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Abstract

The phylum Nucleocytoviricota includes the largest and most complex viruses known. These “giant viruses” have a long evolutionary
history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating
the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired
from the host—referred to here as viral homologs or “virologs”—as a means of promoting viral propagation. The best-known examples
of these are involved in mimicry, in which viral machinery “imitates” immunomodulatory elements in the vertebrate defense system.
But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically
found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular
trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which

complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
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Main text

Large DNA viruses in the phylum Nucleocytoviricota comprise a di-
verse group of pathogens that infect eukaryotic hosts that range
from unicellular protists to vertebrates (Aylward et al. 2021).
This phylum encompasses several families that include metazoan
viruses that are well-studied due to their role in deadly outbreaks
in humans, livestock, and other animals, such as the Poxviridae,
Asfarviridae, and Ascoviridae/Iridoviridae. In addition, this phylum
includes the families Mimiviridae, Phycodnaviridae, and Marseilleviri-
dae that comprise mostly viruses of algae, amoebae, and other pro-
tists. Although the term “giant virus” has historically been used in-
consistently and usually only with reference to those viruses that
possess particularly large genome lengths or capsid sizes, we will
use the term here to broadly refer to all members of the Nucleocy-
toviricota owing to their shared evolutionary history.

Although only 11 families are officially classified within the
Nucleocytoviricota according to the International Committee for
the Taxonomy of Viruses (ICTV), recent cultivation-independent
viral diversity surveys have discovered a vast diversity of giant
viruses in the biosphere that far exceeds those in these estab-
lished groups (Fig. 1). Early approaches using viral marker genes

were the first to show that diverse giant viruses were present in
environmental samples (Chen et al. 1996, Short and Suttle 2002),
and subsequent metagenomic surveys have shown that they are
abundant in habitats ranging from ocean waters, permafrost and
other soil systems, wastewater, and hot springs (Yau et al. 2011,
Schulz et al. 2018, 2020, Backstrom et al. 2019, Moniruzzaman
et al. 2020a, Rigou et al. 2022, Kavagutti et al. 2023, reviewed in
Schulz et al. 2022). The hosts of these uncultivated viruses remain
largely unclear, but co-occurrence analysis and examination of
recent host-virus gene transfer has been used to link several
uncultivated viruses to potential eukaryotic hosts (Schulz et al.
2020, Meng et al. 2021, Bhattacharjee et al. 2023). Indeed, the
known hosts of isolated giant viruses have grown markedly in the
last decade, and it now seems likely that most eukaryotic lineages
are infected by these viruses in nature. Recent phylogenomic
analysis of both cultivated and uncultivated viral genomes has
estimated that at least 32 families exist, and this still likely
represents a lower bound that will increase as more lineages
continue to be discovered through a combination of cultivation-
based efforts and further metagenomic surveys (Aylward
et al. 2021).
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Figure 1. Phylogeny of the Nucleocytovoricota, adapted from Aylward et al. (2021). Collapsed branches depict families or family-level lineages. Families
accepted by the ICTV are in bold italic, and commonly used family names that have not yet been officially accepted are in bold. Notable viruses

mentioned in the text are listed in bold. Aav, Aureococcus anophagefferens virus; ChoanoV1, Choanoflagellate virus; CpV, Chrysochromulina parva virus;
HaV, Heterosigma akashiwo virus; IC, Internode Certainty; PgV, Phaeocystis globosa virus; TetV, Tetraselmis virus.




Members of the Nucleocytoviricota are known for their large
genome sizes, reaching up to 2.7 million base-pairs in the case
of some pandoraviruses (Philippe et al. 2013, Legendre et al. 2019),
and routinely achieving lengths >500 kb in many other lineages
(Aylward et al. 2021). As an increasing number of giant virus
genomes have been sequenced over the last decade, a resonant
theme has been the presence of many “cellular like” genes that
are otherwise rare or absent in other viral lineages. Early exam-
ples that were identified in some of the first poxvirus genomes to
be sequenced include immunomodulatory genes involved in ma-
nipulating host defenses, such as interleukin homologs and cy-
tokines (Hughes 2002, Hughes and Friedman 2005). More recently,
many metagenome-derived giant virus genomes have been shown
to encode homologs of cytoskeletal components such as actin and
myosin, and components of central carbon metabolic pathways,
such as glycolysis and the TCA cycle (Moniruzzaman et al. 2020a,
Ha et al. 2021, Kijima et al. 2021, Da Cunha et al. 2022). Histori-
cally, the term “auxiliary metabolic gene” has been used to refer to
bacteriophage-encoded metabolic genes, whereas immunomodu-
latory genes in poxviruses have often been referred to as “mimics”
due to their similarity to host counterparts. In light of the grow-
ing breadth of cellular-derived genes encoded by viruses, which
encompass a wide range of pathways and often lack known func-
tions during infection, we will hereafter refer to these genes as
simply virologs (viral homologs). This term, used previously in this
context (Sorouri et al. 2022), simply refers to viral genes with clear
sequence homology to cellular counterparts, and does not imply
any specific function or evolutionary history.

