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Abstract
Glucose transporter 5 (GLUT5) is a membrane transporter that specifically transports fructose and plays a key role in
dietary fructose uptake and metabolism. In recent years, a high fructose diet has occupied an important position in
the daily intake of human beings, resulting in a significant increase in the incidence of obesity and metabolic
diseases worldwide. Over the past few decades, GLUT5 has been well understood to play a significant role in the
pathogenesis of human digestive diseases. Recently, the role of GLUT5 in human cancer has received widespread
attention, and a large number of studies have focused on exploring the effects of changes in GLUT5 expression
levels on cancer cell survival, metabolism and metastasis. However, due to various difficulties and shortcomings,
the molecular structure and mechanism of GLUT5 have not been fully elucidated, which to some extent prevents us
from revealing the relationship between GLUT5 expression and cell carcinogenesis at the protein molecular level. In
this review, we summarize the current understanding of the structure and function of mammalian GLUT5 and its
relationship to intestinal diseases and cancer and suggest that GLUT5 may be an important target for cancer
therapy.
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Introduction
In the last few decades, high fructose corn syrup (HFS), which
comprises high concentrations of fructose, has been widely used
around the world due to developments and expansions in sugar
production processes [1]. This has led to a dramatic increase in the
global per capita intake of fructose, which has become a dominant
component of the human diet and correlates closely with the
increased incidence of cancers and metabolic diseases [2–4].
According to data published by the World Health Organization,
13% of adults worldwide are obese [5], which undoubtedly
significantly increases the incidence of certain diseases. The
proliferation of metabolic diseases and cancers caused by high
fructose intake and obesity has created a huge economic and
medical burden worldwide, and this serious public health problem
has led to calls to limit fructose intake [6]. At the same time, this
also means that the study of fructose metabolic pathways and their
transport carriers GLUTs cannot be delayed [7].

Mammals express 14 GLUTs: GLUT1–14, all of which are

members of the solute carrier 2A (SLC2A) gene family [8].
Currently, all known GLUTs are divided into three classes (Table 1).
Class I comprises GLUT1-4 and GLUT14. Class II comprises GLUT5,
7, 9, and 11. Class III includes GLUT6, 8, 10, 12 and HMIT1 [9,10].
In addition to GLUT13, other GLUTs mediate the facilitated
diffusion (passive transport) of glucose or fructose [11]. Among
the entire family of GLUTs, GLUT5 is the only transporter that
specifically transports fructose, encoding the gene SLC2A5 (chro-
mosome localization 1p36.23), originally cloned from the human
small intestinal cDNA library [12]. Human GLUT5 has a high
affinity for fructose (Km=6 mM) and no transport activity for
glucose or galactose. Due to this characteristic, only GLUT5 is
discussed in this paper.

GLUT5 Is Involved in Dietary Fructose Metabolism
How does the fructose from food make its way from the gut into the
bloodstream and end up in tissues and organs to be utilized? This
involves the synergy of GLUT5, several other GLUTs, and several
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enzymes. Dietary fructose metabolism begins with absorption from
the small intestine. Fructose in food will lead to an increase in the
fructose concentration in the intestinal lumen, accordingly promot-
ing fructose transmembrane transport and fluctuating around
GLUT5 Km [13]. After processing and maturation in the Golgi
apparatus, the newly synthesized GLUT5 is transported to the apical
and basolateral membranes of small intestinal epithelial cells with
the assistance of circulating endosomes mediated by cytosolic Ras-
related protein in brain 11a (Rab11a), a small GTPase that plays an
essential role in the transportation of apical proteins in the intestine
[14,15]. GLUT5 is the carrier for facilitated diffusion of fructose into
epithelial cells through the intestinal lumen, but GLUT2 is
responsible for most fructose transport across the intestinal basal
lateral membrane to the extracellular and circulates [16]. A small
fraction of fructose is phosphorylated to fructose-1-phosphate (F-1-
P) by ketohexokinase (KHK) in the cytoplasm, which is conducive
to maintaining the fructose concentration gradient from the
intestinal lumen to the cytosol, and the subsequent reaction
products can stimulate SLC2A5 transcription in the nucleus and
GLUT5 mRNA translation and facilitate the continuous transport of
fructose to the cell membrane [17] (Figure 1). Two forms of the
enzymes, KHK-a and KHK-c, are encoded by the KHK gene [18]. The
affinity of KHK-c for fructose (Km=0.8 mM) is 10-fold higher than
that of KHK-a, and it is widely distributed in various tissues and
organs of humans and is the most important enzyme responsible for
fructose phosphorylation [19,20]. Benign fructosuria is caused by
mutations in the KHK gene. Individuals with this disorder will
experience significant changes in circulating and urine fructose
levels after consuming fructose-containing foods: after oral or
intravenous injection of fructose, circulating fructose levels are
consistently higher, much higher than levels in controls, and then
slowly decline, with approximately 20 percent of fructose even-
tually excreted from the urine, compared with 1 to 2 percent in
normal subjects [21].

Circulating fructose enters the liver via the portal vein, where
most of the fructose is metabolized, which also keeps the serum
fructose level at a low state all the time [22]. The first-pass
metabolic role of the liver makes it the primary site of fructose

metabolism in humans, but recent theories suggest that the
importance of visceral organs in individual fructose metabolism is
related to their organ size [23]. However, Jang and his colleagues
[24] followed the metabolic process of fructose in mice by isotope
tracing and came to a surprising conclusion: the small intestine
could protect the liver from toxic fructose. However, it remains
unclear whether intestinal fructose metabolism is superior to
hepatic fructose metabolism in animals other than mice. The
relative importance of intestinal fructose metabolism may vary
between species [25]. It is remarkable that the expression level of
GLUT5 on the hepatocyte membrane is low under physiological
conditions, fructose is mainly transported through GLUT2, and
possibly GLUT8 is involved in the uptake of fructose in hepatocytes
[26]. KHK catalyzes the formation of F-1-P from fructose entering
hepatocytes. F-1-P is hydrolysed by aldolase B to glyceraldehyde
(GA) and dihydroxyacetone phosphate (DHAP), and aldolase B
deficiency leads to hereditary fructose intolerance (HFI) [27]. GA is
further phosphorylated by triokinase to form glyceraldehyde-3-
phosphate (GA-3-P). Both intermediates, DHAP and GA-3-P, can
directly enter the glycolysis pathway for further metabolism. They
can generate pyruvate and enter the tricarboxylic acid (TCA) cycle
or produce lactate and can also be converted into glycogen through
the gluconeogenic pathway. GLUT5, KHK, aldolase B and trikinase
are key factors in the fructose catabolic pathway, and their activity
in the intestine and liver increases with higher dietary fructose level
[28]. Fructose can also be directly phosphorylated to fructose-6-
phosphate (F-6-P) by hexokinase (HK) IV in hepatocytes [29].
Nevertheless, HK IV has a low affinity for fructose (Km>100 mM)
and therefore forms little F-6-P in the liver, while high level of
glucose also competitively inhibits fructose phosphorylation. Small
intestinal epithelial cells metabolize approximately 12% of fructose
in a similar manner [30].

