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Abstract
Plant pathogens cause great economic losses in agriculture. To reduce damage, chemical pesticides have been frequently 
used, but these compounds in addition to causing risks to the environment and health, its continuous use has given rise to 
resistant phytopathogens, threatening the efficiency of control methods. One alternative for such a problem is the use of 
natural products with high antifungal activity and low toxicity. Here, we present the production, isolation, and identification 
of cyclopaldic acid, a bioactive compound produced by Penicillium sp. CRM 1540, a fungal strain isolated from Antarctic 
marine sediment. The crude extract was fractionated by reversed-phase chromatography and yielded 40 fractions, from which 
fraction F17 was selected. We used 1D and 2D Nuclear Magnetic Resonance analysis in DMSO-d6 and  CDCl3, together with 
mass spectrometry, to identify the compound as cyclopaldic acid  C11H10O6 (238 Da). The pure compound was evaluated for 
antimicrobial activity against phytopathogenic fungi of global agricultural importance, namely: Macrophomina phaseolina, 
Rhizoctonia solani, and Sclerotinia sclerotiorum. The antifungal assay revealed the potential of cyclopaldic acid, produced 
by Penicillium sp. CRM 1540, as a leading molecule against M. phaseolina and R. solani, with more than 90% of growth 
inhibition after 96h of contact with the fungal cells using 100 µg  mL−1, and more than 70% using 50 µg  mL−1.
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Introduction

Phytopathogenic fungi cause huge losses in agricultural 
production by decreasing crop yield and quality (Thambu-
gala et al. 2020). Macrophomina phaseolina (Tassi) Gold 
[Rhizoctonia bataticola (Taub) Butler] is a soil-borne fun-
gus with worldwide distribution, wide host range, and high 
persistence in soil (Marquez et al. 2021). At least 500 plant 
species are affected by this plant pathogen, which is respon-
sible for diseases such as root rot, charcoal rot, stem rot, 
seedling blight, and damping-off (Ghosh et al. 2018; Lodha 
and Mawar 2020). Another fungus that causes significant 

damage to crops is Rhizoctonia solani Kühn [Thanatephorus 
cucumeris (A.B. Frank) Donk]. This microorganism causes 
brown patches, damping-off, root rot, black scurf, and stem 
canker on its hosts, which include rice, wheat, soybeans, 
potato, and corn (Erlacher et al. 2014; Hussain and Khan 
2020; Nguyen et al. 2021).

Significant losses caused by R. solani have been reported 
through the years (Goulart 2018). For soybean yield, 48% 
losses were estimated in the USA (Tachibana et al. 1971; 
Dorrance et al. 2003) and 52% in Canada (Chang et al. 
2018), for common bean the losses ranged from 10 to 60%, 
depending on whether more soil pathogens are involved or 
not (Zambolin et al. 1997) and for rice, losses of 58% have 
been reported (Chahal et al. 2003). Some isolates, such as 
AG2-1 can cause severe diseases pre and post-emergence 
with establishment losses up to 80–100% and final yield of 
30% in some crops (Sturrock et al. 2015).

For crops affected by M. phaseolina, yield losses from 
28 to 50% have been reported in Brazil for soybeans under 
high air temperature and dry weather (Ferreira et al. 1979; 
Almeida et al. 2001; Torres et al. 2007), in the USA reports 
shown losses up to 20% in 1970 (Sinclair and Gray 1972; 
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Wyllie 1974; Wrather and Koenning 2006). The incidence 
of Sclerotinia sclerotiorum caused losses higher than 200 
million dollars/year in the United States and for canola pro-
duction in Canada, 600 million losses (Bolton et al. 2006; 
Dupont Pioner Report 2012). In the global market, yield 
losses by S. sclerotiorum range from 20 to 35%, but infec-
tion is widely spread, with reports of cases of 50% up to 80% 
incidences (Alkooranee et al. 2017).

