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Key Points

• Germline RUNX1,
GATA2, and DDX41
HHMs are associated
with driver somatic
variants during
leukemogenesis which
are unique for each
syndrome.

• Ongoing molecular
monitoring of germline
carriers without HM is
needed to assess the
risk profile and clinical
actionability of somatic
markers.
24 OCTOBE
Individuals with germ line variants associated with hereditary hematopoietic malignancies

(HHMs) have a highly variable risk for leukemogenesis. Gaps in our understanding of

premalignant states in HHMs have hampered efforts to design effective clinical surveillance

programs, provide personalized preemptive treatments, and inform appropriate counseling

for patients. We used the largest known comparative international cohort of germline

RUNX1, GATA2, or DDX41 variant carriers without and with hematopoietic malignancies

(HMs) to identify patterns of genetic drivers that are unique to each HHM syndrome before

and after leukemogenesis. These patterns included striking heterogeneity in rates of early-

onset clonal hematopoiesis (CH), with a high prevalence of CH in RUNX1 and GATA2 variant

carriers who did not have malignancies (carriers-without HM). We observed a paucity of

CH in DDX41 carriers-without HM. In RUNX1 carriers-without HM with CH, we detected

variants in TET2, PHF6, and, most frequently, BCOR. These genes were recurrently mutated

in RUNX1-driven malignancies, suggesting CH is a direct precursor to malignancy in RUNX1-

driven HHMs. Leukemogenesis in RUNX1 and DDX41 carriers was often driven by second

hits in RUNX1 and DDX41, respectively. This study may inform the development of HHM-

specific clinical trials and gene-specific approaches to clinical monitoring. For example,

trials investigating the potential benefits of monitoring DDX41 carriers-without HM for low-

frequency second hits in DDX41 may now be beneficial. Similarly, trials monitoring

carriers-without HM with RUNX1 germ line variants for the acquisition of somatic variants

in BCOR, PHF6, and TET2 and second hits in RUNX1 are warranted.
Introduction

Hereditary hematopoietic malignancies (HHMs) are hematologic
syndromes characterized by Mendelian inheritance patterns and an
increased lifetime risk for hematopoietic malignancies (HMs).1,2

Individuals with HHM-associated germ line variants have a highly
variable risk for leukemogenesis, and many HHM-variant carriers do
not develop malignancies (carriers-without HM).3 Very little is
understood about the premalignant states in carriers-without HM,
the molecular and genetic factors that affect leukemogenic risk, or
the environmental factors that drive leukemogenesis in HHMs. This
knowledge gap has hampered efforts to refine the clinical surveil-
lance of carriers-without HM, identify individuals with the highest
risk for HMs, and develop interventions that delay or prevent
leukemogenesis in high-risk carriers-without HM. Moreover, treat-
ments used for malignancies in HHM-variant carriers (carriers-with
HM) are not tailored to these syndromes aside from DDX41 and
GATA2 carriers, for which there is a limited role for lenalidomide
therapy or prophylactic hematopoietic stem cell transplant,
respectively.4-6 Instead, carriers-with HM are treated with standard-
of-care therapies for sporadic HMs, which may carry an unchar-
acterized gene mutation–specific risk of additional treatment
effects, such as engraftment failure or secondary therapy-related
neoplasms. Given the paucity of HHM families at individual insti-
tutions, a coordinated, multi-institutional effort is required to
understand the natural history of HHMs, leukemogenic mecha-
nisms, and the unique biologic factors that may be present in
individual HHM syndromes.

HHMs have been recognized phenotypically for over 100 years.
Autosomal dominant (AD) predisposition to myeloid malignancies
R 2023 • VOLUME 7, NUMBER 20
is the most well characterized, with more than 15 AD HHM-related
genes identified to date.7 Pathogenic germ line variants in RUNX1,
GATA2, and DDX41 collectively represent the most common
causes of AD HHMs and are primarily associated with myeloid
malignancies. These HHMs are more common than previously
recognized and may have highly penetrant leukemogenic pheno-
types. Germ line DDX41 carriers account for ~2% to 4% of all
patients with seemingly sporadic HMs, and GATA2 carriers have a
90% lifetime risk of developing HMs. RUNX1-driven HHMs were
the first known HHM syndrome and have a high penetrance for HM
(~44%).3,4,8-11 Identifying these syndromes can be challenging
because of limited syndromic features, and recognition is often
made based on a high-risk family history, an early-onset HM, or the
identification of an HHM-associated variant on tumor-based
molecular profiling.12 Individuals harboring germ line variants in
these genes often present with cytopenias: RUNX1 most
commonly with thrombocytopenia;13 GATA2 with monocytopenia,
dendritic cell, B, and natural killer cell (NK) lymphoid deficiency;14

and DDX41 with variable cytopenias that can include leukopenia,
neutropenia, and/or erythroid dysplasia.15,16 The age of myelo-
dysplastic syndrome/acute myeloid leukemia (MDS/AML) diag-
nosis also differs between HHMs, with GATA2 carriers developing
MDS/AML at a mean age of 19 years, RUNX1 carriers at 29 years,
and DDX41 carriers at 67 years.16,17