Virologs are hardly unique to members of the Nucleocytoviri-
cota. Indeed, a wide range of DNA and RNA viruses encode host-
derived virologs that play key roles in infection. Early studies of
marine bacteriophages that infect cyanobacteria in the ocean re-
vealed that many encode photosynthesis genes in their genomes
(Mann et al. 2003), and the list of virologs collectively encoded
by members of the Caudoviricetes has grown to encompass pro-
cesses involved in nitrogen, phosphorus, sulfur, and central car-
bon metabolism (reviewed in Hurwitz and U'Ren 2016, Warwick-
Dugdale et al. 2019). Some recently described “jumbo bacterio-
phages” have genomes >200 kb in length and encode a particu-
larly impressive complement of predicted metabolic genes (Frid-
man et al. 2017, Michniewski et al. 2021, Weinheimer and Ayl-
ward 2022). In addition, herpesviruses have been known to en-
code host-derived immunomodulatory genes for decades (Schon-
rich et al. 2017), and members of a recently discovered phylum of
herpesvirus relatives, the Mirusviricota, also possess large genomes
that encode numerous virologs (Gaia et al. 2023). Even the small
genomes of RNA viruses can encode several virologs that play
roles in infection (Lasso et al. 2021). Despite the propensity of
viruses from all realms to acquire and co-opt host genes, we will
focus this review on members of the Nucleocytoviricota owing to
their particularly large genome sizes and rich complement of vi-
rologs, as well as the large number of studies that have recently
been published on this group. Moreover, it is likely that different
viral groups employ virologs in a similar manner, and an in-depth
examination of the Nucleocytoviricota will, therefore, provide useful
insights into viral infection strategies more broadly.

Recent work has underscored the richness of virologs found in
glant virus genomes, raising questions regarding their role dur-
ing infection and the extent to which they may be involved in
manipulating host physiology. Indeed, the impressive functional
repertoires encoded in the genomes of giant viruses have led
some to describe these viruses as “quasi-autonomous” from their
hosts (Claverie and Abergel 2010, 2016). A key organizing princi-
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ple for elucidating the physiological shifts that take place dur-
ing infection is the virocell concept (Box 1). The virocell concept
emphasizes the intracellular activities of viruses during infection
over their extracellular phase, and thereby promotes the view
of viruses as dynamic biological agents with their own form of
metabolism (i.e. cellular metabolism during infection). Viral ma-
nipulation of host physiology is hardly limited to giant viruses; in
fact numerous studies have elucidated how viruses of plants and
animals hijack critical host processes to elevate virus production
(Thaker et al. 2019, Walsh and Naghavi 2019). The virocell con-
cept takes on a new dimension in the context of giant viruses,
however, due to the particularly complex strategies for cellular
manipulation that are encoded in the genomes of their genomes.
For example, the manipulation of central carbon metabolism and
cytoskeletal networks during infection have been widely reported
in a diverse array of both RNA and DNA viruses, but giant viruses
stand out in that they encode glycolysis, TCA cycle, actin, and
myosin virologs in their genomes.

One further consideration of virocell metabolism is that hosts
will not necessarily encode homologs of the viral genes deployed
by viruses during infection. Indeed, many virologs are the prod-
uct of ancient acquisitions from cellular lineages, and as viral
host range changes over time, viruses may infect hosts that no
longer encode homologs of these genes. Moreover, even if cellu-
lar homologs are present, it is possible that virologs have evolved
novel functions that are distinct from their cellular counterparts.
These are critical considerations because they raise the possibil-
ity that virocell metabolism can reach beyond the manipulation
of existing cellular machinery and confer new physiological ca-
pabilities onto their infected hosts. One excellent recent exam-
ple is the wide range of giant viruses that have been found to
encode rhodopsins (Needham et al. 2019, Rozenberg et al. 2020,
Hososhima et al. 2022); this virolog may manipulate phototaxis
during infection in a way that facilitates virus propagation.

Box 1. Virocells and the concept of a virus

Several authors have reformulated the concept for a virus by
emphasizing the intracellular phase of the viral life cycle (i.e.
the virus factory, or, more generally, the virocell) over that of ex-
tracellular virions (Claverie 2006, Forterre 2010). Traditionally,
viruses have largely been defined in terms of the biochemical
properties of their virions—inert particles packages with nu-
cleic acid—but viewing viruses as virocells promotes the view
that viruses should instead be defined as infected cells. In this
way, viruses can be viewed as “cellular” organisms with their
own distinct metabolism, in the sense that viral infection dras-
tically alters the cellular metabolic state. The virocell concept,
therefore, takes center stage in our understanding of virologs
and mimicry in viruses, especially in large DNA viruses that de-
ploy broad functional repertoires to transform cellular physi-
ology during infection. Although the perspective that viruses
can be viewed as a kind of infected cellular life form is con-
troversial, the virocell concept has nonetheless proven itself to
be a useful reframing of traditional views, i.e. important for un-
derstanding host-virus dynamics during infection. Recent work
has also extended these concepts to explicitly examine the im-
pact of virologs on host metabolism during infection (Rosen-
wasser et al. 2016). Moreover, some authors have gone farther
and suggested that viruses should instead be defined as pro-
cesses rather than entities (Dupré and Guttinger 2016), a view
which puts even more emphasis on cellular dynamics that take
place during infection.
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Box 2. Diverse mechanisms of mimicry