Fructose feeding increased the expression of fructolysis- and
gluconeogenesis-related enzymes in the small intestine of adult
wild-type (WT) mice. However, this promotion was not observed in
SLC2A5-/- or KHK-/- mice [31]. Since fructose catabolism bypasses
the negative feedback regulation of GA-3-P in glycolysis, several
metabolic intermediates can rapidly accumulate in vivo. Contin-

Table 1. Classification, main expression, and main substrates of the 14 known GLUTs

Classification GLUTs Main expression tissues Main substrates Function

Class I GLUT1 Erythrocytes, blood-tissue barriers Glucose, 2-DG Basal uptake

GLUT2 Liver, pancreas, small intestine Glucose, fructose, glucosamine Glucose sensing

GLUT3 Neurons Glucose, 2-DG Neuronal uptake

GLUT4 Adipocytes, muscle, heart Glucose, glucosamine Insulin-responsive

GLUT14 Testis Unknown Duplicon of GLUT3

Class II GLUT5 Small intestine, testis, muscle, kidney, erythrocytes Fructose Fructose transport

GLUT7 Testis, small intestine, prostate Glucose Unknown

GLUT9 Liver, kidney Urate Urate homeostasis

GLUT11 Pancreas, kidney, placenta, muscle Fructose, glucose Unknown

Class III GLUT6 Brain, spleen, leukocytes Glucose Lysosomal transport

GLUT8 Testis, neurons, adipocytes Glucose, trehalose Trehalose transport

GLUT10 Liver, pancreas 2-DG Unknown

GLUT12 Heart, prostate Glucose Insulin-responsive

HMIT1 Brain Myo-inositol Myo-inositol transport

Adapted from the article by Reckzeh et al. [9]. 2-DG: 2-deoxy-D-glucose; HMIT1: proton myo-inositol cotransporter.
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uous and high-throughput fructose metabolism, which is not
controlled by the cellular energy state, leads to increased
adipogenesis and increased uric acid production due to rapid ATP
consumption, which are important reasons for the occurrence and
development of metabolic diseases [32–34]. It is worth noting that
fructose may be the only carbohydrate that can produce uric acid,
and reducing fructose intake has been suggested as a primary
dietary change in the treatment of hyperuricemia [35]. In addition,
excessive fructose intake induces excessive production of reactive
oxygen species (ROS) in the nucleus tractus solitarius (NTS) of the
rat brain, which in turn causes hypertension, which is alleviated
after downregulation of the expression of NTS GLUT5 [36].
Additionally, GLUT5 is expressed in preadipocytes, which is
associated with visceral obesity caused by fructose intake [37].
This suggests that GLUT5 is responsible for almost all of the
physiological and pathological effects of fructose.

Physiological Expression Regulation of GLUT5 in
Mammals
Each GLUT transporter has unique patterns of tissue distribution
and gene regulation. Human GLUT5 is highly expressed on the
apical and basolateral membranes of small intestinal epithelial cells
[38–40] and at low levels in cells and organs such as red blood cells,
kidneys, sperm, adipose tissue, muscles, and brain [41–43]. The

physiological expression and activity of human GLUT5 are the
highest in the proximal duodenum and gradually decrease along the
small intestine from proximal to distal regions [44]. However, in
bovines, GLUT5 mRNA is the most abundant in the liver and kidney
[45]. As mentioned above, GLUT5 is expressed in preadipocytes,
but GLUT5 is not expressed in mature adipocytes, suggesting that
GLUT5 may be involved in the development or differentiation of
adipocytes [37]. The levels of GLUT5 mRNA in the intestines are
barely detectable in humans and rats at birth, and only low levels
are expressed during the entire lactation period (0–14 days for rats)
and weaning period (14–28 days for rats), and the GLUT5 mRNA
abundance and activity increase significantly after weaning (>28
days in rats) [46]. Incredibly, neonatal rats are insensitive to
fructose during 0–14 days, and fructose feeding does not induce
small intestinal GLUT5 expression; only rats above 14 days of age
respond to intestinal luminal fructose stimulation [47]. What causes
GLUT5 expression in the intestines of newborn pups to respond so
significantly to fructose stimulation during lactation and weaning?
Early studies have shown that the physiological response of
intestinal cells to fructose in neonatal rats and newborns is
regulated by glucocorticoids [48,49]. The authors used the
glucocorticoid analogue dexamethasone to artificially stimulate
the intestines of lactating pups and observed a rapid and significant
increase in GLUT5 expression level [49]. In addition, the presence of

Figure 1. Metabolic process of fructose in small intestine and liver After the entry of fructose-rich foods into the human intestine, the fructose in
the intestinal lumen, assisted by the GLUT5 transporter, enters the epithelium along the concentration gradient from the apical mo. Part of the
fructose entering the cell is catabolized by KHK, and a series of products can activate SLC2A5 gene transcription in the nucleus. Most fructose is
transported to the exocytosis by GLUT2 transporters on the basolateral membrane and enters the blood circulation. Fructose absorbed from the
intestine reaches the liver through the portal vein. On the surface of hepatocytes, mainly GLUT2 transporters are responsible for transporting
fructose into the cells, and possibly GLUT5 and GLUT8 are also involved in the transport process. The fructose that enters the hepatocytes is then
phosphorylated to F-1-P by KHK. Aldolase B hydrolyzes F-1-P to GA and DHAP, and GA can be further phosphorylated to GA-3-P by triokinase. Both
GA-3-P and DHAP can enter the glycolysis pathway directly to produce pyruvate. Pyruvate can be further metabolized to produce lactate or enter
the mitochondrial TCA cycle. GA-3-P and DHAP can also synthesize glycogen through gluconeogenesis [13–17].
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thyroid hormone response elements was found in the –338/–272 bp
promoter region of the GLUT5-encoding gene, implying that thyroid
hormone is likely involved in the regulation of physiological
expression of GLUT5, although this role is not clear [50,51]. In
addition, GLUT5 expression in adult rats also showed a distinct
circadian rhythm and was independent of fructose intake [52].
Recently, Zwarts et al. [53] demonstrated that liver X receptor α
(LXRα) is capable of regulating the human and mouse GLUT5
promoters, and the presence of LXR response elements was found at
the human GLUT5 promoter relative to the transcription initiation
site –385 bp. However, more detailed and in-depth regulatory
mechanisms need to be further investigated.

GLUT5 expression may be regulated more by intestinal luminal
fructose signaling than by endocrine signaling. The dietary fructose-
induced increase in GLUT5 expression involves the de novo
synthesis of the corresponding mRNAs and proteins [54,55].
Carbohydrate response element binding protein (ChREBP) mediates
dietary fructose-induced transcription of the SLC2A5 gene, a basic
helix-loop-helix/leucine zipper transcription factor that is highly
expressed in intestinal epithelial cells and plays a critical role in the
control of the expressions of genes related to glycolysis and
lipogenesis [56,57]. Both dietary glucose and fructose can activate
the translocation of ChREBP from the cytoplasm to the nucleus,
where it forms heterodimers with Max-like protein X (MLX) in the
nucleus and then combines with target genes containing carbohy-
drate response elements (ChoREs) [58,59]. High-fructose feeding
systemic or intestinal-specific knockout ChREBP mice cannot
induce GLUT5 expression and exhibit malabsorption syndrome
(mainly characterized by diarrhea, weight loss, and intestinal
distention), impaired metabolism, decreased body temperature and
even near death within 1–2 weeks [60,61]. Consistent with this,
mice with hepatic ChREBP deficiency do not exhibit fructose
intolerance [62]. It was experimentally demonstrated that the
ChREBP-MLX heterodimer binds directly to ChoRE, located 2 kb
from the SLC2A5 gene (2149–2165), thereby regulating SLC2A5
transcription, and that this protein-DNA interaction is induced by
diet [61].

The experimental results showed that when a fructose solution
was infused into the intestinal cavity of adult wild-type mice, the
mRNA and protein levels and activity corresponding to GLUT5 were
observed to increase by 2–10 folds [63]. However, in mice with
targeted deletion of Rab11a in small intestinal epithelial cells,
fructose feeding failed to induce GLUT5 expression in the small
intestine, and the mice exhibited malabsorption syndrome, suggest-
ing that Rab11a is one of the factors regulating GLUT5 expression
[63]. In addition, SLC2A5 knockout mice were able to survive
normally and give birth, but after being fed with a high fructose diet,
they also had hypotension and malabsorption syndrome [64].
Incredibly, even primary intestinal cells cultured in vitro were able
to be induced to express GLUT5 by fructose [65]. Interestingly, a
recent study suggests that intestinal GLUT5 expression level may
also be associated with lipid intake [66]. This implies that not only
saccharides but also other types of nutrients may be involved in the
regulation of GLUT5 expression.