The mechanisms driving leukemogenesis in these variant carriers
are unclear. Most work to date has focused on germ line RUNX1
variant carriers.8 RUNX1 carriers have an increased risk for clonal
hematopoiesis (CH) (67%-75% CH18,19). However, because of the
rarity of RUNX1 HHM, single-center studies have limited numbers of
patients available (919 and 318). Recent studies looking at CH in
germ line GATA2 carriers have shown an association between CH
SOMATIC VARIANTS IN MYELOID PREDISPOSITION 6093
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Figure 1. HHM genomics cohorts. Germ line variants in the HHM cohorts were visualized using the ProteinPaint web application.30 Carriers-with HM cohorts (diagnosed with

HM) are visualized above the protein. Carriers-without HM cohorts (no HM diagnosis) are below the protein. Variants (displayed as protein changes where possible) are color

coded by variant type. The number of individuals with each variant is indicated within the circle when the number is greater than 1. (A) Germ line RUNX1 (66 carriers-without HM

and 52 carriers-with HM individuals); (B) Germ line GATA2 (9 carriers-without HM and 13 carriers-with HM individuals); and (C) Germ line DDX41 (22 carriers-without HM and 29

carriers-with HM individuals) cohorts.
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Figure 1 (continued)
and a hypocellular marrow while also linking specific somatic events
with the likelihood of leukemic transformation.20,21 Similarly
assessment of CH patterns in comparative cohorts of HHM-variant
carriers may identify specific leukemogenic patterns for different
HHMs and ultimately inform clinical trials to define guidelines for
clinical surveillance of unaffected HHM-variant carriers.

To address this knowledge gap, we collected retrospective next-
generation sequencing (NGS) data from hematopoietic tissue
samples from an international cohort of patients with HHM driven
by germ line RUNX1, GATA2, or DDX41 variants. Our cohort is the
largest comparative HHM-focused cross-sectional collection of its
kind, with 240 patient samples evenly distributed between carriers-
without HM (n = 120) and carriers-with HM (n = 120). We used a
uniform variant calling and curation approach to identify driver
somatic variants in each sample. This unique distribution of sam-
ples from carriers-without HM and carriers-with HM and across
multiple HHMs, in conjunction with a uniform bioinformatic
approach, enabled us to determine driver somatic variants that
develop within hematopoietic tissue in RUNX1, GATA2, and
DDX41 variant carriers before and after diagnosis of a blood
cancer in the HHM syndromes.
Patients and methods

Patient cohort

Clinical and genomics data from germ line RUNX1, GATA2, or
DDX41 variant carriers were collected from the RUNX1 database
(https://runx1db.runx1-fpd.org/),22 the Centre for Cancer Biology
(Australia), the University of Chicago (USA), and the National
24 OCTOBER 2023 • VOLUME 7, NUMBER 20
Institutes of Health (USA). In total, data from 195 patients who had
undergone genomics profiling (whole-exome sequencing or panel-
based sequencing) were retrospectively collated to form the
RUNX1, GATA2, and DDX41 cohorts. All procedures in this study
involving human participants were performed in accordance with
the Declaration of Helsinki. Studies were approved by institutional
human research ethics committees and/or institutional research
boards. All participants signed an informed consent form to share
genomics and protected health information.

NGS reanalysis and variant calling pipeline

NGS data were collected and reanalyzed with the bioinformatics
pipeline used for the RUNX1 database.22 Original FASTQ (textfile
format for sequencing data) or Binary Alignment Map (BAM) files
were obtained. Sequence reads were aligned to the GRCh37
(hs37d5) human reference genome with BWA-MEM (ver
0.7.12).23 Sambamba (ver 0.6.5)24 was used for marking poly-
merase chain reaction duplicates, and GATK (ver 3.8-1) was used
to recalibrate base-quality scores. Freebayes (ver 1.2)25 was used
to call single nucleotide variants (SNVs) and insertions/deletions
(indels). Variant-, gene-, and protein-level annotations were per-
formed using an in-house pipeline (https://github.com/SACGF/
variantgrid). Somatic variant curation was performed as previ-
ously described22 (supplemental Methods). All data sets were
independently curated by at least 3 variant curators.

Tumor mutation burden (TMB) analysis

SNVs and indels were identified with Seurat, Shimmer, Strelka, and
SomaticSniper,26-29 using paired germ line samples (cultured skin
fibroblasts or hair) from the same patient to remove germ line
SOMATIC VARIANTS IN MYELOID PREDISPOSITION 6095
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Table 1. Driver somatic variants detected in germ line RUNX1, GATA2, or DDX41 carriers-without HM

Individual Phenotype Gene Somatic variant

Clinical presentation Age Sex Genomic coordinates c_HGVS p_HGVS VAF (%)

M09_1 Thrombocytopenia 16 F BCOR X:39933270 CA>C NM_001123385.2:c.1328del p.Leu443CysfsTer8 8.3

M01_3 Thrombocytopenia 17 M ATP10A 15:25953381 G>A NM_024490.3:c.2411C>T p.Ala804Val 5.0

M03_2 Thrombocytopenia 17 M PHF6 X:133527608 CTG>C NM_032458.3:c.321_322del p.Ala108IlefsTer3 39.4

CUX1 7:101882720 G>A NM_001202543.2:c.3776G>A p.Arg1259Gln 42.3

IDH2 15:90631934 C>T NM_002168.3:c.419G>A p.Arg140Gln 9.7

G01_2 Thrombocytopenia 19 F NOTCH3 19:15276860 GC>G NM_000435.3:c.5404del p.Ala1802LeufsTer23 3.2