To circumvent production losses and prevent diseases, 
producers have made use of many synthetic chemicals, 
whose prolonged use has resulted in environmental and eco-
logical impacts, besides the emergence of resistant patho-
genic strains (Keswani et al. 2019; Cheng et al. 2021). Given 
these concerns, strict regulation has been proposed for the 
use of fungicides to ensure toxicological food safety, in addi-
tion to the development of new antifungals for use in a more 
environmental-friendly way (Brauer et al. 2019; Keswani 
et al. 2019).

Natural products are secondary metabolites produced 
by living organisms that aid in survival and adaptation 
(O’Brien and Wright 2011). These compounds have varied 
biological activities and can be used as antibiotics, pigments, 
hormones, antitumors, antimicrobials, and antivirals (New-
man and Cragg 2016; Singh et al. 2019). Microorganisms 
are known producers of bioactive molecules, and a rel-
evant source for bioprospection of compounds for clinical, 
industrial, and agricultural applications (Dayan et al. 2009; 
Furbino et al. 2014). Furthermore, naturally occurring anti-
fungal products are considered effective alternatives to pes-
ticides (Silber et al. 2013; Henríquez et al. 2014; Encheva-
Malinova et al. 2015; Lee 2016; Ngo et al. 2019).

Among the most promising sources of active natural 
products are metabolites from marine-derived fungi, and 
fungi from extreme habitats. A significant number of com-
pounds with a wide variety of biological activity produced 
by these fungi have been reported (Melo et al. 2014; Gon-
çalves et al. 2015; Svahn et al. 2015; Deshmukh et al. 2018).

In recent years, filamentous fungi isolated from terres-
trial and marine samples collected in the Antarctica region 
for antimicrobial activity against phytopathogens have been 
explored in bioprospection studies in our group (Purić et al. 
2018; Vieira et al. 2018; Ferrarezi et al. 2019). The fungus 
Penicillium sp. strain CRM 1540 isolated from Antarctica 
marine sediment has already shown, in previous studies, 
antibacterial activity against phytopathogens, being iso-
lated the penicillic acid as main compound with antibacte-
rial activity (Vieira et al. 2022). These promising results 
led us now to determine the potential of the fungus Penicil-
lium sp. strain CRM 1540 in the production and identify of 
compounds with activity as antifungal, in particular com-
pounds with action against the phytopathogenic fungi global 
agricultural importance: M. phaseolina, R. solani, and S. 
sclerotiorum.

Materials and methods

Fungal strain

The fungus Penicillium sp. strain CRM 1540 was isolated 
from marine sediment collected at Admiralty Bay (King 
George Island, Antarctica) as reported by Wentzel et al. 
(2019). Molecular taxonomy analyses based on beta-tubu-
lin sequencing and phylogeny (GenBank accession number 
MZ198745) suggested that this fungus is a new species from 
the genus Penicillium close related to P. commune and P. 
caseifulvum (Vieira et al. 2022). This strain has been main-
tained by cryopreservation (− 80 °C) at the UNESP Central 
of Microbial Resources (CRM-UNESP).

For the present study, Penicillium sp. CRM 1540 was 
reactivated in 2% malt extract (20 g  L−1 malt extract, 20 g 
 L−1 agar, KASVI) agar plates (60 × 15 mm) and incubated 
at 15 °C for 7 days. Following reactivation, three plugs of 
mycelium + agar (5 mm × 5 mm) were transferred from the 
culture borders to 250 mL Erlenmeyer flasks (× 15) contain-
ing 150 mL of 2% malt extract liquid medium and incubated 
at 15 °C and 150 rpm for 20 days to produce secondary 
metabolites.

Extraction and fractionation of crude extract

After growth, fungal biomass was transferred to a vacuum 
filtration system, and the culture media were subjected to 
liquid–liquid extraction with analytical grade ethyl acetate 
(EtOAc 3:1). This process was repeated five times. The sol-
vent was removed by reduced pressure evaporation to yield 
the crude extract of Penicillium sp. CRM 1540.

