such as protection from storm 

surges and access to recreation. This is an important part of welfare given that people rely on 

these non-market services and have an intrinsic interest in the existence value of species and 

landscapes.

3.4.3. Socioeconomics—The socioeconomic components (teal circles and arrows) tend 

to be clustered to the bottom right quadrant of Fig. 2 with linkages with ecosystem services, 

seafood harvest, seafood prices, seafood industry capacity, and income & employment. 

Additionally, oiled shorelines influence beach closures, which have impacts on tourism, 

income & employment. The diagram also emphasizes that income & employment rely 

indirectly on many other components of the socioeconomic system, including from the 

human health domain, for example the influence of human physical and mental health on 

productivity. Additionally, the diagram emphasizes the intrinsic value of knowledge and 

information that can be produced through education. Education level can affect consumer 

confidence, people’s behavior in response to a spill, and ultimately can impact community 

welfare. The CLD emphasizes that the socioeconomics components and their linkages to 

human health and other components of the integrated system can be very complex and 

intricate.
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3.4.4. Human health—The translation of the models and concepts described above into 

a CLD (Fig. 2) shows links between the oil release and its transport/degradation (blue 

arrows), and ultimately a connection to human health through the exposure of toxins to 

human populations (pink circles and arrows). Exposures can occur through cleanup efforts 

and through contaminated seafood and beaches. The exposure to human populations can 

result in physical health impacts, which affects society through productivity, and income 

& employment. The cycle is closed through the links between income & employment 

to healthcare affordability. Mental health is an important contributor to physical health. 

Mental health can manifest from toxic exposures through the fear of exposure and loss 

of use of treasured places, loss of recreational values, and others [121,128,152]. Mental 

health is strongly influenced by income & employment [72] which is linked to fishing and 

non-fishing economies. Mental health is also influenced by community health. Community 

health is dependent upon the social network of people, which help maintain the mental 

health of the people who rely on those networks. The analysis of human health systems 

emphasizes its strong interlinkages between socioeconomics and physical and mental health.

4. Analysis of the causal loop: key societal questions

The unifying theme of stakeholder questions was, “damage assessment in the context of 

environment, ecosystems, and human health.” In terms of damage assessment, and using 

DWH as an example, large spills send an immediate shockwave through the system 

described by the CLD. The physical spill of oil occurred, for example, in the deep ocean, 

marked by the oil release circle shown in Fig. 2. Within 24 h the information of the spill 

and the fear of its consequences spread across the human domains. Then a slower set of 

physical, chemical, and biological effects and information waves occurred, and these slower 

set of effects were more thoroughly discussed amongst experts and synthesized in the CLD. 

To track this “damage” through the CLD, we begin by tracking toxins originating from 

oil (herein, referred to as “toxins”) and their impacts on ecosystems, socioeconomics, and 

human health. Toxins are defined as chemicals capable of causing lethal effects or sub-lethal 

effects including acute illnesses, chronic illnesses, and cancer.

Impact to the ocean environment:

A portion of the spilled oil rose to the sea surface and was transported from the spill site by 

wind and surface currents partly to settle into the sediments and partly into the water column 

[120]). However, the fastest oil to reach shore was the oil that rose to the sea surface and 

was carried by the surface currents and wind to shore (lower blue circle in Fig. 3A). At the 

surface, oil was removed or converted to new chemicals through several natural processes 

including photooxidation/photodegradation, evaporation, and biodegradation [45,158]. As a 

result of the DWH oil spill, Marine Oil Snow Sedimentation and Flocculent Accumulation 

(MOSSFA) was found to be an important removal pathway [20,24,127]. Eventually, some of 

the weathered oil slicks become beached, after which they were influenced further through 

natural onshore degradation processes. Throughout the water column and seabed, natural 

microbial communities also played important roles in degrading different compounds in the 

oil. Humans intervene to mitigate the damages caused to the ocean environment through 

addition of dispersants and active clean up offshore and onshore. Cleanup methods can lead 
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to additional environmental and human health risks (Fig. 3B), such as through the use of 

dispersants, other cleanup chemicals, burning of surface oil, capture and subsequent disposal 

of oiled water, sediments, and capture devices.