V01_1 Thrombocytopenia 23 M EP300 22:41574723 TCCACACCACGTTTCC>T NM_001429.3:c.7014_7028del15 p.His2338_Pro2342del 29.6

G07_3 Thrombocytopenia 33 M BCOR X:39932334 G>GT NM_001123385.2:c.2264dup p.Tyr755Ter 2.4

M06_2 Thrombocytopenia 37 F TET2 4:106164068 G>A NM_001127208.3):c.3578G>A p.Cys1193Tyr 11.3

G07_2 Thrombocytopenia 40 M TET2 4:106164787 C>T NM_001127208.3:c.3655C>T p.His1219Tyr 5.3

S_G_3 Thrombocytopenia 40 F TET2 4:106196461 T>G NM_001127208.3:c.4794T>G p.Tyr1598Ter 5.0

W01_3 Thrombocytopenia 40 M BCOR X:39921617 CG>C NM_001123385.2:c.4202del p.Pro1401ArgfsTer83 20.8

S_D_2 Thrombocytopenia 43 M DNMT3A 2:25463242 AG>A NM_022552.5:c.2250del p.Phe751SerfsTer28 3.1

48 M DNMT3A 2:25463242 AG>A NM_022552.5:c.2250del p.Phe751SerfsTer28 4.9

U02_1 Thrombocytopenia 49 M TET2 4:106162587 G>A NM_001127208.3:c.3500+1G>A p.? 2.6

A01_1 Thrombocytopenia 53 F TET2 4:106158510 T>C NM_001127208.3:c.3409+2T>C p.? 33.3

DNMT3A 2:25497943 CG>C NM_022552.5:c.505del p.Arg169GlyfsTer56 29.6

SRSF2 17:74732959 G>A NM_003016.4:c.284C>T p.Pro95Leu 22.9

56 F DNMT3A 2:25497943 CG>C NM_022552.5:c.505del p.Arg169GlyfsTer56 42.8

TET2 4:106158510 T>C NM_001127208.3:c.3409+2T>C p.? 30.5

SRSF2 17:74732959 G>A NM_003016.4:c.284C>T p.Pro95Leu 28.0

G02_2 Thrombocytopenia 55 M BCOR X:39932898 T>TG NM_001123385.2:c.1700dup p.Ala568SerfsTer43 6.7

BCOR X:39923055 C>T NM_001123385.2:c.3653G>A p.Trp1218Ter 4.3

BCOR X:39911577 GA>G NM_001123385.2:c.5052del p.Pro1685GlnfsTer40 2.5

54 M BCOR X:39932898 T>TG NM_001123385.2:c.1700dup p.Ala568SerfsTer43 6.4

BCOR X:39923055 C>T NM_001123385.2:c.3653G>A p.Trp1218Ter 2.2

BCOR X:39933676 TG>T NM_001123385.2:c.922del p.Gln308ArgfsTer70 1.2

BCOR X:39933416 TG>T NM_001123385.2:c.1182del p.Lys395ArgfsTer47 0.7

X01_1 Asymptomatic 60 F BCOR X:39932109 ACT>A NM_001123385.2:c.2488_2489del p.Ser830CysfsTer6 17.6

W01_2 Thrombocytopenia 68 M BCOR X:39933593 A>AG NM_001123385.2:c.1005dup p.Ser336LeufsTer45 7.1

I03_2 (BM) Thrombocytopenia 72 F DNMT3A 2:25470029 T>C NM_022552.5:c.1015-2A>G p.? 13.3

BCOR X:39933492 TG>T NM_001123385.2:c.1106del p.Ser369Ter 4.0

F01_6 Thrombocytopenia 76 M BCOR X:39916476 C>T NM_001123385.2:c.4527G>A p.Trp1509Ter 13.6

ATM 11:108213949 G>A NM_000051.3:c.8269G>A p.Val2757Met 17.0

GRIN2A 16:9857831 G>C NM_000833.4:c.3570C>G p.His1190Gln 14.5

6096
H
O
M
A
N

et
al

24
O
C
TO

B
E
R
2023•

VO
LU

M
E
7,N

U
M
B
E
R
20



T
a
b
le

1
(c
o
n
ti
n
u
e
d
)

In
d
iv
id
u
a
l

P
h
e
n
o
ty
p
e

G
e
n
e

S
o
m
a
ti
c
v
a
ri
a
n
t

C
li
n
ic
a
l
p
re
s
e
n
ta
ti
o
n

A
g
e

S
e
x

G
e
n
o
m
ic

c
o
o
rd
in
a
te
s

c
_
H
G
V
S

p
_
H
G
V
S

V
A
F
(%

)

F0
1_

8
Th

ro
m
bo

cy
to
pe

ni
a

76
M

B
C
O
R

X
:3
99

21
49

0
TG

>
T

N
M
_0

01
12

33
85

.2
:c
.4
32

9d
el

p.
Th

r1
44

4P
ro
fs
Te

r4
0

34
.7

T
P
53

17
:7
57

84
42

T>
C

N
M
_0

00
54

6.
6:
c.
48

8A
>
G

p.
Ty
r1
63

C
ys

4.
1

C
C
N
D
3

6:
41

90
37

07
G
>
A

N
M
_0

01
76

0.
4:
c.
85

0C
>
T

p.
P
ro
28

4S
er

3.
5

U
02

_3
A
sy
m
pt
om

at
ic

N
A

M
T
E
T
2

4:
10

61
62

58
7
G
>
A

N
M
_0

01
12

72
08

.3
:c
.3
50

0+
1G

>
A

p.
?