The EtOAc extract was dissolved in methanol to 60 
mg  mL−1, and then aliquots (900 µL) were subjected to 
reversed-phase HPLC (Phenomenex Luna-C8 21.2 mm × 25 
cm × 7 µm column) with standardized automated collection 
(~ 0.6 min interval), as described in Vieira et al. (2022). 
Scheme 1 shows the extraction and fractionation processes. 
The fractions obtained during the fractionation process 
(Fig. S1) were dried using a centrifugal evaporator and 
combined by similarity based on UPLC-DAD-QTOF anal-
ysis. After fractionation of the crude extract, the fractions 
obtained were analyzed for their purity in order to proceed 
with the identification of their components and antimicrobial 
activity assays.

Cyclopaldic acid identification

Fraction F17 was selected for further elucidation due to its 
relative purity in relation to the other fractions. For the LC-
HRMS analysis, 1 µL of F17 was diluted in MeOH/H2O (1:9 
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v/v) to 1 µg  mL−1 and injected in a C8 column (Betasil-C8 
10 × 0.2 mm) with gradient elution of water and acetonitrile 
with 0.1% formic acid. Equipment and further experimental 
details are available in Supplementary Information. Sample 
F17 was subjected to several NMR experiments, involving 
1H NMR, 13C NMR, 13C APT NMR, HSQC, HMBC, and 
COSY. The solvents used for analysis were dimethyl sulfox-
ide (DMSO-d6) and chloroform (CDCl3). NMR data were 
recorded on a Bruker Avance DRX400. NMR data were ana-
lysed by Bruker TopSpin 4.0.9 software (academic license); 
the compound structure was drawn with ChemSketch Free-
ware v 14.00 (ACD/ChemSketch 2019).

Plant pathogenic fungi

Antifungal activity in vitro was measured against three 
known fungal phytopathogens. The targeted fungi were 
cultivated in potato dextrose agar plates (27 g potato dex-
trose broth, 20 g  L−1 agar, KASVI) for 4 days for R. solani 
MMBF30/11 (São Paulo, Brasil), 7 days for M. phaseolina 
MMBF12/18 (Paraná, Brasil), and 15 days for S. sclero-
tiorum MMBF04/19 (Paraná, Brasil) at 28 °C. The fungi 
belong and are preserved at the Biological Institute of São 
Paulo (Instituto Biológico de São Paulo—IB).

Antifungal activity assay

The assay was carried out in 96-well plates with a twofold 
dilution of the compound, allowing the evaluation of cyclo-
paldic acid from 100 to 0.78 µg  mL−1. From the agar plate, 

a standardized inoculum of  104 cells for each culture was 
prepared in saline solution (0.85% NaCl) for each plant path-
ogen, followed by a dilution at 1:10 in PDB. To each well 
were added 50 µL of cyclopaldic acid and 50 µL of fungal 
phytopathogen. PDB medium with the respective inoculum 
was used as Negative Control (NC). The plates were incu-
bated at 28 °C for 96 h, and  OD600 was measured at 24 h 
intervals in a hybrid multi-mode microplate reader (Biotek 
Synergy H1MFD). The assay was performed in triplicate. 
Aliquots of 10 µL from each well were transferred to PDA 
plates after the test and then incubated at 28 °C to identify 
whether the compound had fungistatic or fungicide action. 
Growth inhibition (%) was calculated for each concentration 
according to the formula below:

wherein OD600 = optical density measured at 600 nm, NC: 
negative control.

Statistical analysis

The data were analysed by descriptive analysis and one-way 
ANOVA followed by Tukey’s multiple comparison test, 
using GraphPad Prism 8 software for Windows (GraphPad 
Software, San Diego, California USA, www. graph pad. com). 
The same software was used to plot inhibition graphics.