Impact to the biological ecosystem:

The toxic components of the oil spilled in the ocean environment influence the biological 

ecosystems. The level of impacts on aquatic plants, animal species, and microbial 

communities are dependent upon the frequency and duration of exposure, and the 

concentration of toxins that are found at the sea surface, water column, and bottom 

sediments. In the model, there is a circular ecosystem that represents the biomass of 

many species (from microbes to fish and corals) (Fig. 3A). This ecosystem is naturally 

regenerating and degrading, but human actions may also have a negative influence on both 

regeneration and degradation. The steady-state biomass of the system is dependent upon 

habitat quality which dictates the carrying capacity and is influenced by oiling and coastal 

development. The biomass of many commercially important species can also be reduced 

by harvesting through fishing. The influence of biological ecosystems on socioeconomics 

and ultimately human health is dependent upon the impacts to commercial and recreational 

fisheries species and to some secondary and tertiary food web consumers such as corals, 

sea turtles and marine mammals that have intrinsic value to humans, in addition to many 

other taxa that play critical roles in ecosystem functions (e.g. algae and carbon dioxide 

sequestration or mangroves and coastal protection).

Interlinkages between ocean environment and biological ecosystems:

Although the ocean environment and biological ecosystems have numerous significant 

feedback loops within their respective domains, processes within these two domains rely 

on feedback between them. The distribution of toxic substances in the ocean environment is 

influenced by the environmentally controlled hydrodynamics, and especially ocean currents 

that play a major role on transport and fate processes. Biological ecosystems are highly 

influenced by the distribution of toxins and species sensitivity within various trophic levels. 

The key interlinkages between the two domains, the biodegradation of oil by microbes 

(counterclockwise green arrow from microbes at the top of Fig. 3A) and the uptake of oil 

spill toxins by marine organisms (counterclockwise blue arrows in the center of Fig. 3A), 

emphasize the dependence of processes between these two domains. Toxin concentrations 

are transferred from the ocean environment system into biological systems, then circulate 

within the ecosystems domain. Damage within the ecosystem domain can include acute 

and chronic impacts to organisms as well as long-term impacts to their populations via 

reduction in reproductive capacity and/or genetic damage. Microbial degradation of oil, 

a key biological process (e.g., MOSSFA), is seen as a major feedback process from the 

biological ecosystem towards the ocean environment. Although the distribution of toxic 

substances within the residual oil following a spill can be reasonably simulated through 

the ocean environment system, it does rely heavily upon the microbial component of the 

ecosystems processes. These microbes can not only remove oil from the system, but also 

(by preferentially degrading different molecules) potentially alter its buoyancy and transport. 

In summary, processes within the upper half of the CLD (between ocean environment and 

biological ecosystems) are inextricably linked, requiring coupling of the two systems to 
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simulate major mechanisms that invoke damage (e.g., spread of toxins and loss of biomass 

and diversity) through the system.

Impact to socioeconomics:

The spill impacted the seafood industry most immediately through the closure of fishing 

zones, but also through possible reduction in the quality of the seafood and through 

reductions in price (as represented by tan arrows in Fig. 2). Recreational fisheries are 

another source of economic value in the GoM, a sector that suffered damages for the 

same reasons as the commercial seafood industry. More generally, the tourism industry was 

damaged, due to the impression (real and perceived) of a damaged environment. Income 

& employment were also affected by loss of jobs and income associated with reduced 

fishing activity and reductions in demand across the hospitality industries. This impacted 

the productivity of the labor force that depends on health status (Fig. 3B, teal arrows). 

Human welfare (Fig. 3B, bottom teal circle) is closely tied to income & employment. 

Human welfare also increases by reinvesting a fraction of economic value in education 

(teal arrows). ‘Education’ includes both formal (K-12) and informal (outreach) efforts. In 

terms of informal public education, for example, the impact of spills (on both humans 

and the environment) and issues like workforce development (e.g., alternative methods of 

coastal-based employment) are areas of coastal communities that Sea Grant has traditionally 

supported. In the event of a major spill situation, over long time scales, local and state 

governments may be in the position of needing to prioritize resources in favor of healthcare. 

If there are excess healthcare costs due to spill effects and toxins then there is an added 

burden of illness. Presumably, this would leave less funding for other budget areas, including 

formal, K-12 education. Health also affects productivity directly. So, there are economic 

and health feedbacks that represent the ways in which economic impacts diminish the 

accumulation of human welfare, which diminishes productivity and that propagates through 

the health system.

Impact to health:

There are two components to the damages in the health system. First, there are direct 

physical toxic health effects, where toxic exposures create acute, short- and long-term 

health effects. The long-term health effects typically appear a few years or decades after 

the exposure onset or may continue as a chronic condition from the time of exposure. 