1.
2

S
_E

_4
Th

ro
m
bo

cy
to
pe

ni
a

N
A

F
S
R
S
F
2

17
:7
47

32
95

9
G
>
T

N
M
_0

03
01

6.
4:
c.
28

4C
>
A

p.
P
ro
95

H
is

13
.9

A
T
R

3:
14

22
81

94
0
A
>
G

N
M
_0

01
18

4.
4:
c.
30

4T
>
C

p.
Tr
p1

02
A
rg

3.
9

D
01

_2
Th

ro
m
bo

cy
to
pe

ni
a

N
A

M
D
N
M
T
3A

2:
25

46
67

97
C
>
T

N
M
_0

22
55

2.
5:
c.
19

06
G
>
A

p.
Va

l6
36

M
et

24
.7

B
C
O
R

X
:3
99

23
09

2
TA

>
T

N
M
_0

01
12

33
85

.2
:c
.3
61

5d
el

p.
Ly
s1

20
7A

sn
fs
Te

r3
1

3.
6

D
N
M
T
3A

2:
25

46
44

60
C
>
T

N
M
_0

22
55

2.
5:
c.
20

53
G
>
A

p.
G
ly
68

5A
rg

3.
2

B
C
O
R

X
:3
99

33
37

3
TG

C
C
C
G
G
>
TT

N
M
_0

01
12

33
85

.2
:c
.1
22

0_
12

25
de

lC
C
G
G
G
C
in
sA

p.
P
ro
40

7G
ln
fs
Te

r3
1

3.
1

D
02

_2
Th

ro
m
bo

cy
to
pe

ni
a

N
A

F
P
T
P
N
11

12
:1
12

92
68

87
G
>
A

N
M
_0

02
83

4.
4:
c.
15

07
G
>
A

p.
G
ly
50

3A
rg

25
.2

U
02

_4
N
A

N
A

F
T
E
T
2

4:
10

61
57

21
5
C
>
T

N
M
_0

01
12

72
08

.3
:c
.2
11

6C
>
T

p.
G
ln
70

6T
er

7.
3

Fa
m
ily
_5

3_
8

A
sy
m
pt
om

at
ic

16
.5

F
K
D
M
5
A

12
:4
16

95
2
C
>
C
T

N
M
_0

01
04

26
03

.3
:c
.3
59

7d
up

p.
G
ly
12

00
A
rg
fs
Te

r7
3.
2

Fa
m
ily
_5

3_
3

A
sy
m
pt
om

at
ic

47
M

D
N
M
T
3A

2:
25

45
71

71
T>

A
N
M
_0

22
55

2.
5:
c.
27

16
A
>
T

p.
Ly
s9

06
Te

r
3.
6

Fa
m
ily
_0

12
7.
04

1
A
sy
m
pt
om

at
ic

87
F

A
S
X
L
1

20
:3
10

22
57

6
TA

C
>
T

N
M
_0

15
33

8.
5:
c.
20

62
_2

06
3d

el
p.
Th

r6
88

fs
29

4.
2

D
N
M
T
3
A

2:
25

46
70

22
A
>
G

N
M
_0

22
55

2.
5:
c.
18

51
+
2T

>
C

p.
?

4.
1

24 OCTOBER 2023 • VOLUME 7, NUMBER 20
variants. Somatic variants identified in 3 or more callers were
included with high confidence. Variant calling thresholds were set
at alternate allelic depth ≥3 and variant allele frequency (VAF) ≥
5%. Somatic variants were filtered and annotated with the variant
effect predictor package (hg19). The total number of somatic
variants in the tumor exome was divided by the length of exome
capture (38 Mb) to calculate the TMB.

Statistical analysis

GraphPad Prism 7.03 and RStudio Version 1.4.17 with tidyverse,
ggplot2, ggrepel, caTools, and ROCR packages were used for
statistical calculations and figures. ProteinPaint was used to create
lollipop plots.30 Circos plots were created using ShinyCircos
software.31 Unless otherwise stated, the P value was calculated
using a one-way analysis of variance with Tukey multiple compari-
sons test using a single pooled variance. P value of sex differences
were calculated using a two-sided Fisher exact test. The prop.test
function/z-value was used as a 2-sample test for equality of pro-
portions with continuity correction. Logistic regression modeling
was used to determine the relationship between age and CH. The
nonparametric Mann-Whitney U test was used to calculate the
significance of the TMB between the RUNX1 and DDX41 cohorts.

Results

Genomic cohorts for germ line RUNX1, GATA2, or
DDX41 HHMs

Through international data sharing, we created cohorts of carriers-
without HM (no HM) and carriers-with HM (diagnosed with an HM)
with germ line RUNX1, GATA2, or DDX41 variants (Figure 1;
supplemental Methods). NGS data included samples from germ
line controls, complete remission patients, carriers-without HM, and
carriers-with HM. Multiple samples were collected from individuals
when available, including longitudinal. The RUNX1 cohort included
66 carriers-without HM and 52 carriers-with HM individuals
(including 80 and 66 independent NGS samples, respectively).
TheGATA2 cohort included 9 carriers-without HM and 13 carriers-
with HM individuals (9 and 13 NGS samples, respectively). The
DDX41 cohort included 22 carriers-without HM and 29 carriers-
without HM individuals (including 31 and 41 independent NGS
samples, respectively). Each cohort is summarized in supplemental
Table 1 and supplemental Figures 1A and 2. We used a stan-
dardized bioinformatics and variant curation approach22 to identify
clinically relevant and potentially clinically relevant somatic variants
(driver somatic variants, detailed in the supplemental Methods).