In addition to diet, exercise also affects GLUT5 expression level.
Studies have revealed that long-term running exercise can increase
GLUT5 protein expression level in mouse hippocampal microglia,
promote microglial glucose metabolism and improve the cognitive
function of mice [67]. The regulation of GLUT5 expression is

multifactorial and multifaceted.
Thioredoxin-interacting protein (TXNIP), another fructose-indu-

cible protein regulated by ChREBP, is expressed in key metabolic
tissues such as the liver and intestine [68,69]. TXNIP promotes the
localization of hexose transporters to the plasma membranes,
including assisting GLUT5 localization to the apical membranes of
enterocytes [70]. Therefore, factors regulating GLUT5 localization
and functional execution may also be important factors affecting
dietary fructose absorption in the intestines [71].

Structural Characteristics of the Mammalian GLUT5
Protein
GLUT transporters belong to the sugar transporter subfamily of the
major facilitator superfamily (MFS). A common structural feature of
the MFS members is that they all share the MFS-fold structure. The
mammalian GLUT5 protein has a typical MFS folding structure:
twelve hydrophobic transmembrane (TM) α-helices constitute four
trimeric substructures, which in turn form two mutually separated
TM bundles, namely, an N-terminal six TM bundle (TM1–6) and a
C-terminal six TM bundle (TM7–12). The two six TM bundles are
mirrored by rotation of approximately 180° around a false
bisymmetry axis that passes through the center of the transporter
and is perpendicular to the plasma membrane plane [72]. The 12
TMs are connected by hydrophilic loops of different lengths, and a
large cytoplasmic ring separates the two six TM bundles between
TM6 and TM7 [73]. There are some clever regular connections
between different TMs, such as TM1–3 having sequence similarity
with reverse TM4–6, while TM7–9 has sequence similarity with
reverse TM10–12, which may be caused by gene duplication and
fusion [74]. In addition, the rat and bovine GLUT5 proteins, which
share 81% sequence identity with the human GLUT5 protein, have
an intracellular portion that includes five helical structures, one at
the C-terminus and four others located between the N-terminal six
TM bundle and the C-terminal six TM bundle [75].

The human GLUT5 protein expressed in vivo comprises a total of
501 amino acids (residues). By querying the protein database
UniProt (https://www.uniprot.org/), the distribution characteris-
tics of the 12 TMs of the human GLUT5 protein (UniProt ID: P22732)
along the amino acid sequence, as well as sites where posttransla-
tional modifications occur on the polypeptide chain, were deter-
mined (Figure 2). In addition, we downloaded the human GLUT5
protein molecular structure prediction model diagram (Figure 3)
from the AlphaFold Protein Structure Database (https://alphafold.
ebi.ac.uk/entry/P22732), and four different colors represent the
confidence score (pLDDT) of each residue [76,77].

How does the GLUT5 protein molecular structure affect the
process of its binding and transport of fructose? Previous studies of
GLUT5-GLUT3 chimeras have shown that two large regions
containing amino acid sequences are important for the fructose
transport function of GLUT5: the region between the N-terminal and
the first cytoplasmic loop and the region between the third
extracellular loop and TM11 [78]. However, the authors were not
able to further analyze the role of individual amino acid residues.
The crystal structures of GLUT5 in rat and bovine have been
analyzed by X-ray diffraction. The GLUT5 substrate binding site is
located in the central cavity between the N-terminal six TM bundle
and the C-terminal six TM bundle, and the amino acid residues
arranged here are related to substrate binding activity. The amino
acid residues Gln166 (corresponding to Gln167 in human GLUT5),
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Figure 2. Human GLUT5 structure diagram queried from the Uniprot protein database The lower part of the figure shows the complete amino
acid sequence of the human GLUT5 protein, with different letters representing different amino acid classes. The cytoplasmic region of the GLUT5
protein and the distribution characteristics of the 12 TMs along the amino acid sequence are indicated by red triangles or black squares,
respectively.

Figure 3. Diagram of human GLUT5 protein molecular structure prediction model downloaded from AlphaFold Protein Structure Database
Three amino acid residues (Gln167, Asn325, Trp420) located in the central lumen region of the GLUT5 protein and one (Tyr32) facing the central
lumen region were selected as representatives and their structural models were shown [76,77]. pLDDT: predicted local distance difference test.
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Ile169 (170), Ile173 (174), Gln287 (288), Gln288 (289), Asn324
(325) and Trp419 (420) are located in the central cavity, and Tyr31
(32), His386 (387), Ala395 (396), His418 (419), and Ser391 (392)
also face the central cavity [75]. Trp388 and Trp412 residues are
critical for the transport activity of GLUT1 [79], and Trp419 is the
only tryptophan located at the central cavity substrate binding site
in rat GLUT5 [75]. As measured by tryptophan fluorescence
quenching, a sharp disappearance of the fluorescence intensity of
tryptophan residues in the central cavity was observed when the
added substrate was D-fructose. However, when the substrate was
added as other monosaccharides, there was no significant change in
the fluorescence intensity of the tryptophan residue in the central
cavity, which represents the substrate binding activity of GLUT5 to
D-fructose [75]. In addition, alanine fixed-point mutants of Tyr31,
His386, His418, Ser391, and Ala395 in human GLUT5 substrate
binding sites all lead to strong substrate binding activity weakening,
and the rest of the amino acid residues except Tyr31 belong to the C-
terminal six TM bundle, indicating that the N-terminal six TM
bundle and the C-terminal six TM bundle in GLUT5 are asymme-
trically bound to fructose [75]. Single amino acid mutations Y31F
(indicating that the Tyr mutation at site 31 is Phe), Q166E, Q287A,
H386F, H386A, S391A and H418Q lead to a significant reduction in
fructose binding of GLUT5 protein (<40% of wild-type GLUT5
protein), while the fructose binding of GLUT5 protein caused by
Y31A, Q166A, I169A, I173A and Q288A is smaller (approximately
40%‒90% of wild-type GLUT5 protein) [75].

GLUT7, also expressed in the small intestine, also belongs to class

II GLUTs, and its protein sequence has 512 amino acid residues,
which is approximately 60% similar to GLUT5, but has no ability to
transport fructose [80]. The GLUT5-GLUT7 chimera is considered a
suitable model to investigate the role of individual amino acid
residues in fructose recognition and transport of GLUT5. Ebert et al.
[81] divided the protein sequence of human GLUT5 into 26
fragments and consecutively replaced these fragments with homo-
logous domains of GLUT7 to obtain GLUT5-GLUT7 chimeras F1‒
F25. They found that fructose intake in chimeras F2 (23–41), F13
(242–254), F17 (323–338), F18 (343–357), F19 (361–381), and F25
(488–501) was reduced by 30 to 80% compared with wild-type
GLUT5 protein. In contrast, several other chimeras, F9 (164–181),
F15 (286–305), F20 (382–399), and F21 (409–428), showed fructose
intake even lower than 30% of wild-type GLUT5 fructose intake
[81]. However, the chimeric fragments containing multiple amino
acid residues remain insufficiently precise. The authors further
divided each chimera into fragments containing fewer amino acid
residues and found that single amino acid mutations at sites 36, 167,
171, 297, 326, 332, 333, 384, 399, 409, 415, and 428 resulted in
lower fructose transport in chimeras than 30% of fructose transport
in the wild-type GLUT5 protein, while single amino acid mutations
at sites 41, 168, 170, 174, 293, 323, 331, 362, 364, 368, 388 and 398
resulted in a 30% to 80% decrease in fructose transport in the
chimer [81] (Figure 4). These amino acids, which are important for
GLUT5 fructose transport function, are present in the first
extracellular loop, TM5, TM7, TM8, TM9, TM10, and the region
between TM9 and TM10, TM10 and TM11, respectively [81].

