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Automated 3D liver segmentation 
from hepatobiliary phase MRI 
for enhanced preoperative 
planning
Namkee Oh  1,3, Jae‑Hun Kim  2,3, Jinsoo Rhu  1*, Woo Kyoung Jeong  2*, 
Gyu‑seong Choi  1, Jong Man Kim  1 & Jae‑Won Joh  1

Recent advancements in deep learning have facilitated significant progress in medical image analysis. 
However, there is lack of studies specifically addressing the needs of surgeons in terms of practicality 
and precision for surgical planning. Accurate understanding of anatomical structures, such as the 
liver and its intrahepatic structures, is crucial for preoperative planning from a surgeon’s standpoint. 
This study proposes a deep learning model for automatic segmentation of liver parenchyma, vascular 
and biliary structures, and tumor mass in hepatobiliary phase liver MRI to improve preoperative 
planning and enhance patient outcomes. A total of 120 adult patients who underwent liver resection 
due to hepatic mass and had preoperative gadoxetic acid-enhanced MRI were included in the study. 
A 3D residual U-Net model was developed for automatic segmentation of liver parenchyma, tumor 
mass, hepatic vein (HV), portal vein (PV), and bile duct (BD). The model’s performance was assessed 
using Dice similarity coefficient (DSC) by comparing the results with manually delineated structures. 
The model achieved high accuracy in segmenting liver parenchyma (DSC 0.92 ± 0.03), tumor mass 
(DSC 0.77 ± 0.21), hepatic vein (DSC 0.70 ± 0.05), portal vein (DSC 0.61 ± 0.03), and bile duct (DSC 
0.58 ± 0.15). The study demonstrated the potential of the 3D residual U-Net model to provide a 
comprehensive understanding of liver anatomy and tumors for preoperative planning, potentially 
leading to improved surgical outcomes and increased patient safety.

Abbreviations
AI	� Artificial intelligence
BD	� Bile duct
CT	� Computed tomography
DSC	� Dice similarity coefficient
FDA	� Food and drug administration
GPU	� Graphics processing unit
HCC	� Hepatocellular carcinoma
HV	� Hepatic vein
MRI	� Magnetic resonance imaging
PV	� Portal vein

Medical image analysis employing deep learning has experienced significant advancements in recent years, as 
demonstrated by the increasing number of Food Drug Administration (FDA)-approved artificial intelligence 
(AI)-based diagnostic algorithms1. These algorithms have exhibited considerable improvements in accuracy and 
efficiency for various medical imaging tasks such as diagnosis, segmentation, and quantification when they are 
assessed from a radiologist’s perspective2.
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However, from a surgeon’s standpoint, medical images serve as the primary source of information for preop-
erative planning. Precise understanding of the anatomical structure is crucial for a successful procedure3. While 
medical imaging techniques such as magnetic resonance image (MRI) and computed tomography (CT) scan 
provide two-dimensional representations of the actual three-dimensional anatomy, it is essential for surgeons 
to comprehend the anatomy in its entirety4. Nevertheless, not all surgeons are adept at converting 2D images to 
3D. Even experienced surgeons can be prone to cognitive biases, which may lead to misunderstandings5.

This is particularly relevant in the case of the liver, where the tumor’s location and blood vessels within the 
parenchyma are crucial for determining the appropriate surgical strategy. A more comprehensive understanding 
of the anatomy can result in improved surgical outcomes and enhanced patient safety by guiding the resection 
plane and estimating the remnant liver volume6. Reconstructing and viewing preoperative images in 3D offer 
advantage of a complete understanding of the anatomy. This study proposed a deep learning model for automatic 
segmentation of liver parenchyma, vascular and biliary structures for enhanced surgical planning.

Results
Patient demographics
Demographic data such as sex (p = 0.458) and age (p = 0.741) were not significantly different between train and 
test sets. The training set included patients having a hepatic mass with various diagnosis, whereas the valida-
tion set only included HCC patients, showing no statistically significant difference between the two (p = 0.705). 
Morphological characteristics of tumor such as size (p = 0.937), number (p = 1.000) and background status of 
liver (p = 0.644) were not significantly different either (Table 1).

Quantitative evaluation
Results of manual segmentation and automatic segmentation using 3D residual U-Net model for each case are 
summarized in Fig. 1, showing 3D reconstructed structures. The mean DSC for the liver parenchyma was found 
to be the highest at 0.92 ± 0.03, with the best-performing case achieving a DSC of 0.94. The mean DSC for tumor 
mass was the second highest at 0.77 ± 0.21, with the highest case scoring a DSC of 0.89. The hepatic vein had 
a mean DSC of 0.70 ± 0.05, with the top-performing case reaching a DSC of 0.77. The portal vein had a mean 
DSC of 0.61 ± 0.03, with the best case achieving a DSC of 0.65. Finally, the bile duct had the lowest mean DSC 
of 0.58 ± 0.15, with the highest case obtaining a DSC of 0.76 (Table 2).