CH is prevalent in RUNX1 and GATA2 but not DDX41
HHM carriers-without HM

Age-related CH is frequently observed in healthy populations,
with the prevalence of CH in HHMs an area of active investiga-
tion.18-21,32-34 We evaluated our cross-sectional cohorts of
RUNX1, GATA2, and DDX41 carriers-without HM for CH-related
variants at the time of sample collection (Table 1; Figure 2A).
We identified CH in 35% of RUNX1 carriers-without HM (23 of 66
individuals; Figure 2A,C) and 22% (2 of 9 individuals, Figure 2A;
supplemental Figure 1B) of GATA2 carriers-without HM, respec-
tively. The prevalence of CH was significantly lower (3%, 1 of 31
individuals, P = .002; Figure 2A; supplemental Figure 1C) in
DDX41 carriers-without HM. The reduced prevalence of CH in the
SOMATIC VARIANTS IN MYELOID PREDISPOSITION 6097
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DDX41 cohort was independent of age, as the age distribution of
samples was overlapping between HHM cohorts (supplemental
Figure 1A). For germ line RUNX1, CH was identified in all age
groups, and the prevalence of CH significantly increased with age
(Figure 2C, P=.0267, logistic regression). In the RUNX1 cohort, 5
of 6 (83%) individuals 60 years of age and older had at least 1 CH
variant (Figure 2C). The number of variants increased with age, as
92% of individuals under the age of 50 years with CH had only
1 CH variant, whereas 71% of patients over the age of 50 years
had 2 or more CH variants (P = .001, Figure 2C,E). The median
VAF of CH variants did not change significantly with age
(Figure 2D). For all cohorts, no CH was identified in any individual
younger than 16 years (n = 9).
6098 HOMAN et al
CH is increased in RUNX1 carriers-without HM

relative to population controls

We then compared the prevalence of CH in our cohort of RUNX1
carriers-without HM to population controls from Jaiswal et al and
Genovese et al (n = 27 783).32,33 The prevalence of CH was higher
in RUNX1 carriers-without HM in every age group (Figure 3A, Z test
of proportions, P < .0001). The prevalence of CH was 0.2% in
controls between the ages of 19 and 29 years but was 22.2% in
RUNX1 carriers-without HM in the same age group. In individuals
aged 60 years or older, CH was detectable in 7% of controls and
83% of RUNX1 carriers-without HM, demonstrating that RUNX1
carriers-without HM have an increased prevalence of CH at all ages
24 OCTOBER 2023 • VOLUME 7, NUMBER 20
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compared with population controls. We investigated the frequency
of variants in prototypical CH genes. Variants in the epigenetic
regulators DNMT3A (54%), TET2 (29%), and ASXL1 (8%) are the
most frequent CH-related genes in the general population.32,35,36

Surprisingly, the most frequently mutated CH-related gene in
RUNX1 carriers-without HM was BCOR (42%), which is mutated in
only 0.6% of population controls with CH (Figure 3B, P <
.0001).32,35,36 DNMT3A was mutated in 17% (P < .0001), TET2 in
14% (P = .2182), and ASXL1 was not mutated in RUNX1 carriers-
without HM with CH (Figure 3B). These findings demonstrate that
the mechanism of CH in RUNX1 carriers-without HM is distinct for
this syndrome as compared with population controls.

Clonal structure and evolution in RUNX1 carriers-

without HM

Further examining the clonal composition of somatic variants in
carriers, we postulated the order of mutation acquisition in samples
with multiple variants by using relative VAFs (Figure 4A). We
observed that BCOR, as well as being the most frequently mutated
gene, was also present across the entire age spectrum, from car-
riers as young as 16 years to 76 years, found as a first hit
(Figure 4A; Table 1). Consistent with the overall data, there was a
general increase in BCOR VAF with age and additional mutations,
which could be both additional BCOR mutations as well as
mutations in other genes including TP53 and ATM, with 1 case
where DNMT3A was antecedent to BCOR variants (Figure 4A;
Table 1). Three RUNX1 carriers-without HM had longitudinal
peripheral blood samples available, which allowed us to track the
temporal evolution of CH (Figure 4B). Case 1: a male with
thrombocytopenia and a germ line RUNX1 p.R169I variant had a
somatic DNMT3A p.F751fs variant detected at a VAF of 3.1% at
43 years of age. The clone increased to a VAF of 5.0% over 5 years
without any clinical-level changes, including leukemogenesis, or the
development of additional clones. Case 2: a female with throm-
bocytopenia and a germ line RUNX1 p.R320* variant who
24 OCTOBER 2023 • VOLUME 7, NUMBER 20
developed a TET2 p.Y1598* somatic variant that persisted for
more than 7 years, increasing from a VAF of <1% to 5%, without
clinical changes. Case 3: a female with a germ line RUNX1
c.351+1G>A splicing variant and thrombocytopenia who devel-
oped AML 3 years later. We identified 3 somatic variants
(DNMT3A, SRSF2, and TET2) in the patient’s initial sample,
collected at age 53 years. These variants persisted for 2 years with
persistent thrombocytopenia but no leukemogenesis. The patient
then developed AML with additional somatic RUNX1 and STAG2
variants at 56 years of age. The initial DNMT3A and SRSF2 CH-
related variants remained stable, whereas the TET2 variant was
outcompeted during leukemogenesis.

