Skip to main content
. 2023 Aug 28;12(9):2379–2392. doi: 10.21037/tcr-23-201

Table 2. Summary of characteristics of key studies.

References Application Number of patients Machine learning algorithm Feature type Optimal results
Diagnosis
   Wang 2020 (19) T staging 244 RF Radiomics AUC, 0.899
   Sun 2020 (20) T staging 572 SVM, ANN Radiomics, DL AUC, 0.900
   Ma 2017 (21) Differentiating Borrmann type IV GC from PGL 70 LASSO Radiomics AUC, 0.903
   Feng 2022 (22) Differentiating Borrmann type IV GC from PGL 438 Transfer learning DL AUC, 0.990
   Wang 2021 (23) Differentiating gastric neuroendocrine carcinomas from adenocarcinomas 126 LASSO Radiomics AUC, 0.821
   Chen 2022 (24) Differential diffuse-type from signet ring cell GC 693 SVM Radiomics AUC, 0.918
Metastasis prediction
   Gao 2020 (15) Lymph node metastasis 768 LASSO Radiomics AUC, 0.920
   Chen 2020 (18) Lymphovascular invasion 160 LASSO Radiomics AUC, 0.856
   Dong 2020 (25) Lymph node metastasis 730 SVM, ANN, RF Radiomics, DL AUC, 0.822
   Wang 2020 (26) Lymph node metastasis 247 RF Radiomics AUC, 0.886
   Li 2020 (27) Lymph node metastasis 204 SVM, ANN Radiomics AUC, 0.840
   Jin 2021 (28) Lymph node metastasis 1,699 CNN DL AUC, 0.876
   Fan 2022 (29) Lymphovascular invasion 101 Adaptive boosting, linear discriminant analysis, logistic regression Radiomics AUC, 0.944
   Liu 2020 (30) Peritoneal metastasis 233 SVM Radiomics AUC, 0.762
   Dong 2019 (31) Peritoneal metastasis 554 SVM, ANN, LASSO Radiomics AUC, 0.958
   Huang 2020 (32) Peritoneal metastasis 955 LASSO Radiomics AUC, 0.870
   Mirniaharikandehei 2021 (33) Peritoneal metastasis 159 Gradients boosting machine Radiomics AUC, 0.69
   Chen 2021 (34) Peritoneal metastasis 239 RF Radiomics AUC, 0.981
   Liu 2021 (35) Peritoneal metastasis 599 LR Radiomics AUC, 0.873
   Huang 2020 (36) Peritoneal metastasis 544 CNN DL AUC, 0.900
   Jiang 2021 (37) Peritoneal metastasis 1,225 CNN DL AUC, 0.946
Genetic status and molecular subtypes
   Zhao 2021 (38) Epstein-Barr virus status 133 LASSO Radiomics AUC, 0.955
   Zhang 2022 (39) Epstein-Barr virus status 54 Decision tree Radiomics AUC, 0.870
   Wang 2021 (40) Human epidermal growth factor 2 132 RF Radiomics AUC, 0.830
Prognosis prediction
   Li 2019 (41) OS 181 LASSO Radiomics HR, 2.72
   Jiang 2018 (42) OS, DFS 1,591 LASSO Radiomics HR, 3.308 (OS); HR, 1.742 (DFS)
   Jin 2021 (43) OS, DFS 428 LASSO Radiomics AUC, 0.965 (OS); AUC, 0.824 (DFS)
   Shin 2021 (44) RFS 410 LASSO Radiomics AUC, 0.719
   Jiang 2021 (45) OS, DFS 1,615 S-Net DL HR, 0.159 (OS); HR, 0.318 (DFS)
   Zhang 2021 (46) OS 640 Multi-focus and multi-level fusion feature pyramid network DL HR, 9.46
Treatment response prediction
   Jiang 2020 (47) Chemotherapy response 1,778 LASSO Radiomics HR, 0.591
   Li 2020 (48) Chemotherapy response 739 SVM Radiomics HR, 1.526
   Li 2022 (49) Chemotherapy response 855 U-net Radiomics, DL AUC, 0.797
   Xu 2021 (50) Neoadjuvant chemotherapy 292 SVM Radiomics AUC, 0.922
   Liu 2021 (51) Neoadjuvant chemotherapy 69 LASSO Radiomics AUC, 0.934
   Wang 2021 (52) Neoadjuvant chemotherapy 155 LASSO Radiomics AUC, 0.953
   Tan 2020 (53) Chemotherapy response 86 RF Delta-radiomics AUC, 0.828
   Liang 2022 (54) PD-1 inhibitor 87 Logistic regression, SVM Radiomics AUC, 0.865

RF, random forest; AUC, area under the curve; SVM, support vector machine; ANN, artificial neural network; DL, deep learning; GC, gastric cancer; PGL, primary gastric lymphoma; LASSO, least absolute shrinkage and selection operator; CNN, convolutional neural network; LR, logistic regression; HR, hazard ratio; OS, overall survival; DFS, disease-free survival; RFS, recurrence-free survival; PD-1, programmed cell death-1.