Results

Cyclopaldic acid isolation and identification

The EtOAc crude extract (363.90 mg) yielded 40 fractions 
after UPLC analysis and grouping by similarity. From these, 
fraction F17 (44.6 mg) was isolated (Fig. 1) as a white com-
pound with the molecular formula  C11H10O6 (238 Da), based 
on high-resolution ESIMS m/z 239.2365 [M +  H]+ (calcu-
lated for  C11H11O6, 239.2365) (Fig. S2). Analysis of the 1D 
and 2D NMR (400 MHz, DMSO-d6, CDCl3) data for F17 
(Fig. S3–S9, and Table S1) and comparison with available 
literature data Achenbach et al. (1982) confirmed the struc-
ture of cyclopaldic acid.

Antifungal activity assay

No antifungal activity was detected against S. sclerotio-
rum, even with the phytopathogen initially having slow 
growth rate (24 h  OD600 = 0.01; 48 h = 0.02) which started 

Inhibition(%)

=
(average OD600 of NC) − (OD600 of compound)

(average OD600 of NC)
× 100,

Scheme  1  Isolation scheme of cyclopaldic acid. a Liquid–liquid 
extraction of the microbial broth using ethyl acetate; b crude extract 
fractionation by reversed-phase HPLC; c fractions from the same 
peak (F17) were grouped as one

http://www.graphpad.com
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Fig. 1  Chromatogram of fraction F17 obtained by analysis of UPLC-DAD-QTOF at 290 nm and structure of cyclopaldic acid, compound pre-
sent in fraction F17

Fig. 2  Growth Inhibition (%) of Rhizoctonia solani by different 
concentrations of cyclopaldic acid in  vitro at 24, 48, 72 and 96  h. 
Data shown as means and standard deviation. NC: negative control 
of Rhizoctonia solani. a 100 µg  mL−1 of cyclopaldic acid, b 50 µg 
 mL−1 of cyclopaldic acid, c 25 µg  mL−1 of cyclopaldic acid, d 12.5 

µg  mL−1 of cyclopaldic acid. Differing signals (*) denote significant 
differences among group means according to analysis of variance 
(ANOVA) and Tukey test for comparison between treatments with a 
confidence interval of 95% (α = 0.05)
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to increase after 72 h (72 h  OD600 = 0.1; 96 h = 0.28. The 
growths of R. solani and M. phaseolina were affected by 
cyclopaldic acid at 100, 50, and 25 µg  mL−1.

For R. solani, the 24 h interval measures of fungal growth 
showed that, at 100 µg  mL−1, it took 48 h of contact for 
the compound to have its inhibitory effect (31.02%), reach-
ing more than 90% inhibition after 72 h and 96 h (Fig. 2a). 
At 50 µg  mL−1, inhibition started after 72 h and severely 
decreased in the subsequent interval (Fig. 2b). And at 25 
µg  mL−1, cyclopaldic acid affected growth only after 72 h, 
with a 32.85% inhibition (Fig. 2c). For 12.5 µg  mL−1 and 
the subsequent concentrations evaluated, no activity was 
observed (Fig. 2d).

Statistical analysis revealed no significant difference 
between 72 and 96 h of incubation for the compound at 
100 µg  mL−1, which promoted inhibitions of 92.83% and 
97.18%, respectively (Fig. 2a). There was also a significant 
difference between 72 and 96 h of contact at 50 µg  mL−1 
(Fig. 2b).

Additionally, at a 72 h interval, the inhibitory effect of 
cyclopaldic acid showed a slight difference between 100 and 
50 µg  mL−1 (p = 0.0122), which grew after 96 h (Fig. 3a, b). 
These results contribute to our conclusion that the inhibition 
activity of cyclopaldic acid on R. solani reaches its optimal 
effectiveness at 100 µg  mL−1after 72 h of contact with the 
fungal cells in in vitro conditions. We may also infer that 
similar results can be achieved by applying a lower concen-
tration of the compound, e.g., 50 µg  mL−1.