Somatic variants in germ line RUNX1, GATA2, and
DDX41 malignancy samples

We next sought to define the landscape of driver somatic variants
in our carriers-with HM cohorts who had developed malignancies.
In the RUNX1 carriers-with HM cohort, at least 1 driver somatic
variant was detected in 46 of 52 (88%) individuals diagnosed with
an HM. No association between the number of driver somatic
variants and the histologic subtype of malignancy was observed
(supplemental Figure 2C). Driver somatic variants were identified in
64 unique genes, and 22 genes were mutated in more than 1
individual (Figure 5A; supplemental Figure 3A). Second hits in
RUNX1 were the most frequent somatic mutations, with variants
detected in 18 individuals (41% of patients with complete
sequencing coverage of RUNX1 [supplemental Methods]). Three
types of somatic RUNX1 variants were identified: small indels and
SNVs (unique from the germ line variant, 72%), copy neutral loss of
heterozygosity variants (17%), and trisomy 21 (somatic amplifica-
tion of the germ line RUNX1 variant, 11%). Somatic second
hits in RUNX1 included 12 missense variants in the exons coding
for the RUNT domain as well as a splice-site variant
(c.507_508+1dupAGG, Figure 6A-B). Cytogenetic analyses
identified 2 individuals with +21 (VAF > 60%) and 3 individuals
SOMATIC VARIANTS IN MYELOID PREDISPOSITION 6099
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with a mutant VAF >80% (copy neutral loss of heterozygosity
variants) (supplemental Figure 3A). We did not identify associa-
tions between individual germ line and driver somatic variant pairs.
Most individuals (78%) with a somatic RUNX1 variant were female
(P = .02, Figure 6C). Somatic RUNX1 variants were identified in all
age groups, and no association was established between individual
somatic RUNX1 variants and the age of HM diagnosis (Figure 6D).
A female sex bias for HM was observed in all age groups
(Figure 6D). Besides second hits in RUNX1, a series of established
cancer genes were mutated in the HM cohort: PHF6 (21%),
BCOR (20%), TET2 (13%), SH2B3 (11%), and SRSF2 (11%)
(Figure 5A; supplemental Figure 3A). AML was the predominant
malignancy in germ line RUNX1 variant carriers, with a sex bias for
female AML diagnosis (23 of 29 females, 9 of 23 males, P = .004,
supplemental Figure 4). Among individuals with somatic RUNX1
variants, 15 (83%) had AML, and 12 of 15 (80%) were females.
These data from germ line RUNX1 variant carriers support a female
sex bias for AML leukemogenesis driven by somatic RUNX1
variants.
6100 HOMAN et al
No somatic second hits in GATA2 were detected in our cohort of 13
germ line GATA2 variant carriers (Figure 5B; supplemental
Figure 3B). We detected at least 1 driver somatic variant in
69% (9 of 13) of germ line GATA2 variant carriers who had devel-
oped malignancies. Analysis of the GATA2 cohort was limited by low
sample numbers (supplemental Figure 4A), but the lack of second
hits in GATA2 suggests biallelic variants are not a common leuke-
mogenic mechanism in germ line GATA2 variant carriers.37

In the DDX41 carriers-with HM cohort, we identified at least 1
driver somatic variant in 10 unique genes in 18 individuals (62%,
Figure 5C; supplemental Figure 3C). Only 3 genes were mutated in
more than 1 individual (DDX41, ASXL1, and JAK2 p.Val617Phe).
The most frequent somatic event was a second hit in DDX41,
which was observed in 62% (n = 18) of individuals with HM. Apart
from a single splice-site variant (c.1621+1G>A), all somatic
DDX41 variants were missense variants in the DEAD-box domain
(3 of 18) or the recurrent p.R525H variant in the helicase C domain
(14 of 18 DDX41 somatic variants, 78%, Figure 7A-B). We
24 OCTOBER 2023 • VOLUME 7, NUMBER 20
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the somatic variant in the sample as represented on a sliding scale (darker = high VAF, lighter = low VAF). 5. The inner ring depicts the association of different somatic variants in

the sample. The colored ribbon depicts a unique sample and the associated somatic variants observed in the sample. (A) Germ line RUNX1 carriers-with HM cohort. Only shown

are the genes that are identified as somatically mutated in 2 or more individuals. (B) Germ line GATA2 carriers-with HM cohort, showing all driver somatic variants and (C) Germ

line DDX41 carriers-with HM cohort showing all driver somatic variants. (D) Violin plot displaying the distribution of driver somatic variant VAFs observed in the germ line carriers-

with HM cohorts. Boxes represent the 25th and 75th percentiles, with the horizontal line in the middle indicating the median, and the vertical lines representing the 95th percentile

cohorts. *P < .05, 1-way analysis of variance of log-transformed values, with Tukey multiple comparison test. (E) TMB in germ line RUNX1 and DDX41 carriers-with HM cohorts.

TMB is the number of SNV and INDELs divided by 38Mb coding region. Only malignancy samples where we had available a matched germ line control tissue were used for

analysis. Boxes represent the 25th and 75th percentiles, with the horizontal line in the middle indicating the median, and the vertical lines representing the max and min values.

