Table 3.
Predictive model results with hyperparameter calibration.
LR | MD | MF | A | E | S | F1-score | AUC |
---|---|---|---|---|---|---|---|
0.1 | 2 | sqrt | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
0.1 | 2 | log2 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
0.1 | 3 | sqrt | 0.94 | 0.92 | 0.96 | 0.94 | 0.94 |
0.1 | 3 | log2 | 0.95 | 0.94 | 0.96 | 0.95 | 0.95 |
0.1 | 4 | sqrt | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
0.1 | 4 | log2 | 0.95 | 0.94 | 0.96 | 0.95 | 0.95 |
0.1 | 5 | sqrt | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
0.1 | 5 | log2 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
0.3 | 2 | sqrt | 0.95 | 0.94 | 0.96 | 0.95 | 0.95 |
0.3 | 2 | log2 | 0.95 | 0.92 | 0.98 | 0.95 | 0.95 |
0.3 | 3 | sqrt | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
0.3 | 3 | log2 | 0.97 | 0.96 | 0.98 | 0.97 | 0.97 |
0.3 | 4 | sqrt | 0.96 | 0.94 | 0.98 | 0.96 | 0.96 |
0.3 | 4 | log2 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
0.3 | 5 | sqrt | 0.97 | 0.98 | 0.96 | 0.97 | 0.97 |
0.3 | 5 | log2 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
0.5 | 2 | sqrt | 0.95 | 0.96 | 0.94 | 0.95 | 0.95 |
0.5 | 2 | log2 | 0.97 | 0.96 | 0.98 | 0.97 | 0.97 |
0.5 | 3 | sqrt | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
0.5 | 3 | log2 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
0.5 | 4 | sqrt | 0.97 | 0.98 | 0.96 | 0.97 | 0.97 |
0.5 | 4 | log2 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
0.5 | 5 | sqrt | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
0.5 | 5 | log2 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
0.7 | 2 | sqrt | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
0.7 | 2 | log2 | 0.95 | 0.92 | 0.98 | 0.95 | 0.95 |
0.7 | 3 | sqrt | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
0.7 | 3 | log2 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
0.7 | 4 | sqrt | 0.97 | 0.96 | 0.98 | 0.97 | 0.97 |
0.7 | 4 | log2 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
0.7 | 5 | sqrt | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
0.7 | 5 | log2 | 0.97 | 0.96 | 0.98 | 0.97 | 0.97 |
LR: learning rate, MD: maximum depth, MF: maximum number of regressors, A: accuracy, E: specificity, S: sensitivity, AUC: area under the curve.
Source: elaborated by the authors based on the data of the study