Figure 4. Diagram of single amino acid mutation in the amino acid sequence of human GLUT5 protein Each regular octagon represents an amino
acid residue. The red regular octagons represent an amino acid mutation that reduces the amount of fructose transported by chimeras to less than
30% of the wild-type GLUT5 protein, while the yellow regular octagons represent a 30% to 80% reduction [81].
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Past studies have found that substrate transport by MFS proteins
involves the continuous destruction and formation of some inter-
TM bundle salt bridges in the central lumen of proteins [82]. In rat
GLUT5, Glu151 and Arg97 in the N-terminal six TM bundle formed
an inter-TM bundle salt bridge with Arg407 in the C-terminal six TM
bundle, and similarly, Arg158 in the N-terminal six TM bundle
formed an inter-TM bundle salt bridge with Glu400 and Arg340 in
the C-terminal six TM bundle. In addition, Glu336 in the C-terminal
six TM bundles is connected to the inter-TM bundle salt bridge by
forming an intra-TM bundle salt bridge with Arg340. The network of
salt bridges formed by these salt bridges spanning multiple TM
bundles plays a role in maintaining the external conformational
stability of the GLUT5 protein [75].

Structural Mechanisms of Substrate Recognition and
Transport of Mammalian GLUT5 Protein
Alternating access transport mechanisms have long been the most
commonly used model to explain transporter substrate transport
mechanisms. During a transport cycle, the transporter undergoes
transient conformational changes of outwardly open (unloaded),
outwardly closed (substrate binding), inwards open (substrate
release), inwards closed (unloaded), and outwardly open (un-
loaded), with the four major conformations alternately exposed to
each side of the membrane to transport and release the substrate
through the lipid bilayer [83]. The symmetrical binding of the N-
terminal and C-terminal six TM bundles to the substrate around the
central cavity substrate binding site and the rigid body motion of the
two six TM bundles form the structural basis of the MFS-type

″rocker switch″ mechanism and thus complete alternating channel
transport [84,85]. The substrate transport of GLUT5 may not only be
controlled by the ″rocker switch″ motion of the N- and C-terminal
six TM bundles, as its two six TM bundles display asymmetric
binding to the substrate. By analyzing the crystal structure of rat and
bovine GLUT5, Norimichi Nomura and his team [75] further
proposed that TM7 and TM10 in the C-terminal six-TM bundle
perform gating movements locally through interactions and couple
with substrate binding and release based on experiments analyzing
the crystal structures of GLUT5 protein in rats and cattle (Figure 5).
In addition, there is a highly conserved salt bridge motif, RXGRR,
between the cytoplasmic loops of TM2 and TM3, which is repeated
between the cytoplasmic loops of TM8 and TM9, and these salt
bridge sequences are associated with conformational changes that
occur during substrate transport [86].

Although the Km value of GLUT5 for D-fructose varies in different
species, D-fructose is always the optimal substrate. Although
Kishida et al. [87] demonstrated that GLUT5 in the small intestine
transports D-allulose, an epimer of D-fructose, its affinity for D-
allulose is much lower than that of D-fructose. Therefore, how does
GLUT5 specifically identify fructose? In aqueous solution, both
glucose and fructose exist in the conformation of pyranose or
furanose, with 99% of glucose being pyranose and 31.5% of
fructose being furanose [88]. In the protein crystal structure bound
to glucose, glucopyranose is the predominant form; in the protein
crystal structure bound to fructose, furanose is the predominant
form (Protein Data Bank, https://www.rcsb.org/). GLUT5 identifies
furanose and pyranose conformations of fructose, binding involving

Figure 5. Mechanism diagram of the binding and transport of fructose by GLUT5 A complete cycle involves the fructose binding to the fructose
removal process. The rigid body motion of the two six-TM bundles constitutes the “rocker switch” motion control, and the interaction of TM7 and
TM10 locally forms the gating mechanism. Over the course of the cycle, TM10 has undergone structural changes [75,84,85].
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interactions with fructose at positions C1, C2, C3 and C4 [89].
Furthermore, amino acid residues not only play a role in substrate
binding activity but are also essential structural bases for substrate
recognition by GLUT5. For example, GLUT1, 3, and 4, which
transport only glucose, have QLS sequences in TM7, a region that is
capable of interacting with the C1 site of D-glucose and is closely
involved in substrate recognition by the substrate binding site on
the outer surface; TM7, which transports glucose and fructose,
contains the HVA sequence, while the corresponding region of
GLUT5, which specifically transports fructose, is the MGG sequence
[90].

GLUT5 Inhibitor
In-depth analysis of the GLUT5 crystal structure and substrate
recognition-transport mechanism is instructive for designing
specific inhibitors. Inhibitors of GLUTs interfere with the entire
transport process mainly by hindering the transitions of different
conformations of transporters during the transport cycle or
inhibiting the binding of substrates to transporters [91]. Although
there is high sequence similarity among GLUT members at the gene
and protein molecular levels, some known GLUT protein inhibitors
(such as cytochalasin B, phloretin, or forskolin) do not inhibit
GLUT5-specific fructose transport. Earlier studies have identified
several natural inhibitors of GLUT5, such as green tea catechins [92]
and rubusosides from Chinese sweet tea extraction [93]. However,
these natural inhibitors are nonspecific and have low binding
inhibitory efficacy (IC50 is ~5 mM). Currently, computer high-
throughput ligand screening methods have been applied to develop
novel GLUT5 inhibitors with therapeutic potential [94]. For
example, N-[4-(methylsulfonyl)-2-nitrophenyl]-1,3-benzodioxol-5-
amine (MSNBA), which is specific to GLUT5 and does not affect the
fructose transport capacity of human GLUT2 or the glucose
transport capacity of human GLUT1-4, is currently known as the
most effective GLUT5-specific inhibitor [95]. In-depth studies have
shown that the MSNBA binding site is close to the active center of
the GLUT5 protein and is responsible for substrate recognition by
residue H387, as well as residues such as Ser143, Thr171, Gln288,
Gln289, Asn294 and Tyr297 involved in the binding process of
MSNBA-GLUT5 [95]. Recently, researchers have found that some
phenolic-rich dietary plant extracts can reduce the transcript levels
of the gene encoding ChREBP, thereby inhibiting GLUT5 protein
expression and its mediated fructose transport [96]. This may
contribute to our better understanding of the regulation of GLUT5
expression by plant compounds present in the human diet. The
development of novel GLUT5 inhibitors is significant for the
treatment strategy of diseases related to fructose metabolism. It is
not the focus of this article, and we will not discuss it in depth.
Readers can refer to the review published by Reckzeh et al. [10].

Relationship between GLUT5 and Intestinal Diseases
The role of GLUT5 in intestinal system diseases has raised
widespread concern as a result of its decisive role in intestinal
fructose absorption. The abnormal expression of GLUT5 may be an
important factor in the pathogenesis of certain digestive system
diseases.