Second, are the indirect mental effects, which can be caused by a number of stressors 

including the physical health effects or worries about them, the socioeconomic damages, 

the environmental damages, and a degrading trust in a “system” that allows such a spill 

to happen. Degradation of mental health might accelerate the degradation of physical 

health and vice versa. This is probably the most uncertain piece of the system, the 

interconnectedness of mental and physical health. In general, degradation of human health 

can affect socioeconomics by changing productivity directly.

Interlinkages between socioeconomics and human health:

Unlike the ocean environment and biological ecosystem domains, which have tight circular 

feedback loops within their respective domains, the feedback loops for socioeconomics 

include human health and vice versa (Fig. 3B). The complete separation of feedback loops 
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between socioeconomics and human health domains is not possible. A major stressor on 

mental health is employment status and income (which in turn are also affected by the toxins 

as described above through indirect routes). When the economy is below a long-term trend, 

psychological and physical stress levels increase and impact health. For mental health and 

productivity feedbacks, there are more persistent effects on the economy based upon erosion 

of long-term community resources social capital and support networks, increased costs for 

health care, and reduced investment in human capital. There are many economic and health 

feedbacks that represent the ways in which an oil spill causes damage to the accumulation 

and use of the six forms of capital affecting community resilience. These capitals are 1) 

human and cultural, 2) social, 3) political, 4) natural, 5) infrastructure, and 6) financial 

[109]. Although this is an over simplified model and the linkage parameterizations are 

far more complex than illustrated, the proposed structure emphasizes that socioeconomics 

and human health are strongly dependent upon each other. The processes in each of these 

domains cannot easily be separated as the major feedback loops go back and forth through 

these domains. As such, models developed for the lower half of the CLD need to be 

tightly and intimately coupled due to the close dependencies between human health and 

socioeconomics.

Interlinkages between the ocean environment and biological ecosystems (top half) and the 
socioeconomics and human health domains (bottom half, Fig. 2):

Interlinkages between the natural domains (top half) and the human-focused domains 

(bottom half) generally proceed in primarily top down pathways, in particular in the shorter 

(monthly to yearly) time frames. These top down processes include toxin impacts on seafood 

harvest, and on physical health through exposure during clean up, seafood consumption, 

or recreational uses. These impacts from the oil spill help address stakeholder questions 

focused on damage assessment, with damages operating at the monthly to yearly time scales. 

Thus, on the time scale of months to years, the system naturally separates where information 

from the natural domain (top half) is transmitted to the human-focused domain (bottom 

half). It is recognized, however, that human activities do have feedback towards the natural 

systems and that the dominance of the top down flow of information is not absolute.

At the much longer time scales (on the order of years to decades) the dominant flow of 

information is reversed with outer loops that illustrate feedback from the human systems 

back to the natural systems (Fig. 2). These longer-term feedbacks are observed towards 

the far right of the CLD where coastal development influences shoreline stability and 

coastal habitats. This feedback directly influences biological ecosystems by impacting 

ecosystem health and diversity, habitat quality, and carrying capacity. Similarly, another 

very significant outer loop is shown by the teal arrows found towards the bottom and left of 

the CLD (Fig. 2). These loops represent feedback towards human systems that influence the 

regulatory framework (upper left), which ultimately impacts the probabilities and response 

preparedness of future oil spills. These feedback loops connect these systems together and 

span very long-time scales. A model that addresses these outer loops of the CLD would be 

capable of answering questions associated with the tradeoffs of prevention and preparedness 

for future spills.
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5. Mapping existing models to the CLD: identifying gaps in model 

development to address stakeholder needs

To identify gaps in current modeling efforts and methods for linking models, existing 

state-of-the-art models were consolidated from expert input during virtual workshops. From 

the virtual workshops, the expert input resulted in a list of 33 models (Table 3) that 

were developed between 2010 and 2020 within each of the domains of knowledge. The 

general capabilities of these existing models were then super-imposed on the CLD (Fig. 4). 

The results from this superimposition are described for ocean environment and biological 

ecosystem models (Section 5.1) and for human health and socioeconomic models (Section 

5.2). Additional detailed feedback on modeling needs from experts is provided in the 

supplemental text.