Akin to what was observed with R. solani, the highest 
inhibition of M. phaseolina growth (96.13%) was detected 
at 100 µg  mL−1 after 96 h of incubation, and no activity was 
found at 12.5 µg  mL−1 and lower concentrations (Fig. 4a, 

d). Cyclopaldic acid showed activity within the first 24 h 
of contact with M. phaseolina. Its growth was inhibited by 
21.68% at 100 µg  mL−1, which increased to 34.42% after 
48 h. Afterwards, inhibition increased to 89.94% and 96.13% 
after 72 h and 96 h of incubation, respectively (Fig. 4a).

The antifungal activity of the compound at 50 and 25 µg 
 mL−1against M. phaseolina differs from the negative control 
only after 72 h of incubation (Fig. 4b, c). Within this time 
interval, more than 60% inhibition was observed at the three 
concentrations, in which cyclopaldic acid was active against 
M. phaseolina. The activity decreased in the next 24 h to 
75.95% at 50 µg  mL−1 and to less than 10% at 25 µg  mL−1, 
which was statically similar to the control.

Against M. phaseolina, the inhibitory activity of cyclo-
paldic acid differs significantly among concentrations after 
72 h of contact with the phytopathogen, and this difference 
increased after 96 h (Fig. 5a, b). However, at 100 µg  mL−1, 
inhibition means showed a small difference between the 
exposure times of 72 h and 96 h (p = 0.0123). Given those 
results, we conclude that the most effective treatment in vitro 
for M. phaseolina is applying 100 µg  mL−1 for 96 h, which 
can be shortened to 72 h.

Rhizoctonia solani and M. phaseolina grew in the agar 
plates after being treated with the active compound (Fig. 6).

Discussion

Traditionally regarded as a necrotrophic fungus, S. scle-
rotiorum acquires nutrients by progressively killing the 
host cells through cell-wall degrading enzymes and tox-
ins secretion (Kabbage et al. 2015; Mbengue et al. 2016; 

Fig. 3  Inhibitory effect of cyclopaldic acid at concentrations of 100, 
50, 25 and 12.5 µg  mL−1. a After 72 h and b after 96 h of contact 
with Rhizoctonia solani. NC: negative control of Rhizoctonia solani. 
Different letters denote significant differences between group means 

according to the analysis of variance (ANOVA) and Tukey test for 
comparison between treatments with a confidence interval of 95% 
(α = 0.05)



 3 Biotech (2023) 13:374

1 3

374 Page 6 of 10

Fig. 4  Growth Inhibition (%) of Macrophomina phaseolina by differ-
ent concentrations of cyclopaldic acid in vitro at 24, 48, 72 and 96 h. 
Data shown as means and standard deviation. NC: negative control 
of Macrophomina phaseolina. a 100 µg  mL−1 of cyclopaldic acid, b 
50 µg  mL−1 of cyclopaldic acid, c 25 µg  mL−1 of cyclopaldic acid, d 

12.5 µg  mL−1 of cyclopaldic acid. Differing signals (*) denote sig-
nificant differences between group means according to the analysis 
of variance (ANOVA) and Tukey test for comparison between treat-
ments with a confidence interval of 95% (α = 0.05)

Fig. 5  Inhibitory effect of cyclopaldic acid at concentrations of 100, 
50, 25 and 12.5 µg  mL−1. a After 72 h and b after 96 h of contact 
with Macrophomina phaseolina. NC: negative control of Macropho-
mina phaseolina. Different letters denote significant differences 

between group means according to the analysis of variance (ANOVA) 
and Tukey test for comparison between treatments with a confidence 
interval of 95% (α = 0.05)
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Mccaghey et al. 2019). These molecules, known as effec-
tors, include fungal secondary metabolites that range from 
small peptides to complex chemical structures and are 
important virulence components found in plant pathogens 
(O’Sullivan et al. 2021; Shao et al. 2021).