Gut microbiota dysbiosis and intestinal barrier
impairment
The microbiota that inhabit the gut is the largest and most complex

microbial community in the human body, consisting of bacteria,
fungi, viruses, archaea and protozoa. The interaction between the
gut microbiota and the human physiological internal environment is
a principal element influencing host development, metabolism, the
intestinal barrier and innate immunity [97,98]. There is increasing
evidence that metabolic disorders are associated with the normal
gut microbiota and intestinal barrier impairment [99–101]. The
metabolic capacity, community size and community composition of
the gut microbiota may change with the dietary fructose level of the
host, thus resulting in adaptation [102]. However, sustained and
high fructose stimulation can trigger gut microbiota dysbiosis,
which can lead to the development of disease. For instance, Li et al.
[103] identified that feeding with a high-fructose diet for 8 weeks
induced intestinal microbiota imbalance, short-chain fatty acid
reduction, and intestinal epithelial barrier damage, and the more
severe consequences were the hippocampal neuroinflammatory
response, reactive gliosis, and neuronal loss in C57BL/6 N mice. It
was reported that feeding with 10% fructose for 7 days exacerbated
the manifestations of colitis induced by 2.5% dextran sulfate
sodium (DSS) in mice, such as diarrhea, ulcers, rectal bleeding and
colon shortening [104]. The analysis showed significant changes in
β-diversity (P<0.001) but not in α-diversity (P=0.06) of the
intestinal microbial community of mice. Higher levels of Clostri-
dium cluster IV and Enterococcus sp. were found in the feces of
mice with intestine-specific GLUT2 deletion (GLUT2ΔIEC) and
overexpression of GLUT5 [105]. Thus, changes in dietary fructose
level and intestinal GLUT5 expression can contribute to the
development of disease by altering the normal intestinal microbiota
status and intestinal barrier function.

Inflammatory bowel disease
Inflammatory bowel diseases (IBDs) are a group of chronic
intestinal diseases, mainly ulcerative colitis (UC) and Crohn′s
disease (CD), which have become global diseases in the 21st
century [106]. A clinical study showed that GLUT5 was expressed in
the brush border membrane of large intestinal mucosal epithelial
cells in IBD patients (UC, n=18; CD, n=10) and may be involved in
the formation of abnormal lymphatic vessels in the lamina propria,
since GLUT5 labeling was also observed in abnormal lymphatic
vessel clusters, which is a new characteristic histological finding in
the pathogenesis of IBDs [107]. The team continued to examine the
expressions of leptin and leptin receptor in the large intestine
mucosa of patients with IBDs in the same biopsies and found that
leptin and leptin receptor immunolabelling localization was shown
in the subepithelial structure of the lamina propria of the large
intestine, and GLUT5 immunoreactivity was identified in specific
lamina regions expressing leptin and leptin receptors [108]. This
suggests a possible link between fructose and the leptin system and
promotes the formation and growth of blood vessels and lymphatic
vessels in the lamina propria of the large intestine in IBD patients
through GLUT5. Angiogenesis and lymphangiogenesis are hallmark
features of chronic intestinal inflammation, and the dilation of these
vascular groups may play a pathogenic role in IBDs [109]. Changes
in dietary fructose and GLUT5 may play important roles.

High fructose in modern diets is a key factor in the rising
incidence and exacerbating the progression of IBDs. One of the
reasons is that high fructose diet feeding can reduce the thickness of
colonic mucus and alter the composition and metabolism of the gut
microbiota [110]. In a recent study, SLC2A5+/+ and SLC2A5–/– mice
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fed with a 15 Kcal% fructose diet were found to exhibit more severe
DSS-induced experimental colitis [111]. This effect is associated
with increased level of free fructose in the colon and changes in the
fecal microbiota in SLC2A5–/– mice, and broad-spectrum antibiotics
can prevent the worsening of colitis in SLC2A5–/– mice [111]. This is
consistent with the conclusion that changes in GLUT5 expression
lead to changes in the gut microbiota, as mentioned earlier. In
conclusion, targeting abnormal GLUT5 expression in the large
intestine may be an effective means of alleviating or treating IBDs in
the future.

Colorectal cancer
Colorectal cancer (CRC) is one of the major causes of death among
cancer patients worldwide [112]. CRC cells exhibit hyperactive
glycolysis, and the consumption of massive glucose leads to glucose
deficiency in the tumor microenvironment (TME) [113], which
means that CRC cells may have alternative energy sources. In fact,
an earlier study showed that GLUT5 expression was detected in
colorectal tissue samples from both healthy individuals and CRC
patients [114]. Recently, GLUT5 mRNA expression was detected in
96.7% of cancer tissue samples from 30 patients at different stages
of CRC, with a significant positive correlation between GLUT5
expression level and cancer grade. The GLUT5 mRNA expression
level was almost 2.5-folds higher in the colonic mucosa of CRC
patients than in the colonic mucosa of non-CRC controls (P<0.001)
[115]. Moreover, treatment with the GLUT5-specific inhibitor
MSNBA for 24 h significantly decreased the viability of the human
CRC cell line HT-29 (51% reduction at 10 ìM and 55% reduction at 1
ìM) but had a minimal effect on CCD 841 CoN in the human normal
colonic epithelial cell line (8% reduction at 10 ìM and 2% reduction
at 1 ìM) [115]. In addition, it was reported that CRC cells highly
expressing GLUT5 exhibited significant fructose-induced prolifera-
tion in a glucose-deficient but fructose-enriched culture environ-
ment [116]. However, the addition of fructose did not affect the
proliferation rate of CRC cells when the culture environment was
enriched with glucose. These results suggest that fructose is an
important alternative energy source to promote the proliferation of
CRC cells with high GLUT5 expression when glucose level in the
TME is reduced. This may explain why CRC cells are able to be
induced by fructose to highly express GLUT5 under hypoxic
conditions, which in turn improves survival [117].

Although little is currently known about the role of GLUT5 in CRC
cell metastasis and invasion, some encouraging findings have been
published. Lin and his team [118] reported that GLUT5 mRNA and
protein showed high expressions in human CRC tumor tissues
compared to adjacent normal tissues, and the protein was expressed
both on the cell membrane and in the cytoplasm. Further assays
demonstrated that SLC2A5 overexpression promotes CRC cell
invasion and migration in vivo and in vitro, while knockdown of
SLC2A5 showed opposite results. These results stimulated the
team’s interest in further exploring whether high expression of
GLUT5 is associated with the epithelial-mesenchymal transition
(EMT) process in CRC cells, as EMT has long been shown to be
associated with the capacity of malignant cells to metastasize and
invade [119]. As expected, the morphology of CRC cells over-
expressing GLUT5 changed from an epithelial-like form to a spindle-
shaped or elongated mesenchymal form, and the expressions of the
EMT-related markers N-cadherin and vimentin were significantly
upregulated [119]. This suggests that GLUT5 can promote CRC cell

metastasis and invasion by inducing EMT.
One of the main reasons why cancer is difficult to treat is that

malignant cells become resistant to chemotherapy drugs, which
makes it impossible for all types of chemotherapy drugs to destroy
all malignant cells. A concurrent study by Shen et al. [116] also
discovered that SLC2A5 gene knockdown can significantly reduce
the resistance of CRC cells to the chemotherapeutic drug oxaliplatin.
A recent study came to a similar conclusion that decreased
expression of the SLC2A5 gene caused CRC cells to be sensitive to
cisplatin or oxaliplatin [120]. Furthermore, the use of the fructose
analogue 2,5-anhydro-D-mannitol (2,5-AM), which hinders GLUT5
transport fructose, greatly improves the elimination of oxaliplatin to
malignant cells. In another work, researchers observed that GLUT5
expression was enhanced at both the mRNA and protein levels in
CRC cells stably resistant to oxaliplatin and 5-fluorouracil [121].
Following knockdown of SLC2A5 in drug-resistant CRC cells, cancer
cells exhibited significantly reduced expression of enzymes related
to glycolysis and lipogenesis, resulting in reductions in lactate and
fatty acid levels and NADP/NADPH ratios. Furthermore, targeted
inhibition of GLUT5 also prevented the migration and invasion of
chemoresistant CRC cells [121].