5.1. Ocean environment and biological ecosystem domain models

The general super-imposition of existing models on the CLD emphasized the larger expanse 

and depth of quantitative models currently developed for the ocean environment and 

biological ecosystem domains (Fig. 4, highlighted by the blue, green, light purple and 

gray shapes). These include models that are designed to be discretized in space and time 

including a model that integrates atmospheric with oceanic processes [35,42]. The level of 

resolution is dependent upon the phase of the oil spill, whether resulting in acute or chronic 

ecosystem effects. For acute effects, time scales between oceanographic and ecosystem 

models would be more similar given that the effects of physical smothering and acute 

toxicity occur within a short period. Whereas for chronic ecosystem impacts, the time 

scales would be extended to account for growth and expanded habitat of aquatic organisms 

which generally exceed the time and spatial scales of hydrodynamic processes that affect oil 

distribution and degradation. The discrepancies between spatial and temporal scales expand 

as the focus of assessment transition from short-term to long-term ecological impacts.

These discrepancies have been addressed in some existing integrated models (light purple 

shape). Examples of fully integrated quantitative models that cross-over these two domains 

of knowledge include Atlantis, the bio-physical Connectivity Modeling System (CMS) 

and its oil module (oil-CMS), Spill Impact Model Application Package (SIMAP), and 

Consortium for Simulation of Oil-Microbial Interactions in the Ocean (CSOMIO) (Table 

3). The CSOMIO model offers an example of the complexity in combining simulations 

across these two domains of knowledge, by integrating the simulations of oil with 

microbial degradation and sedimentation using different computational schemes. The 

modeling system dynamically couples components for simulating ocean hydrodynamics, 

oil transport, dispersion and weathering, oil-mineral aggregate formation, flocculation and 

settling, and the lower trophic level marine ecosystem [162]. A biogeochemical modeling 

component incorporating a microbial model (Genome-based EmergeNt Ocean Microbial 

Ecosystem (GENOME); [39]) is implemented in the system and adapted for the presence 

of hydrocarbons. The ocean modeling component (Regional Ocean Modeling System, 

ROMS) is modified to simulate three-dimensional oil transport and compositional changes 

(weathering). These modeling components are linked together using a two-way Lagrangian-

Eulerian mapping technique, enabling interaction between all the modeling components 

Solo-Gabriele et al. Page 16

Mar Policy. Author manuscript; available in PMC 2023 October 17.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



for tracking of hydrocarbons from a source blowout to deposition in sediment, microbial 

degradation, and evaporation while being transported through the ocean.

5.2. Socioeconomic and health domain models

Full integration of models across the socioeconomics and health domains has not yet 

occurred for oil spill models, although some progress has been made in the integration of 

ocean environment, ecosystems, and subsets of the socioeconomics realm. The oil-CMS 

model simulates toxic oil transport, fate and dispersion, impacts to the subsea and to 

fisheries [14,120,124], and has expanded into the socioeconomics knowledge domain 

through its use to evaluate the economic impacts of fishery closures [15,16]. SIMAP, a 

proprietary model [64], crosses over the ocean environment domain, the ecosystem domain, 

and because of its use in the National Resource Damage Assessment (NRDA) process, also 

includes estimates of ecosystem valuation by providing input to another proprietary model, 

the Offshore Environmental Cost Model (OECM, [25]).

Although there have been extensions of quantitative and discretized models into portions of 

the socioeconomic domain, there are no models that are fully quantitative and discretized 

that address the entirety of socioeconomics and human health. As a result, two new 

categories of models are defined in Fig. 4 that differ in level of development compared 

to models that simulate the ocean environment and ecosystems. These categories include 

“quantitative modeling frameworks” and “conceptual models.” “Quantitative modeling 

frameworks” include equations that quantitatively describe relationships between variables 

but are yet to be integrated in time and space with the more well developed spatially 

and temporally discretized oceanographic and ecosystem models (e.g., pink, tan, and teal 

shapes in Fig. 4). “Conceptual models” (represented by the dotted gray lines in Fig. 

4) include flow charts and the development of indices to quantify human health and 

socioeconomic vulnerabilities. The limitation to integration is disaggregation. But in the 

case of socioeconomics and human health, the relevant types of disaggregation (other 

than space and time) are needed. For example, a fisheries valuation model would require 

information about impacts of oil on fish species and on different sectors of the fishing 

economy. Impacts will be different for the specific species or groups of species of fish that 

is/are the focus of commercial and recreational fishing. Therefore, information should be 

disaggregated to the fish species level and by fishing sector for input to socioeconomic 

models. Such disaggregation is rare for longer-term ecosystem models and so there is 

generally a mismatch (or impedance) between what ecosystem models provide and the 

information needed to quantify economic impacts. For physical human health, various 

chemicals can cause diseases in humans and so integration with physical human health 

would require that ocean environment models separate chemical data. Oil (crude oil or 

its products such as fuel oil) is a complex mixture of thousands of individual chemicals. 