Among these molecules are oxalic and fumaric acids, 
which contribute to host defence suppression and patho-
genesis by acidifying the environment and creating condi-
tions for the expression of lytic and hydrolytic enzymes 
related to disease development (Frisvad 1989a, b; Boy-
sen et al. 1996; Nicoletti and Trincone 2016; O’Sullivan 
et al. 2021). Furthermore, the growth of S. sclerotiorum is 
slowed down under neutral and alkaline pH but favoured 
under acidic conditions (Frisvad et al. 2004; Shah et al. 
2020). The pathogen is also known to secret other organic 
acids such as glycolic, citric, glyoxylic, malic, and succinic 
acid when in neutral or alkaline environments although 
these substances have not been the object of many stud-
ies on S. sclerotiorum (Graniti et al. 1992; Nicoletti and 
Trincone 2016; Roscetto et al. 2020; Masi et al. 2021).

The link between S. sclerotiorum growth and increased 
virulence at lower pH, combined with slow development 
in neutral or alkaline environments, led us to hypothesize 
that cyclopaldic acid does not affect fungal growth as it 
may contribute to pathogen growth, acidifying in vitro 
culture media.

The growth inhibition patterns observed for R. solani 
and M. phaseolina suggest a slow fungistatic activity for 
cyclopaldic acid on the microbial cells studied. This type 
of activity was confirmed by the growth of treated fungi 
in PDA plates, showing that cyclopaldic acid delays fun-
gal growth but does not kill the phytopathogens, regardless 

of the concentration at which the inhibitory activity was 
detected (Fig. 6).

Cyclopaldic acid is a known compound produced by spe-
cies of Penicillium, Aspergillus, and Pestalotiopsis. Among 
the documented producers from the genus Penicillium are P. 
commune, P. carneum, P. mononematosum, P. viridicatum, 
and P. polonicum (Frisvad 1989a, b; Boysen et al. 1996; 
Frisvad et al. 2004). While novel antimicrobial compounds 
may be found in habitats geographically isolated such as 
Antarctica, known molecules can also be produced by fungal 
strains that inhabited this kind of extreme environment and, 
as a consequence, novel uses for previously known natural 
compounds might be found (Nicoletti and Trincone 2016; 
Shah et al. 2020).

The literature is scarce regarding biological activity, with 
limited reports on antifungal activity, larvicidal activity, 
and phytotoxicity for this molecule. More recent studies on 
the antimicrobial activity of cyclopaldic acid have shown a 
diverse pattern of inhibition. According to Roscetto et al. 
(2020), some strains of Staphylococcus aureus were inhib-
ited by 90% using cyclopaldic acid at 100 µg  mL−1, while 
other Gram-positive and Gram-negative bacteria of clinical 
interest showed no minimum inhibition of 50%.

For antifungal activities, Masi et al. (2021) showed that 
cyclopaldic acid had no effect against Aspergillus niger, 
Alternaria alternata, or Fusarium oxysporum isolated from 
lithic substrata. However, other authors have reported that, 
at 100 µg  mL−1, cyclopaldic acid can inhibit from 40 to 65% 
of the growth of Geotrichum candidum, Botrytis cinerea, 
Fusarium solani, and F. oxysporum f. sp. lycopersici, while 
at 50 µg  mL−1, it can reduce spore germination for these 
plant pathogenic fungi (Graniti et al. 1992). At 100 mM or 
lower concentrations, cyclopaldic acid inhibited the germi-
nation of Puccinia spp. and Uromyces spp. strains, which 
are causal agents of rust in plants (Barilli et al. 2016, 2017). 
Aside from that, cyclopaldic acid at 100 µg  mL−1 also has 
shown activity against Penicillium roqueforti, a food con-
taminant, with 29.34% inhibition after 72 h and 59.48% after 
96 h (Valerio et al. 2018).