These studies demonstrate the important role of GLUT5 in CRC
survival metabolism, metastasis, invasion and drug resistance.
Therefore, targeting GLUT5 synergistic chemotherapy drug treat-
ment may be a potential strategy to inhibit CRC growth and
metastasis in the future.

Fructose malabsorption
Fructose malabsorption (FM) is a common digestive disorder that is
common in infants and patients with gastrointestinal diseases and is
associated with impaired absorption of fructose from the small
intestine [122,123]. Clinically, patients with FM will exhibit typical
gastrointestinal symptoms with irritable bowel syndrome (IBS),
such as diarrhea, abdominal distention, and abdominal pain [124].
Indeed, approximately one-third of IBS patients are diagnosed with
FM manifestations, whereas restricted fructose intake is able to
alleviate their clinical symptoms [125–127]. Abnormalities in the
major fructose transporters in the intestines are considered to be
responsible for the development of FM [61]. In a previous paper, we
described that ChREBP, Rab11a, and GLUT5 deletions cause
intestinal FM in mice, which in turn leads to malabsorption
syndrome manifestations [60–64], and we will not repeat them
here. In particular, clinical samples showed that duodenal GLUT5
mRNA and protein expressions did not differ significantly between
adult FM patients (n=11) and healthy people (n=15) [128],
suggesting that adult FM may not be significantly related to
intestinal GLUT5 expression. A recent study published by Staubach
et al. [129] also supports this conjecture. In contrast, infants with
high fructose intake are more likely to develop FM, which may be
due to low intestinal GLUT5 expression and activity rather than
SLC2A5 gene mutation [130].

The GLUT5-related intestinal diseases described in this paper are
summarized in Table 2.

Upregulated GLUT5 Promotes the Progression of
Multiple Cancers
The expression of GLUT12, a nonspecific glucose and fructose
transporter belonging to class III GLUTs, has been suggested as a
possible therapeutic target for early and advanced breast cancer
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[131]. In addition to CRC, GLUT5 has been found to be closely
associated with other malignancies in recent years. For example, the
expression of GLUT5 was significantly higher in glioma cells than in
normal glial cells and was significantly correlated with the
malignancy of glioma and the low survival rate of glioma patients
(P<0.01). GLUT5 expression downregulation could significantly
inhibit tumor proliferation in vivo [132]. Furthermore, the
upregulation of GLUT5 expression in ovarian cancer tissues was
significantly associated with tumor malignancy and poor survival in
ovarian cancer patients, and silencing of GLUT5 in ovarian cancer
cells significantly inhibited tumor cell proliferation and migration
[133]. Weng and her team [134] found that the expression of the
SLC2A5 gene is upregulated in lung adenocarcinoma (LUAD)
patients and is highly associated with poor prognosis in lung
adenocarcinoma patients. Overexpression of SLC2A5 enhances
LUAD cell proliferation, migration, invasion, and tumorigenicity in
fructose-containing culture medium, and cancer cells are more
sensitive to paclitaxel treatment after inhibition of GLUT5 with 2,5-
AM. Chen et al. [135] further demonstrated the importance of
GLUT5-mediated fructose utilization in vivo in regulating LUAD
growth. In addition, the SLC2A5 gene and its encoding GLUT5 are
upregulated in malignant tumors such as prostate cancer, breast
cancer, acute myeloid leukemia and clear cell renal cell carcinoma
and promote tumor progression [136–139].

What exactly is the role of GLUT5 in cancer progression? Normal
cells tend to acquire new metabolic pathways after malignant
transformation into cancer cells. In contrast, cancer cells are more
prone to utilize fructose as a source of metabolic raw material.
Numerous previous studies have confirmed the preferred utilization
of fructose in multiple cancers of multiple systemic origins and have
been associated with upregulation of GLUT5 expression [140]. In
human nonproliferating cells, fructose is mainly metabolized by
KHK. However, cells such as cancer cells which have strong
proliferative capacity, usually transform KHK-c with a high affinity
for fructose into KHK-a with a low affinity [141]. Moreover, the
expression level of HK in these proliferating cells is significantly
higher than that of KHK-a, which may precisely meet the needs of
new metabolic pathways. In fact, cancer cells only need to stably
overexpress GLUT5 protein to promote their own proliferation by
metabolizing fructose, but unlike traditional understanding, this
phenomenon may have little to do with KHK, which is mainly
responsible for metabolizing fructose [142]. Suwannakul and her
colleagues [143] provided strong evidence for the idea that GLUT5
promotes fructose metabolism in cancer cells. They found that cell
proliferation and ATP production were significantly increased in
cholangiocarcinoma (CCA) cells that highly expressed GLUT5,
particularly in medium supplemented with fructose. Conversely,
silencing of GLUT5 caused decreased CCA cell proliferation and

ATP production and attenuated cell migration and invasion [143].
In addition to metabolic pathways, GLUT5 is also associated with

the cancer-promoting inflammatory environment, as a positive
correlation between GLUT5 expression levels and the inflammatory
factor interleukin-6 (IL-6) has been observed during the progression
of multiple cancers. Knockdown of GLUT5 has been reported to
eliminate fructose uptake and utilization by oral squamous cell
carcinoma and prostate cancer cells induced by interleukin-6 and
inhibit cancer cell proliferation [144]. This suggests that there are
also a series of cascade responses between fructose metabolism and
the inflammatory microenvironment in cancer cells, and GLUT5 is
one of the key regulators. Notably, IL-6-activated inflammatory
signals are also associated with the pathogenesis of IBDs [145].
Perhaps GLUT5 is an important ″bridge″ mediating extracellular-
intracellular signal transition during inflammation-induced cell
carcinogenesis.

In conclusion, the fructose-GLUT5 axis is indeed an important
driver of a variety of biological behaviors of cancer cells (Figure 6),
just as excessive fructose uptake promotes metastasis of CRC cells
to the liver or enhances nucleotide synthesis in pancreatic cancer
cells [146,147]. Considering the special status of GLUT5 as a
fructose-specific transporter and its close relationship with multiple
malignancies (Table 3), researchers have attempted to deliver
bioactive agents into GLUT5+ malignant cells by using this
membrane protein for the purpose of cancer treatment.

Development of GLUT5-targeted Diagnostic Probes
The recognition that malignant cells have higher energy require-
ments for a long time [148] has led to the development of metabolic-
based cancer detection methods. The differences in GLUT expres-
sion between different cells as well as the large amount of sugar
consumption in cancer cells make GLUTs important therapeutic
targets. Kinetic analysis of glucose and fructose uptake provides the
structural basis for the development of fluorinated hexose
derivatives for positron emission tomography (PET) imaging of
malignant cells [149]. 18F-labelled 2-fluoro-2-deoxy-D-glucose (2-
FDG) is the earliest and most commonly used radiotracer for PET
[150]. 2-FDG is not completely metabolized after uptake by
malignant cells, which gives rise to its continuous accumulation
in malignant cells, and is widely used in clinical practice to observe
glucose uptake, tumorigenesis and invasion [151,152]. However,
since 2-FDG mainly targets GLUT1, which is ubiquitous in tissue
cells, abundant false positive results show the insufficient ability of
tracers targeting the glucose transporter GLUT1 to distinguish
malignant cells [153]. In particular, in breast cancer, there is no
significant difference in glucose uptake between malignant and
normal cells, which limits the methods of detecting targeted glucose
transport [154,155]. Since GLUT5 expression upregulation has a

Table 2. GLUT5-associated intestinal diseases and the role of GLUT5 in these diseases

Disease Role of GLUT5 Reference

Gut microbiota dysbiosis/gut
barrier dysfunction

Changes in dietary fructose levels and intestinal GLUT5 expression contribute to disease
development by altering normal gut microbiota and gut barrier function.