Modeling each chemical would be extremely difficult. For this reason, most oil transport 

models simulate chemistry by splitting the oil into pseudo-components [43,110,120]. Some 

go farther to simulate selected PAHs [15,68,158]. Very few, if any, simulate multiple 

individual chemical concentrations within water, air, and sediments which is a starting point 

for human health and ecosystem risk assessments. Similarly, here in terms of disaggregation 

of chemical concentrations there is a disconnect between ocean environment models and 
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physical human health modeling needs that require chemical species disaggregation. And 

this discussion only considers physical health consequences of some oil components for 

humans.

The general super-imposition of existing models emphasizes that no single quantitative 

model incorporates the entire range of model components and processes needed to address 

societal impacts of oil spills, and to our knowledge, there have been no advancements 

made to quantitatively couple existing models across all four domains, although very 

broad conceptual non-quantitative models such as DPSERH (Section 3.2) are available. 

Within socioeconomics and human health, the development of quantitative physical health 

and ecosystem valuation will require that the ocean environment and ecosystem models 

overcome impedance by providing the outputs needed for quantification in the lower half 

of the CLD. In the area of mental health and the psychosocial effects of oil spills, although 

conceptual models for mental health frameworks exist (Fig. 4, lower portion of figure), 

these are generally not quantitatively modeled at this time. Within the middle of the CLD 

where consumer education, knowledge and consumer confidence intersect, there are no 

overlapping shapes. The missing components of a model are the non-monetary variables in 

the community such as how individuals and populations respond to changes in quality of 

life, what are the quality of life implications of health status, education, and equity, and 

others. Socioeconomics models need to integrate these variables in addition to traditional 

monetary metrics. Similarly, perceptions of welfare, community and risk and their influence 

on regulatory frameworks and their adoption, as shown on the left side of the CLD (Fig. 2), 

are completely lacking from existing modeling frameworks.

6. Roadmap for future applications

A CLD is by design qualitative. The analysis of the CLD can be further extended 

through qualitative modeling approaches [44,104,169]. Ultimately next steps would include 

conversion of the CLD to a formal simulation model by identifying stocks and flows [146], 

quantifying linear and nonlinear relationships, and adding time series data for comparison 

and representation of features outside the model scope. Each variable could then evolve 

according to an underlying equation that describes the rate of increase or decrease of that 

variable (as a consequence of all the linkages between domains and impacts in the diagram). 

With such a general high-level understanding of how the system interacts, key dynamics 

can then be represented and integrated into a fully coupled model. It is recognized that 

identifying the underlying equations will be a challenge and will require considerable future 

research to validate. Emphasis should be placed on quantifying processes that influence key 

risk factors [82] as a means of focusing future efforts.

One limitation of the CLD in its current form is the lack of spatial discretization and 

disaggregation of different population groups and different economic sectors. Various spatial 

domains can however be represented in suitably elaborated and disaggregated sub-models 

within the same overall conceptual framework. A useful next step would be to attempt the 

construction of more complex sub-models, especially for the socioeconomic and human 

health domains, where quantitative models are less well-developed. In addition, it is possible 

that the existing complex models of the ocean environment and biological ecosystem 
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dynamics could usefully be emulated by less complex systems dynamics models, or even 

included directly by careful definition and representation of the crucial interconnections.

Rather than building a System Dynamics model, the CLD can be also used for defining 

and developing connections between models [176]. Pathways to integrating models can 

include a portfolio approach (organize a family of independent models without attempting 

to link them mathematically), loosely coupled models (where the output from one model is 

used as the input to the next), fully coupled models (combine multiple large-scale models 

where information is transferred at each time step), and metamodels (a large holistic and 

fully-integrated model that simulates details within all systems). Given the large differences 

in time and spatial scales between the ocean environment/ecosystems and socioeconomics/

human health domains, directly linking all modeling efforts into a large metamodel model 

does not appear to be practical at this time for addressing stakeholder questions. One can 

envision taking the portfolio of already developed models and augmenting and coupling 

(federating) them. This will lead to larger models which, at some point, are likely to become 

intractably difficult and expensive to run as the socioeconomic domain is integrated. The 

strategy to federate models might be possible for the ocean environment and ecosystem 

models. For the socioeconomic and human health domains, given the interlinkages between 

these domains, it would likely be best to further integrate and elaborate the models within 

these domains.