In addition, vascular and biliary structures were categorized into main and peripheral branches based on the 
distinction between 1st and 2nd order branches. Then, DSCs were obtained for main and periphery separately, 
and in all cases, the main branch showed higher DSC values (Table 3).

Discussion
This study highlights the potential of 3D residual U-Net model for automatic segmentation of the liver and its 
intrahepatic structures from single-phase MRI images, even when facing a challenging task of segmenting five 
distinct structures (liver parenchyma, tumor mass, hepatic vein, portal vein, and bile duct) in the medical domain. 
Importantly, MRI data in this study were acquired from patients with intrahepatic masses, which deviated from 

Table 1.   Baseline characteristics of patients. HCC hepatocellular carcinoma, CCC​ cholangiocarcinoma, CRLM 
colorectal cancer liver metastasis, GB gall bladder, IQR interquartile range.

Training set Validation set p

n 108 12

Sex (%) Male 86 (79.6) 11 (91.7) 0.458

Female 22 (20.4) 1 (8.3)

Age 61.6 ± 11.1 63.0 ± 14.3 0.741

Diagnosis (%) HCC 80 (74.1) 12 (100.0) 0.705

HCC + CCC​ 9 (8.3) 0 (0.0)

CCC​ 7 (6.5) 0 (0.0)

CRLM 8 (7.4) 0 (0.0)

GB cancer meta 1 (0.9) 0 (0.0)

Benign 3 (2.8) 0 (0.0)

Tumor size (cm, median [IQR]) 3.1 [2.2, 4.8] 2.5 [2.2, 5.3] 0.937

Tumor number (%) 1 87 (80.6) 11 (91.7) 1.000

2 14 (13.0) 1 (8.3)

3 5 (4.6) 0 (0.0)

4 1 (0.9) 0 (0.0)

5 1 (0.9) 0 (0.0)

Background liver (%) Normal 54 (50.0) 5 (38.5) 0.644

Cirrhosis 30 (27.8) 5(38.5)

Not reported 24 (22.2) 3 (23.1)
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Figure 1.   Comparison between manual and automatic segmentation results of the validation set. The 3D 
reconstructed structures show liver parenchyma (A and B), tumor mass (C and D), hepatic vein (E and F), 
portal vein (G and H), and bile duct (I and J). The manual segmentations are denoted as ground truth (A, C, E, 
G, I), while the automatic segmentations by the 3D residual U-Net model are denoted as inferred images (B, D, 
F, H, J). The first column of each row on the y-axis represents the number of patient cases. The images in this 
figure were created using 3D Slicer v.5.02 (http://​www.​slicer.​org).

http://www.slicer.org
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normal anatomy. Nevertheless, the model showed high accuracy for predicting the liver parenchyma (DSC: 
0.92 ± 0.03) and tumors (DSC: 0.77 ± 0.21).

The primary aim of this study was to enhance our understanding of the spatial relationship between tumors 
and major hepatic vasculatures. For surgeons performing liver resection, knowledge for the anatomical relation-
ship is crucial, as it influences the plane of resection, resultant tumor margin, remnant liver volume, and the 
decision to perform anatomic or non-anatomic resection7. However, most deep learning studies on liver imag-
ing have focused on segmenting gross anatomical structures such as the liver parenchyma and tumors8,9. While 
some studies have aimed at predicting liver fibrosis or evaluating fatty change, they do not offer comprehensive 
information for surgeons in their preoperative planning for liver resection procedures.

Hepatic vasculatures exhibit linear and tubular morphology, and these characteristics can significantly reduce 
segmentation accuracy with even minor prediction errors when evaluated using DSC as a metric10. Nonetheless, 
our study achieved a DSC of 0.70 ± 0.05 for HV and 0.61 ± 0.03 for PV, indicating a satisfactory performance 
despite challenges posed by these structures. A previous study has segmented three classes and reported a DSC of 
0.93 for liver parenchyma, 0.53 for HV, and 0.64 for PV from non-contrast T1 vibe Dixon sequence MRI11. Our 
study achieved a higher DSC for HV with similar results for parenchyma and PV. Moreover, our study included 
five classes and involved patients with abnormal anatomical structures due to intrahepatic tumors. Another 
study has segmented hepatic vasculatures with a high accuracy using gadoxetic acid-enhanced multi-phase MRI 
images and evaluated performance using F1, precision, and sensitivity metrics12. In contrast, our study used only 
single-phase MRI and involved segmenting five classes, including tumors, a distinguishing feature from others.