[97–105]

IBDs (including UC and CD) GLUT5 promotes the formation and growth of blood vessels and lymphatic vessels in the
lamina propria of the large intestine in patients with IBDs.

[106–111]

CRC High expression of GLUT5 promotes CRC cells proliferation, metastasis, invasion and enhances
drug resistance of cancer cells.

[112–121]

FM Fructose malabsorption due to lack of ChREBP or rab11a, or low expression of GLUT5 itself. [61,122–130]

1528

Song et al. Acta Biochim Biophys Sin 2023



significant promoting effect on cancer, people have begun to pay
attention to the development of targeted probes for fructose
transport.

Fructose phosphorylation can occur at position C1 (KHK) or C6

(HK), so targeted probes designed for fructose transport mainly
focus on these two sites. The first targeted GLUT5 tracer tested in
tumors was the fluorinated fructose derivative 1-[18F]fluoro-1-
deoxy-D-fructose (1-FDF), designed by Haradahira and colleagues
[156], which showed rapid washout of 1-FDF by the kidney and liver
in vivo. Triple-negative breast cancer cells and tissues express higher
levels of GLUT5 mRNA and protein than estrogen receptor-positive
breast cancer cells and tissues, and the growth and progression of
breast cancer are highly dependent on fructose [157]. Thus, the 1-
FDF analogue 6-[18F]fluoro-6-deoxy-D-fructose (6-FDF) was tested
for PET imaging in murine EMT-6 and human MCF-7 breast cancer
cells expressing GLUT5 [158]. 6-FDF has been shown to be the
substrate of human KHK and is rapidly metabolized in vivo. In
addition, PET imaging tests of 3-[18F]fluoro-3-deoxy-D-fructose (3-
FDF) in EMT-6 and MCF-7 cells demonstrated that GLUT5 can
transport both furanose and pyranose forms of fructose [159].

Fluorophore labelling with 7-nitro-1,2,3-benzadiazole (NBD) at
the fructose C1 position (1-NBDF) was able to target breast cancer
cells GLUT5 well. The absorption of 1-NBDF probes was studied in
three breast cancer cell lines: MCF 7, MDA-MB-435, and MDA-MB-
231. 1-NBDF showed very good absorption in all cell lines tested,
with uptake levels comparable to the corresponding glucose
analogue 2-NBDG. Significant uptake of 1-NBDF was not observed
in cells lacking GLUT5, while GLUT5-specific accumulation was

detected in cells expressing GLUT5 [160].
2,5-AM aryl conjugates with high affinity and specificity for

GLUT5 have emerged as a new generation of radiotracer probes.
2,5-AM is a symmetric molecule that exists only as a furanose ring
structure and cannot be opened to form isomers [161]. The 1-
amino-2,5-anhydro-d-mannitol-NBD conjugate (NBDM) synthe-
sized on the basis of the 2,5-AM ring combines well with GLUT5
in Chinese hamster ovary (CHO) cells and can be used as a
fluorescent probe targeting GLUT5 [162,163]. However, it should be
noted that the accumulation of NBDM probes in cells is limited,
resulting in inadequate fluorescence reporting. Recently, a novel
fluorescent glycoconjugate was reported as a GLUT5 probe [164].
This fluorescent glycoconjugate is constructed with 2,5-AM as the
fixed fructofuranose ring and various coumarins (Cou) as the
fluorescent fraction (Man-Cou probe), which can target GLUT5 in
malignant cells for viable cell metabolic analysis, and the positive
response does not appear in normal cells. Compared to previously
developed probes, the improved Man-Cou probe can process
samples in only 10 minutes, which can be used for rapid on-site
high-throughput diagnosis [165].

Although many glycoconjugates have been synthesized for
cancer research, diagnosis and treatment, GLUT5-mediated uptake
is often limited by many factors that produce uncontrollable losses.
It must be emphasized that the molecular structural size and
hydrophilicity of the conjugate are important factors affecting the
efficiency of GLUT5-mediated drug delivery, and these two factors
should be prioritized in the synthetic design of novel bioactive or
imaging agents [166].

Figure 6. The GLUT5 protein promotes a varity of biological behaviors of cancer cells [116–121,132–144]
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New Directions and Methods for GLUT5 Research in
the Future
The development of new biochemical research tools is undoubtedly
an effective way to accelerate the discovery of the structure and
function of GLUT5 and its contribution to the pathogenesis of
disease. As shown in Figure 2, GLUT5 proteins are also modified by
glycosylation. Glycosylation is a kind of posttranslational modifica-
tion (PTM) that is common in eukaryotic cells and involves the
addition of glycan molecules to amino acid residues of polypeptide
chains. A large number of studies have confirmed that glycosylation
modification plays an important role in the evolution of cancer and
other diseases [167,168], but unfortunately, the role played by
glycosylation on the GLUT5 protein has not been adequately
investigated.

Labeling target proteins with gene-encoded fluorescent proteins
(e.g., green fluorescent protein) is a common strategy for studying
protein function in living cells. However, certain types of bioactive
molecules, such as glycans, and some biological reaction processes,
such as PTM, cannot be observed by fluorescent protein labeling
[169]. The biological activities of organic molecules linked by
carbon-carbon bonds (e.g., sugars) within living cells are an
important way for us to understand changes in cellular physiology
or pathology, but it is difficult to observe these biological activities
in the native environment. The ability of selective chemical
reactions to orthogonalize to multiple functions in biological
systems is an important tool in the field of chemical biology. The
most representative example is the use of azides. Azides are unique
biocoupling chemical agents, and their Staudinger ligation with
phosphines and the [3+2] cycloaddition reaction with alkynes
(copper(I)-catalyzed azide-alkyne cycloaddition, CuAAC) (called
“click chemistry”) catalyzed by Cu+ are widely used in chemical
biology research [170,171]. Staudinger ligation is biocompatible
and can be performed in living animals, but there are disadvantages
in that phosphines are susceptible to air oxidation and difficult to
synthesize; click chemistry does not require phosphines, but the
catalyst Cu+ that must be present is significantly toxic to both

bacteria and mammalian cells, which limits the application of click
chemistry in living cells [172].

To track the activity of glycans in living cells, Bertozzi and his
colleagues [173] improved click chemistry and pioneered the
development of ring strain-activated [3+2] alkyne-azide cycloaddi-
tion reactions. Specifically, the reaction of cyclooctyne, which has
high tension and electron-absorbing groups, with azide greatly
increases the reaction rate without any catalyst. This modified click
chemistry overcomes the cytotoxicity of Cu+ in the CuAAC reaction
and can be carried out in living cells and even in living animals, thus
introducing the concept of “bioorthogonal chemistry”, i.e., ″click
chemistry in living organisms″ [174–176]. Performing bioorthogo-
nal chemistry involves two sequential steps (Figure 7A): (1)
incorporation of the bioorthogonal reporter into the target
biomolecule and (2) bioorthogonal reaction between the bioortho-
gonal reporters and their homologues attached to external chemical
probes. A significant advantage of bioorthogonal chemistry is its
applicability to all biomolecules, including lipids, proteins, glycans,
and nucleic acids [177]. Moreover, most of the reagents involved in
bioorthogonal chemistry can be degraded in vivo, which further
supports the safety of performing bioorthogonal chemistry in vivo
[178]. For their outstanding contributions to the field of bioortho-
gonal chemistry, Bertozzi shares the 2022 Nobel Prize in Chemistry
with two other pioneers in the field of click chemistry-Sharpless and
Meldal [179].

