Table 2.
Predictive modeling results using validation data.
Model | Data | Accuracy | Precision | Specificity | Sensitivity | F1-score | AUC |
---|---|---|---|---|---|---|---|
Logistic Regression | Original | 0.95 | 1 | 1 | 0.25 | 0.93 | 0.62 |
SMOTE | 0.9 | 0.86 | 0.85 | 0.96 | 0.9 | 0.9 | |
Decision Tree Classifier | Original | 0.88 | 0.29 | 0.9 | 0.5 | 0.89 | 0.7 |
SMOTE | 0.93 | 0.89 | 0.88 | 0.98 | 0.93 | 0.93 | |
SVC | Original | 0.93 | 0 | 1 | 0 | 0.89 | 0.5 |
SMOTE | 0.88 | 0.82 | 0.79 | 0.96 | 0.87 | 0.88 | |
Gradient Boosting Classifier | Original | 0.93 | 0.5 | 0.96 | 0.5 | 0.93 | 0.73 |
SMOTE | 0.93 | 0.91 | 0.9 | 0.96 | 0.93 | 0.93 | |
Ensemble | Original | 0.95 | 0.67 | 0.98 | 0.5 | 0.94 | 0.74 |
SMOTE | 0.92 | 0.88 | 0.87 | 0.98 | 0.92 | 0.92 |
AUC: Area Under the Curve of the Receiver Operating Characteristic curve.
SVC: support-vector machines.
Source: elaborated by the authors based on the data of the study