Given the observations from the CLD, the most practicable path forward appears to be 

the development of a highly integrated dynamic model that represents the socioeconomic 

and human health spaces, with rich feedback processes between them. This highly 

integrated model would be capable of receiving inputs from models that simulate the 

ocean environment and biological ecosystem domains. This approach, however, does not 

capture the even less explored decadal scale processes whereby the human dimensions 

(e.g., change in policies) impact the frequency and magnitude of oil spills, the ability to 

respond to these spills, and ultimately impact the natural ocean environment and biological 

ecosystems. Future developments should also integrate these larger term processes that 

feedback from the human and socioeconomics domains back towards governance aspects 

that provide some controls on the potential for a spill. At the broader community health 

scale there are questions of equity, inclusion, and environmental justice which should also 

be included within an integrated model and will likely require input from experts from 

additional disciplines (e.g., sociology, anthropology, and political science) to address.

For the health and socioeconomics domains, a crucial requirement is to define suitable 

disaggregation of the whole population and economy, both spatially and sectorally, and 

to obtain the data needed to characterize their interactions and evolution. While the level 

and types of detail needed for these sub-models will be different than that needed for the 

natural systems models of the ocean environment and ecosystems, there is a paucity of 

data available to substantiate the human domains. Though there are gaps, in the biophysical 

realm broad-based monitoring efforts have been organized into formal systems from the 

global scale, for instance, NASA’s Earth Observing System or the Global Ocean Observing 

System (GOOS), to more regional efforts like the GoM Coastal Ocean Observing System 

(GCOOS) and Fisheries Information Network (FIN). There is no equivalent monitoring 
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or observing system of a robust suite of socioeconomic variables that can help us assess 

the value of non-market resources or cultural attributes for example. Data is gathered for 

various uses (e.g., recreational and commercial fishing, employment in shipping) but there 

is no concerted effort to aggregate existing data, identify and fill longitudinal data collection 

gaps, and make it available in a value-added process. An improved human health observing 

system has been proposed that consists of a six layered approach that includes an already 

existing three-layered set of large-scale surveys and studies with the addition of three new 

nested, longitudinal cohort studies [136]. The conceptual framework under this proposal 

for an integrated socioecological model for long-term impacts of oil spills that includes 

improved human health observing systems would provide data to calibrate quantitative 

models that integrate physical health, mental health, and socioeconomics.

For the immediate future, for expediency purposes, future directions could involve adding 

socioeconomics and human health functionalities to the operational models for use during 

an active spill [21], for prospective impact assessment [77,112], or for retrospective 

damage assessment. During an active oil spill, operational models can potentially provide 

considerable insights regarding the transport of the oil and possible impacts of mitigation 

measures. Coupling this information with human dimensions would allow for more 

informed and educated decisions that can prevent irreversible effects on an ecosystem. 

Knowledge of conditions that may cause irreversible effects could be used to constrain 

short-term mitigation decisions and help ensure desirable long-term outcomes. Integrated 

modeling of the long-term Impacts of oil spills to include all four domains of knowledge 

could help identify conditions at which effects are irreversible.

Finally, we must recognize that the deterministic nature of any simple model limits its ability 

to represent and propagate errors and uncertainty. First there needs to be an assessment of 

the structural uncertainty in the model in terms of defining interconnections and directions 

of data flow. In addition to the structural uncertainty, uncertainty propagation of a given 

model can, in principle, be addressed by putting probability distributions on each input 

parameter of the future integrated socioecological model, and then running the model in 

a Monte Carlo formulation to evaluate how error and uncertainty propagates. In practice, 

deciding which variables and rates to randomize is a non-trivial problem, and the cost of 

running many instances of the model will limit the level of detail that can be incorporated 

in the individual sub-models. Uncertainty issues for operational oil spill models is discussed 

in Barker et al. [12] and can be used to help guide approaches for assessing uncertainties in 

longer scale models capable of answering societal level questions.

7. Summary and conclusions

The original four box diagram, used to initiate the conceptual modeling framework (Fig. 