The emergence of bioorthogonal chemistry based on click
chemistry has greatly promoted the development of the fields of
biochemistry and pharmacy. Currently, a variety of newly devel-
oped bioorthogonal chemistries have been applied to identify and
characterize proteoglycan modifications on the cell surface (Figure
7B), and this class of techniques is emerging in cancer diagnosis and
targeted therapy [180–182]. More importantly, the affinity between
nanoparticles modified by click chemistry compounds and azide-
labelled cancer cells is significantly enhanced, which greatly
improves the drug delivery capability of nanoparticles, and the
combination of bioorthogonal chemistry-nanoparticle technology

Table 3. Malignant tumors associated with high GLUT5 expression mentioned in this review

Cancer Expression of GLUT5 Influence Reference

Colorectal cancer Up-regulated GLUT5 promotes cancer cell proliferation, migration and invasion,
and enhances cancer cell drug resistance.

[114–121]

Glioma Up-regulated GLUT5 is associated with tumor malignancy and poor patient survival. [132]

Ovarian cancer Up-regulated GLUT5 is associated with tumor malignancy and poor patient survival. [133]

Lung adenocarcinoma Up-regulated GLUT5 promotes cancer cell proliferation, migration, invasion and
tumorigenicity, enhances cancer cell drug resistance and is associated
with poor patient prognosis.

[134,135]

Breast cancer Up-regulated GLUT5 promotes tumor progression. [137]

Acute myeloid leukemia Up-regulated GLUT5 promotes tumor progression. [138]

Clear cell renal cell carcinoma Up-regulated GLUT5 promotes tumor progression. [139]

Cholangiocarcinoma Up-regulated Cancer cells with high GLUT5 expression showed increased cell
proliferation and ATP synthesis.

[143]

Oral squamous cell carcinoma Up-regulated Up-regulated GLUT5 mediates increased uptake and utilization of
fructose by cancer cells induced by IL-6.

[144]

Prostate cancer Up-regulated Up-regulated GLUT5 mediates increased uptake and utilization of
fructose by cancer cells induced by IL-6.

[136,144]

Pancreatic cancer Up-regulated GLUT5-mediated fructose uptake and utilization promote nucleotide
synthesis in cancer cells.

[147]
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shows great advantages and potential in the field of nanomedicine
[183–184]. Zhou et al. [185] preliminarily verified the feasibility of
delivering compounds chemically synthesized by click into cancer
cells via GLUT5 in MCF-7 cells. In addition, the fluorinated Man-
Cou analogue (ManCou-F) synthesized by click chemistry mod-
ification has been proven to be a good PET imaging probe, which
exhibited GLUT5 preference properties and could clearly show a
high level of GLUT5 expression in MCF-7 cells without cytotoxicity
[186].

Perhaps, in the future, the application of bioorthogonal chemistry
can not only analyze the structure and function of GLUT5 but also
target GLUT5 on the surface of cancer cells or deliver specific drug
molecules by combining with nanoparticle technology (Figure 8).

Conclusion and Perspectives
Metabolic disorders of energy substances in the body are one of the
causes of many human diseases. Today, cancer has become one of
the leading causes of human death. Although the mechanism of
cancer development has been studied in the past hundred years, the
changes in metabolic pathways and regulatory mechanisms in
cancer cells remain to be elucidated in depth. Metabolic dysregula-
tion of cells is considered to be one of the hallmarks of
carcinogenesis and often drives or exacerbates cancer progression,
as altered metabolic status in cancer cells is often attributed to
dysfunction of certain oncogenes or cancer suppressor genes [187].
As Otto Warburg proposed 100 years ago, tumor cells prefer to use
glucose for glycolysis to produce lactate rather than undergo the
TCA cycle, even in aerobic conditions [188]. However, since
glycolysis produces significantly less ATP per molecule of glucose
than the TCA cycle, tumor cells must take in more glucose to meet
their own needs [189]. Rapid growth and proliferation force cancer

cells to face tremendous nutritional stress, which can be tempora-
rily relieved by massive uptake of glucose from the external
environment or the breakdown of lipids stored in intracellular lipid
droplets [190]. However, after a large amount of glucose and lipid
consumption, cancer cells have to seek new sources of energy to
meet their enormous demands, and at this point, fructose acts well
as an alternative energy and carbon source. This implies that
GLUTs, which transport glucose and fructose, play an important
role in the metabolic changes of tumor cells (Figure 9). In addition,
GLUTs, which are widely distributed on the cell surface, are often
the “first line” stimulated by external oncogenic stimuli. Numerous
previous studies have demonstrated that almost all GLUTs,
including GLUT5, are abnormally expressed in different types of
cancer [191]. Therefore, targeted inhibition of GLUT expression
provides a potential new strategy for the treatment of cancer.

Fructose can induce the upregulation of GLUT5 expression in
CRC cells cultured under hypoxia, thereby enhancing the capacity
of malignant cells to adapt to hypoxia and improving survival [118].
This suggests that fructose-GLUT5 may play a key role in meeting
the minimum environmental requirements for malignant cell
survival. GLUT5 plays an important role not only in the digestive
system but also in other systemic diseases [192]. For example,
downregulating GLUT5 expression in the intestine of diabetic model
rats can significantly enhance the efficacy of hypoglycemic drugs
[193]. Therefore, regulating GLUT5 expression or targeting GLUT5
to regulate cellular metabolism is a very promising potential target
for the treatment of diseases such as cancer. For this, several
questions need to be further addressed in future studies related to
GLUT5: (1) What is the role of GLUT5 in the formation of the niche
before liver metastasis from intestinal tumors? (2) Is GLUT5 related
to tumor metastasis organ tropism? (3) What are the functions of

Figure 7. Bioorthogonal chemistry (A) Schematic representation of bioorthogonal chemistry approach for labeling of a targeted biomolecule
with a small-molecule probe [176,177]. (B) Schematic illustration of fluorescence imaging of sialoglycans in living animals by bioorthogonal
chemistry [181,182].
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GLUT5 that are essential for glycosylation modifications on GLUT5
protein? (4) Can the gut microbiota actively affect the expression
level of GLUT5 in intestinal cells? (5) Can changes in tissue GLUT5

expression be a clinical diagnostic criterion for certain diseases? (6)
What are the sites of the amino acid residues that can determine the
fructose-sensing ability of GLUT5? (7) In addition to X-ray

Figure 8. Targeting GLUT5 on the surface of cancer cells by nanoparticles carrying specific drug molecules may be an effective strategy for
treating certain cancers in the future [183,184]

Figure 9. High levels of GLUTs promote cancer cell metabolism On the left of the illustration, cells expressing normal levels of GLUTs are mainly
used for TCA cycle under aerobic conditions. On the right side of the illustration, cancer cells that express high levels of GLUTs have high uptake of
extracellular monosaccharides, and the products of the cancer cell glycolytic pathway are primarily used for lactate production in both aerobic and
hypoxia conditions (Warburg effect) [188,189,191].
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diffraction, cryo-electron microscopy and other techniques, what
are the new techniques that can be developed to further determine
the multiple structural states of GLUT5 during one transport cycle?

In fact, in addition to fructose, GLUT5 can also transport L-
sorbose, the C-3 epimer of D-fructose, into cells. This is a rare sugar
that induces apoptosis after entering cancer cells through GLUT5
[194]. This suggests that the contribution of GLUT5 to normal or
cancer cells may be more than related to fructose. Currently,
enhanced intestinal GLUT5 expression has been found in obese,
overweight and individuals with type 2 diabetes, which provides
strong clinical evidence for targeting GLUT5 to treat metabolic
diseases [195–197]. Therefore, it is necessary to carry out more
adequate and further structural and mechanistic studies of GLUT5
and design rational GLUT5 drug delivery systems. In this way, not
only metabolic diseases but also certain metabolism-related/
induced cancers can be treated more specifically, and the
development of more targeted GLUT5 therapeutic drugs with strong
targeting and significant effects is also worth looking forward to.
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