Recent studies showed the potential of fungal metabo-
lites from isolates such as Trichoderma longibrachiatum 
against M. phaseolina, with 22% antifungal activity of the 
crude extract (Sridharan et al 2021). Trichoderma viride 
has also been reported to inhibit in 63% the pathogen, T. 
koningii, T. hamatum, T. longipile have slowed down by 
46–47% the growth of M. phaseolina and T. harzianum in 
28% (Khan et al 2021). According to Motlagh et al (2022), 
in dual-cultivation assays Trichoderma virens inhibited 
growth of R. solani in 46%, T. harzianum and Aspergillus 
awamori in 37 and 39%, respectively, and A, fumigatus 
caused inhibition of 42% of the phytopathogen. The fil-
trate of Paecilomyces at 60% concentration inhibited in 
56.25% the radial growth of R. solani in a study conducted 

Fig. 6  Evaluation of the fungistatic activity of cyclopaldic acid 
against Rhizoctonia solani and Macrophomina phaseolina. Four-
day R. solani and 7-day M. phaseolina colonies developed on PDA 
medium after 96 h of treatment with cyclopaldic acid at 100 µg  mL−1



 3 Biotech (2023) 13:374

1 3

374 Page 8 of 10

by Hawar et al (2023). The reports on antifungal activ-
ity against M. phaseolina and R. solani have shown the 
potential of fungi as a source of inhibitory metabolites, 
but not many papers have elucidated which compounds 
are responsible for the slowing of mycelial growth of these 
phytopathogens.

As previously mentioned, R. solani and M. phaseolina are 
phytopathogens that can cause significant yield losses in sev-
eral important crops, as they have a wide host range and high 
persistence in the soil (Sturrock et al. 2015; Feng et al. 2017; 
Marquez et al. 2021). Current control strategies have aimed 
to lower the incidence in plantations, but management meth-
ods remain a challenge despite research efforts (Almeida 
et al. 2014; AGROLINK 2021; Marquez et al. 2021). Many 
health and environmental issues are associated with the use 
of pesticides and chemical fungicides, residue accumulation 
and resistance development by pathogens. Dermatological, 
respiratory, endocrine and neurological negative effects have 
been associated with exposure to these types of chemicals or 
its residues, and the use of certain products have been dis-
carded, but alternatives for sustainable practices are needed 
for many crop diseases (Nicolopoulou-Stamati et al 2016; 
Pathak et al 2022). The use of natural compounds and bio-
control strategies can help with avoiding fungal diseases out-
breaks and can also benefit the plants in other ways, such 
as growth promotion. Besides that, there is a lesser risk of 
disrupting the chemical and biological balance of the envi-
ronment depending on the molecule and mode of application 
(Rodrigo et al. 2022).

In this aspect, cyclopaldic acid can be a leading mol-
ecule for formulations against fungal plant pathogens as an 
alternative to other ineffective chemicals. The integration 
of bioactive molecules into modern agriculture practices 
is a sustainable and environmentally friendly alternative 
that also depends on efficacy, practicality and stability of 
the formulations, which can only be assessed by extensive 
research (Berestetskiy 2023).

To effectively apply cyclopaldic acid in a formulation, 
more details regarding the mechanism of action of the com-
pound are needed to first increase its efficacy and a suit-
able formulation which can ensure stability, dispersion and 
release of the molecule is also required. Furthermore, it is 
important to work together with the agricultural industry to 
understand the performance of bioactive compounds in the 
field and redefine strategies of application (Cobb and Reade 
2007; Mesnage 2021). After regulatory approval, a valid 
approach is to slowly introduce bioactive compounds as a 
component of integrated pest control and so reduce reliance 
on traditionally used chemicals (Berestetskiy 2023). Addi-
tionally, the search for secondary metabolites from extre-
mophiles has proven that these microorganisms can be con-
sidered essential sources of compounds for agricultural use.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13205- 023- 03792-9.
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