1), was found to effectively serve the System Dynamics approach well as the initial 

organizing principle for oil spills. The CLD developed emphasized the components and 

interconnections of a conceptual model that can be used to evaluate the many questions 

related to damage assessments. The analysis of the CLD emphasized, at time scales of 

months to years, that the system naturally separates into two tiers: ocean environment and 

biological ecosystems versus socioeconomics and human health. The top tier requires spatial 
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detail of physical and biological systems. The bottom tier is about human populations, and 

therefore needs to be disaggregated by individuals (or socioeconomic groups), economic 

sectors, and health aspects. These tiers therefore work in fundamentally different spaces. 

This difference in variable measurements may serve as a simplifying approach where the top 

tier processes (ocean environment and biological ecosystems), which are already interlinked 

through existing models serve as inputs to the lower tier processes (socioeconomics and 

health). Efforts are needed to develop a more fully integrated dynamic model that simulates 

the linkages of the lower tier processes of socioeconomics and human health and one that 

also accepts, as input, the outputs from the upper tier processes of ocean environment and 

biological ecosystems.

The CLD also demonstrated that at the much longer decadal time scales, governance 

or regulatory processes influence the probabilities and possible scenarios associated with 

future spills. These regulatory processes, whether associated with shoreline development 

or oil drilling permitting and procedures, represent the primary feedback loops from 

socioeconomics and human health domains back towards ocean environment and biological 

ecosystems. In order to incorporate the entire system inclusive of regulatory processes, these 

longer scale feedback processes should be captured through a secondary set of models 

(or possibly boundary conditions) that consider changing laws and regulations to mitigate 

damages from oil spills and which consider levels of oil spill preparation, response, and 

recovery planning capacity. The consideration of boundary conditions for processes that 

function at decadal time scales would depend upon whether governance and preparation 

processes remain constant during the target periods for assessing impacts to socioeconomics 

and human health.

Improved long-term outcomes would demonstrate the value of integrating models into the 

decision-making process. Even without quantitation, the CLD can serve as a platform for 

managers to have a “big picture” view on oil spill effects, and consider indirect effects, 

which might not have been considered otherwise. For example, the CLD emphasizes that 

short-term oil-based toxin inputs to the system can have long lasting repercussions on the 

community as shown by the linkages. Ideally, a fully developed System Dynamics model 

should be available to evaluate possible long-term outcomes from shorter-term decisions for 

immediate mitigation. Ultimately there would be utility to linking short-term operational 

models [12] to a System Dynamics model designed to evaluate long-term societal outcomes 

inclusive of socioeconomics and health, the beginnings of which are described herein. 

Practical application of the findings and insights of this model is critical as its application 

supports multiple aspects of human communities.

This exercise would not have been possible without the input from experts and stakeholders 

(See supplemental text for list). The work emphasized the importance of building a 

professional network [133], that can be used to reconfirm key questions at the time of a 

disaster [19,160] and refine linkages since the CLD is not necessarily static. It will change 

over time as knowledge is gained, and as society structure and values change. These changes 

can only be implemented in any model through continuous input and updates developed 

from those with expertise and interests in the impact of oil spills and other disasters. 

Although emerging from DWH and its focus in the GoM, results from this synthesis study 

Solo-Gabriele et al. Page 21

Mar Policy. Author manuscript; available in PMC 2023 October 17.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



are expected to be valuable for other marine environments that are subject to oil exploration 

and to other potential contamination events (e.g., harmful algal blooms, floods, chemical 

plant releases along the coast). The known interlinkages and the knowledge gaps identified 

through this effort have applicability to the development of fully integrated models capable 

of assessing holistic societal impacts that incorporate knowledge from ocean environment, 

biological ecosystems, socioeconomics and human health. Future iterations of the CLD 

would benefit from additional emphasis on social dynamics such as considerations for 

evaluating different societal groups including the most disadvantaged members of affected 

communities. We also recognize that the Systems Dynamics and the development of the 

CLD represents a starting point for assessing societal level impacts from oil spills and that 

such an approach should be combined with higher level societal assessments to validate the 

results of modeling efforts.
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Fig. 1. 
Integrated model structure of the four knowledge domains that were used to first address 

key stakeholder and societal questions pertaining to oil spill science, and secondly serve as a 

basis to develop the Causal Loop Diagram (see Fig. 2).
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Fig. 2. 
Causal Loop Diagram (CLD) for Conceptual System Structure for Evaluating Oil Spill 