*P < .05 nonparametric Mann-Whitney U test. AYA, adolescents and young adults; AML, acute myeloid leukemia; AL, acute leukemia; B-ALL, B-cell acute lymphoblastic leukemia;

CML, chronic myeloid leukemia; CMML, chronic myelomonocytic leukemia; JMML, juvenile myelomonocytic leukemia; MPN, myeloproliferative neoplasms; T-ALL, T-cell acute

lymphoblastic leukemia.
observed a significant sex bias for DDX41 malignancies (3:1 mal-
e:female, P = .0002), which correlated with males presenting with
a somatic DDX41 variant (14 of 18 males, Figure 7C-D). No
association between specific somatic variants and germ line
DDX41 variants, age of malignancy diagnosis, or histologic subtype
of malignancy was observed.

Mutational burden in germ line RUNX1, GATA2, or
DDX41 malignancy samples

To better understand the somatic mutational burden in each syn-
drome, we evaluated the VAF of all driver somatic variants. A large
distribution of VAFs was observed in RUNX1 carriers-with HM
24 OCTOBER 2023 • VOLUME 7, NUMBER 20
(median VAF = 22.4%, mean = 27.0%, mode = 5.7, 34%) and
GATA2 carriers-with HM (median = 21.0%, mean = 20.6%,
mode = 8, 27.2%). VAFs among RUNX1 carriers-with HM showed
the largest distribution (Figure 5D). The DDX41 cohort harbored
low VAF driver somatic variants (median VAF = 8.9%, mean
13.4%, Figure 5D). No association between age at malignancy
diagnosis and the VAF of driver somatic variants was observed in
any cohort (supplemental Figure 5). TMB was calculated for
DDX41 (n = 14) and RUNX1 (n = 4) carriers-with HM with
matched germ line/tumor samples. DDX41 had a lower TMB (0.75
mutations/Mb) than RUNX1 malignancies (3.3 mutations/Mb; P =
.01, Figure 5E).
SOMATIC VARIANTS IN MYELOID PREDISPOSITION 6101
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Discussion

The prevalence of HHMs is estimated to range from 7% to 14% in
cohorts of patients with myeloid malignancies.38,39 Although the
clinical recognition of these syndromes has improved since
RUNX1-driven HHMs were first described,8 questions remain
regarding the optimal approach to monitoring carriers-without HM
and how malignancy-directed treatments may be individualized for
affected patients. Currently it is challenging for clinicians to provide
tailored risk-assessment to patients as the natural history of
carriers-without HM is not well understood and there has been no
approach to identify HHM individuals at highest risk for leukemo-
genesis. To address this gap, we have leveraged our HHM inter-
national collaborative network and assembled and characterized
the most extensive cross-sectional comparative cohort of carriers-
without HM and carriers-with HM germ line RUNX1, GATA2, or
DDX41 variants (n = 191, 102 probands, Figure 1). We demon-
strate RUNX1, GATA2, and DDX41 germ line variant carriers
experience highly variable risk for CH and unique somatic drivers
during CH relative to population controls. Each HHM is remarkable
6102 HOMAN et al
for mutational profiles during frank leukemogenesis that are also
unique to each HHM syndrome.

The most significant risk factor for CH in the general population is
aging, with ~10% of individuals over the age of 70 years having
detectable CH.32,33 Several studies investigating CH in the back-
ground of inherited bone marrow failure have shown an increased
risk for CH.34,40,41 Interestingly, individuals without HM with HHM
germ line variants have been shown to have variable risk for CH in a
series of small studies (ANKRD26, ETV6, RUNX1).18,19,42,43 We
have now performed the largest collective analysis of CH in RUNX1,
GATA2, and DDX41 carriers without HM to date. This analysis
extends studies of CH in the HHMs to novel phenotypes (DDX41)
and suggests that HHM predisposition in GATA2, and RUNX1
carriers-without HM, may be driven by early-onset CH (22.2% in
RUNX1 and 25% in GATA2). Recently, larger cohorts of patients
with germ line GATA2 without HM,20,21 have also shown CH is
common in patients without HM, with CH associated with a hypo-
cellular marrow. Further investigation is required to determine if CH
also correlates with cytopenias in germ line RUNX1 cohorts. In
24 OCTOBER 2023 • VOLUME 7, NUMBER 20
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contrast, DDX41 carriers-without HM have a very low risk for CH at
any age. RUNX1 patients (without HM) with CH also had unique
somatic drivers relative to CH population controls, most notably a
high prevalence of BCOR variants.32,33 This has similarity to aplastic
anemia, where BCOR and BCORL1 are frequently mutated.44