We opted to use the 20-min delayed hepatobiliary phase gadoxetic acid-enhanced liver MRI because it 
effectively displayed all structures crucial for surgery within a single phase, providing numerous benefits for 
multi-structure segmentation. The hepatobiliary phase is the optimal sequence for clearly illustrating the dis-
tinction between liver parenchyma and tumors. At 20 min after contrast infusion, the liver parenchyma exhibits 
relatively high enhancement, while the tumor mass displays lower enhancement, enabling differentiation from 

Table 2.   Quantitative comparison of results for each case. PV portal vein, HV hepatic vein, BD bile duct, SD 
standard deviation.

Case Parenchyma Tumor PV HV BD

1 0.94 0.78 0.56 0.66 0.76

2 0.94 0.87 0.65 0.77 0.43

3 0.94 0.87 0.64 0.77 0.64

4 0.95 0.88 0.60 0.62 0.50

5 0.93 0.79 0.58 0.69 0.68

6 0.90 0.89 0.65 0.66 0.20

7 0.93 0.74 0.59 0.72 0.64

8 0.90 0.88 0.57 0.63 0.65

9 0.94 0.74 0.58 0.72 0.67

10 0.84 0.86 0.65 0.72 0.57

11 0.88 0.86 0.60 0.71 0.58

12 0.94 0.13 0.63 0.74 0.61

Mean ± SD 0.92 ± 0.03 0.77 ± 0.21 0.61 ± 0.03 0.70 ± 0.05 0.58 ± 0.15

Table 3.   DSC for main and peripheral branches of the PV, HV, and BD. DSC Dice similarity coefficient, PV 
portal vein, HV hepatic vein, BD bile duct.

Case PV Main Periphery HV Main Periphery BD Main Periphery

1 0.56 0.75 0.41 0.66 0.78 0.43 0.76 0.83 0.61

2 0.65 0.80 0.50 0.77 0.83 0.53 0.43 0.57 0.00

3 0.64 0.73 0.47 0.77 0.81 0.39 0.64 0.74 0.49

4 0.60 0.76 0.30 0.62 0.75 0.18 0.50 0.65 0.08

5 0.58 0.67 0.44 0.69 0.71 0.53 0.68 0.73 0.33

6 0.65 0.79 0.55 0.66 0.75 0.49 0.20 0.01 0.33

7 0.59 0.71 0.42 0.72 0.78 0.48 0.64 0.86 0.11

8 0.57 0.65 0.42 0.63 0.78 0.27 0.65 0.75 0.42

9 0.58 0.72 0.51 0.72 0.82 0.48 0.67 0.82 0.49

10 0.65 0.78 0.65 0.72 0.80 0.17 0.57 0.68 0.43

11 0.60 0.76 0.60 0.71 0.79 0.71 0.58 0.73 0.22

12 0.63 0.79 0.63 0.74 0.82 0.74 0.61 0.74 0.39

Mean 0.61 0.74 0.49 0.70 0.79 0.45 0.58 0.68 0.33
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liver parenchyma13,14. Concurrently, vascular structures such as portal and hepatic veins present low intensity, 
with biliary structures being the highest intensity due to contrast excretion through the bile duct. Among all MRI 
sequences, the 20-min delayed hepatobiliary phase is the only phase capable of accurately delineating these five 
structures. Utilizing a single-phase multi-structure segmentation approach can streamline clinical application 
by circumventing registration errors commonly associated with merging data from multiple sequences.

From a surgeon’s perspective, planning hepatic resections using the Glissonean pedicle approach necessitates 
a thorough understanding of the main branch of the portal vein’s anatomical structure around the hilar plate15. 
Moreover, accurate comprehension of the main branch anatomy for both portal and hepatic veins is essential for 
preventing post-hepatectomy liver failure and preserving an adequate future remnant liver volume16. To further 
assess our model’s performance, we separately calculated DSCs for main and peripheral branches of the hepatic 
vein, portal vein, and bile duct as illustrated in Table 3. Findings revealed that focusing solely on the main branch 
of each structure yielded higher DSC values. This implies that the accuracy of peripheral branches is relatively 
lower compared to that of main branches. However, the significance of these peripheral branches is less critical 
than that of major branches, rendering our deep learning model suitable for surgeons preparing surgical plans.

Limitations of this study include its single-center design and the relatively small size of dataset, which might 
restrict the generalizability of our findings. While this approach was chosen to maximize efficacy with limited 
resources, future research should aim to collect diverse dataset from multiple institutions to develop a more 
robust and widely applicable model. Furthermore, our study’s patient data were primarily focused on those 
with hepatic masses scheduled for liver resection, potentially limiting the model’s validation for cases with dis-
seminated, inoperable masses. Additionally, our study utilized 20-min delayed gadoxetic acid-enhanced MRI, 
which might yield lower image quality in patients with severe liver cirrhosis, making it challenging to distinguish 
nodular hepatic parenchyma from vascular structures. Consequently, accuracy might be relatively lower for these 
patients. Lastly, this study solely employed the Dice similarity coefficient as a performance evaluation metric 
without considering other metrics such as sensitivity or specificity.