Impacts. This diagram is intended to be of general use describing the interlinkages of 

oil spills, although DWH was the primary example used in developing this diagram. The 

number of tails after the arrow and line thickness represent general time scales of impacts 

with three tails and thicker lines representing long timescales, two tails medium timescales, 

and one tail and thin lines short time scales.
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Fig. 3. 
Evaluation of primary feedback loops within and between domains identified from expert 

group assessments. Upper panel, 3A, emphasizes the main causal consequences of oil spill 

damage to the ocean environment (blue) and biological ecosystems (green). Lower panel, 

3B, emphasizes causal consequences of oil spill damage to the socioeconomics and human 

health systems (teal and pink) with ultimate impacts to community welfare. Background 

shows portion of the full causal loop diagram. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
The Causal Loop Diagram with the general superimposition of existing models. Blue and 

green shapes correspond to open source quantitative models that are currently available. 

Light purple shape corresponds to the few models that integrate the ocean environment, 

biological ecosystems and some components of the socioeconomics domains. The pink, 

tan and teal shapes show the realm of existing quantitative model frameworks. These 

quantitative frameworks are yet to be fully developed for integration with the more 

developed oceanographic and ecosystem models. Dotted shapes correspond to existing 

conceptual models that are non-quantitative. Integration of these modeling efforts would 

require reconciliation between sectors and varying spatial and temporal scales. (For 

interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.)
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Table 1

Target audiences engaged by GoM Sea Grant Oil Spill Science Outreach Team.

Elected officials Port and harbor employees

Emergency responders or managers Tribal communities

Environmental non-profit staff members Health professionals

Fishers (commercial, for-hire, recreational) Tourism staff

Natural resource managers University and college researchers

Oil industry Sea Grant Extension and GoMRI outreach specialists
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Table 2

List of Selected Stakeholder Questions organized by Knowledge Domain and Consolidated by the GoM Sea 

Grant Oil Spill Science Outreach Team.

Consolidated Stakeholder Questions

• “Is the Gulf seafood safe to eat?”
• “What are the impacts to wildlife?”
• “Where did the oil go and where is it now?”
• “Do dispersants make it unsafe to swim in the water?”

Ocean Environment

1. Where did the oil go? What are the biggest deposits today?
2. How long did the oil take to reach the deposits?
3. Which beaches are affected?
4. How much is buried on the sea floor?
5. Could a big storm bring the oil on the sea floor up into the water column and start the process all over?
6. Did any oil make it into the organisms living in the water column or on the seafloor?
7. What happens to the oil over time when dispersants are applied?
8. What are the natural organisms that decompose hydrocarbons (crude oil) and how can we increase this process?
9. Was it possible to track the oil with numerical models? If not, can we do it better now?

Biological Ecosystems

1. Within ecosystems there were 48 questions that related to the following topics

a. Food webs e. Inshore/deep-sea habitats

b. Benthic/pelagic/infaunal organisms f. Sub-lethal effects

c. Mammals g. Dispersants

d. Juvenile fishes h. Fisheries and stock assessment

Examples of specific questions include

A. We need to solve the [tradeoff] of short-term effects of oil vs. long recovery [to better understand] actions like dispersant use that may cause 
short-term negative effects but are beneficial in the long term.
B. How does food web and ecosystem connectivity affect injury assessment?

Socioeconomics

1. How can vulnerable communities with subsistence economy become resilient to incessant oil spillages?
2. Very interested in impacts to the economy and infrastructure.
3. What are the long-term expert consensus prognosis and predictions for any continued significant health risk or resource effects or community 
structure changes in the affected areas?
4. What was done most effectively to ensure that the economic concerns of those impacted were met in a sustainable fashion?
5. Short and long-term economic impacts of the BP oil spill on GoM fisheries.
6. Socioeconomic impacts of spill (true costs of closures, lost tourism and fishing income, etc.).
7. Economic impact on areas due to habitat destruction.
8. Impact on coastal communities.

Human Health

1. How are humans affected by eating contaminated fish?
2. Effects of airborne dispersants on community health.
3. Inhalation hazards from aerosol oil spray or burning of oil.
4. What are the potential health risks for the people responding for clean ups?
5. Health impacts on anglers, people working during/in the area of the spill.
6. What health impacts did the spill have on residents?
7. Dispersant effects on human/animal health.
8. Impacts of stress to mental health.
9. Are our citizens safe and healthy living in a region where "big oil" exists?
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