BCOR variants alone did not appear sufficient to cause leukemo-
genesis in our cohort. This suggests additional co-operating variants
are required for malignancy progression (including somatic RUNX1,
TET2, DNMT3A, and BCORL1 variants [supplemental Figure 3A]).
Some of these interactions are validated in in vivo models with
conditional Bcor knockout mouse models combined with variants in
Dnmt3a, Kras, or Tet2 sufficient to drive malignancy trans-
formation.45-47 Notably, BCOR variants are frequent in the RUNX1
carriers-with HM cohort, supporting the notion that CH in this
setting, is a risk factor for leukemic transformation. However further
models are required to determine the functional effects of co-
occurring BCOR and RUNX1 variants on hematopoetic stem and
progenitor cell (HSPC) fitness and leukemic transformation.
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The most frequent leukemogenic event in our cohort of DDX41 and
RUNX1 carriers-with HM was biallelic somatic variants in DDX41
and RUNX1, respectively (supplemental Figure 6). In contrast,
second hits in GATA2 germ line variant carriers with malignancies
were not detected. In case study #3, for example, a germ line
RUNX1 carrier initially presented with thrombocytopenia before
progressing to AML. In this patient, leukemogenesis was associ-
ated with the acquisition of a biallelic RUNX1 variant, but at a late
stage after the acquisition of TET2, DNMT3A, and SRSF2 variants.
Given that we never detected somatic RUNX1 variants in our
RUNX1 carriers-without HM cohort, in stark contrast to the high
frequency of second-hit RUNX1 variants in our HM cohort, we
suggest that somatic RUNX1 variants likely represent a later step
that may be key to leukemogenic transformation. Interestingly, for
DDX41, the lack of CH gene mutations in carriers was mirrored by
a lack of CH gene mutations in malignancy (Figure 5C). This
indicates that the molecular natural history of this disorder is quite
different from both RUNX1 and GATA2 HHMs. Further
SOMATIC VARIANTS IN MYELOID PREDISPOSITION 6103



longitudinal, lineage tracing, and single-cell sequencing studies are
required to determine if these are initiating events in malignancy
development and the timeline to disease progression.

Interestingly, both germ line RUNX1 and DDX41 cohorts pre-
sented with a sex bias for HM development, but this did not
correlate with differences in X-linked somatic variants. Sex bias was
not observed in our GATA2 cohort, as we have also observed
previously.14 RUNX1 genomic alterations have a high correlation
with hormone-related cancers, especially cancers common in
female patients, and with estrogen known to play a role in hema-
topoiesis,48,49 we hypothesize that disruption of specific estrogen
signaling pathways in germ line RUNX1 carriers could predispose
females to AML.50-53 In the germ line RUNX1 malignancy cohort,
recurrent somatic gene variants are involved in epigenetic regula-
tion and epigenetic dysregulation and can occur in leukemogen-
esis, with sex-specific differences in methylation observed in
hematopoietic tissue.50,54,55 The innate immune response is also
known to be increased in females relative to males.56 For DDX41,
given its role as an intracellular pattern recognition receptor that
triggers the innate immune response,57 a dysregulated immune
response could exaggerate existing differences in innate immunity
between males and females, contributing to the observed sex bias
in malignancy penetrance. Further investigation is warranted to
understand the interplay of these mechanisms on tumorigenesis,
which may ultimately inform the development of sex-specific ther-
apies that optimize outcomes for patients with HHM.

Despite a lack of definitive guidelines, limitations, and ongoing
debate, molecular monitoring in clinical practice is becoming more
widespread.43 Findings from this study have implications for clin-
ical surveillance and counseling for different patients with HHM.
For example, in RUNX1 and GATA2 HHMs, regular targeted
sequencing of CH genes, even in younger carriers-without HM,
will provide a tool to monitor the evolution of the clonal burden
associated with these variants. In contrast, given the low VAF and
high frequency of somatic DDX41 variants in DDX41 HHMs, serial
high-depth sequencing of DDX41 for the common R525H muta-
tion may be a preferred approach in DDX41 carriers-without HM.
Although in the aging population, CH is a risk factor for leukemic
transformation, the presence of CH in inherited bone marrow
failure is in some situations associated with somatic rescue or
normalization of HSPC fitness. Therefore, it is important to
discriminate CH events that are associated with risk for leukemic
transformation from CH, which results in normalization of func-
tion.58 Given that CH variants feasibly confer a step toward HM,36

the high frequency of BCOR and TET2 variants in our cohort of
RUNX1 HHM malignancies and their presence in RUNX1 carriers-
without HM, at least in the research study setting, warrant moni-
toring of these genes as potential molecular biomarkers of
leukemogenesis. Changes in CH trajectory may eventually inform
clinical decision-making, such as the timing of repeat bone marrow
biopsies. These decisions will be made in conjunction with more
classic clinical tools, such as the monitoring of peripheral blood
cell counts.43

This study highlights the immense benefit of international collabo-
ration and data sharing within the HHM and rare disease com-
munities. We have established the framework for the continued
accumulation of patient data, including longitudinal molecular
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monitoring, which is required to define the different risk states
associated with leukemogenesis across these disorders. With
continued progress, this work may lead to the establishment of a
defined molecular risk stratification for leukemia progression in
carriers and, with it, the ability to design and test in trials inter-
ventions to halt progression to full-blown HM in vulnerable HHM-
variant carriers. For instance, with regular clinical surveillance, it
may be possible to detect individuals who develop second hits in
DDX41 or RUNX1 before a clinical diagnosis of HM. These indi-
viduals may benefit from intensive clinical surveillance or low-
toxicity prophylactic therapies. In contrast, defining TET2, BCOR,
or other epigenetic regulators as emerging vulnerabilities opens an
avenue for the development of prophylactic treatments for HHM
carriers via TET inhibitors, histone deacetylases (HDAC) inhibitors,
hypomethylating agents, and combinatorial therapies that do not
carry the morbidity and mortality of stem cell transplant. This study
provides the most comprehensive investigation of leukemogenic
molecular mechanisms in HHMs to date, informing the next gen-
eration of studies into the clinical management and surveillance of
these disorders as well as potential insights into personalized and
preemptive therapies for carriers.
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