Liver surgeons can benefit from three-dimensional reconstruction of preoperative liver images. Research 
in this area continues to advance alongside technological developments3,17,18. While products are available on 
the market19, the unmet need has not been fulfilled by their high costs, with cost-effectiveness being a concern. 
The cost and effort for utilizing the technology only permit high volume centers to use it, especially in regions 
like Republic of Korea, where 3D reconstruction technology is not covered by the national insurance system. 
Additionally, as 3D reconstruction is not fully automated, there is a disadvantage in terms of human time cost. 
However, our study introduces an automatic segmentation model that utilizes deep learning. It offers the advan-
tage of using only a single-phase MRI, reducing human time required for the task. While our deep learning model 
needs further improvement for practical use, we consider that the goal is near with an intuitively acceptable 
outcome of our 3D reconstructed models.

Methods
Study population
In this single-institution retrospective study, adult patients (age > 18 years) who underwent liver resection due to 
a hepatic mass between January 2020 and December 2022 were included. This study included patients who had 
preoperative gadoxetic acid enhanced MRI, the raw image data for deep learning model training. Demographic 
and clinical characteristics such as age, sex, body mass index, diagnosis, tumor size, and number were collected. 
Data of included patients were extracted from the Clinical Data Warehouse DARWIN-C of Samsung Medical 
Center. This study was approved by the institutional review board of Samsung Medical Center (SMC 2023-02-
049) and the need for informed consent was waived by the IRB due to the retrospective nature of the study. It 
was carried out in accordance with the principles of the Declaration of Helsinki.

Dataset
This study used hepatobiliary phase images from gadoxetic acid enhanced MRI from each patient as this phase 
showed the best liver contour, hepatic mass, hepatic vein, portal vein, and bile duct. To obtain the dataset, we 
used 3.0-T MRI machines (Archieva or Ingenia, Philips Healthcare, Best, the Netherland) and performed liver 
MRI examination including the hepatobiliary phase using protocols shown in Supplementary Material 1.

Liver MRI datasets were manually labelled slice-by-slice for the outer liver border, margin of tumor, portal 
vein, hepatic vein, and bile duct by two trained biomedical visualization artists. Results were confirmed by a 
board-certified abdominal radiologist and hepatic surgeon (Fig. 2). In case of disagreement, a consensus was 
reached through discussion. A total 120 patients were included, and the training and validation sets were chosen 
using random sampling. Liver MRIs from 108 patients were used for training (training set) and those from 12 
patients were used for validation (validation set).

3D residual U‑Net model
We utilized a 3D residual U-Net model for this study (Fig. 3). The model could extract context features through 
an encoding process and use these features to reconstruct segmented images during decoding. The model was 
trained to minimize loss function, optimizing network parameters for hierarchical feature extraction. During 
encoding, convolutional residual operation was employed. During decoding, multi-target segmented images 
were reconstructed with deconvolutional feature maps, including skip connections at each resolution level.

Implementation
The 3D residual U-Net model was implemented in TensorFlow 1.14 and trained on a workstation with four GPUs 
(NVIDIA TITAN XP 16 GB). During preprocessing, images were cropped, resized, and normalized. Training data 
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were augmented through various techniques, such as 3D rotation, scaling, random flipping, and cropping. Dice 
similarity coefficient loss (L) was used as the loss function. The network was trained using the Adam optimizer at 
a learning rate of 0.0001, with 1000 epochs and a batch size of 4. During the testing phase, preprocessed images 
of the entire hepatobiliary phase MRI scan were fed into the proposed network. For more detailed information 
on the 3D residual U-Net model and implementation, please refer to Supplementary Material 2.

Evaluation
The performance of the deep learning model for segmenting liver parenchyma, tumor, portal vein, hepatic vein, 
and bile duct was compared with manually delineated liver parenchyma, tumor, portal vein, hepatic vein, and bile 
duct, respectively. Dice similarity coefficient (DSC) was used to quantify segmentation performance of the deep 
learning model. For visualization, all structures including liver parenchyma, tumor mass, hepatic vein, portal 
vein, and bile duct were 3-dimensionally reconstructed with Mimics Medical (Materialise, Leuven, Belgium).

Statistical analysis
Continuous variables were presented as mean ± standard deviation and analyzed using the independent t-test or 
Mann–Whitney test, as appropriate. Categorical data were presented as numbers and percentages and analyzed 
using the Chi-squared or Fisher’s exact test. All statistical analyses were performed using R Statistical Software 
(version 3.6.3; Foundation for Statistical Computing, Vienna, Austria).

Data availability
Data generated or analyzed during the study are available from the corresponding author by request.
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