Although the most obvious cases of viral mimicry are those
in which genes in viral and cellular lineages have clear se-
quence homology, there are many cases of mimicry that in-
volve structural similarities where the shared evolutionary his-
tory between viral and host counterparts cannot be demon-
strated. This may be because sequences have diverged too far
for sequence homology to be detected, or because viruses con-
vergently evolved motifs that resemble cellular structures from
unrelated genetic material. One recent study performed a large-
scale structural comparison between viral and host proteins
and concluded that only 30% of putative viral mimics could be
identified through examination of sequence homology (Lasso et
al. 2021), indicating that the scale of viral mimicry is far larger
than commonly thought. In addition to the direct mimicry of
cellular structures, many viruses also employ alternative strate-
gles to hijack host cellular processes. One example is phospho-
mimicry, in which viruses can manipulate the phosphorylation
of host proteins and thereby disrupt normal cellular processes.
Viral phosphomimetics have been shown to manipulate a vari-
ety of processes, including spliceosomal activity and translation
(Huang et al. 2002, Jha et al. 2017). Given the diverse and un-
expected mechanisms of viral mimicry it is tantalizing to con-
sider the large number of uncharacterized proteins encoded in
glant virus genomes that may play an as-yet unknown role in
host manipulation. This is especially true in lineages such as
the pandoraviruses, which contain genomes > 2.5 Mbp in size
in which genes potentially evolve de novo from intergenic re-
glons (Legendre et al. 2018).

Many virologs have been identified in viruses recently, and in
many cases it is still unclear what role they play during infection.
One clear possibility is that viral genes have the same function as
their eukaryotic counterparts, and are needed by viruses to main-
tain or extend host cellular processes during infection (i.e. exap-
tation while retaining biochemical activity, as reviewed in Koonin
et al. 2022). Shutoff of host metabolism is widely observed dur-
ing infection and may be triggered either as a byproduct of vi-
ral disruption of host physiology or as a host defense mechanism
that reduces available energy for viral production. Regardless of
the cause, in this scenario virologs can be viewed as a means of
maintaining host physiology sufficient to support virion produc-
tion. Alternatively, virologs may have evolved distinct functions
compared to their cellular counterparts, either due to distinct reg-
ulation or alternative enzymatic or structural activities. For some
virologs both of these scenarios may be correct depending on the
virus in question; e.g. members of both the Mimiviridae and Phycod-
naviridae encode active superoxide dismutase (SOD) enzymes that
likely play a role in the detoxification of reactive oxygen species
(ROS) during the early stages of infection, whereas a SOD homolog
in some poxviruses has been shown to be an inactive decoy en-
zyme that inhibits the activity of cellular homologs (Teoh et al.
2003, Kang et al. 2014, Lartigue et al. 2015). On a similar theme,
various metabolic enzymes such as glycoside hydrolases and oxi-
doreductases appear to have evolved novel structural roles in var-
lous giant virus lineages (Klose et al. 2015, Krupovic et al. 2020,
Villalta et al. 2022, Alempic et al. 2023). Even if the enzymatic ac-
tivity of virologs is the same as their cellular homologs, their ki-
netics or context of expression may have vastly different effects
on cellular physiology during infection. For example, viral genes
involved in central carbon metabolism may play roles in mitigat-
ing the buildup of ROS, which may occur if host enzymes begin to

degrade at different rates. Given these complications, functional
predictions based on genomic data alone must be treated with a
degree of caution when inferring the role of various virologs dur-
ing infection.

Here, we outline current knowledge of the diversity of virologs
known to be encoded in members of the Nucleocytoviricota together
with recent advances in our knowledge of how these viral genes
are used during infection. A summary of notable virologs is pro-
vided in Table 1, and select processes are illustrated in Fig. 2. Many
of these processes are enormously complex and we cannot hope
to provide a complete overview of their functionality within cells.
We, therefore, focus these sections on providing brief overviews of
the processes themselves, a summary of notable viruses known
to encode these virologs, and any experimental evidence that can
link virologs to specific roles during infection.

Translation

Viruses are known to depend primarily on the host translation
machinery for carrying out synthesis of virus-specific structural
and nonstructural proteins. A key feature of many members of
the Nucleocytoviricota is the presence of diverse genes involved in
translation, thereby potentially making them partially indepen-
dent of the host machinery for successful propagation. Compo-
nents of translation are particularly common across many fam-
ilies in the Imitervirales and Pimascovirales, but they can also be
found in a wide range of genomes in other orders. Early exami-
nation of chloroviruses found that tRNAs and translation elonga-
tion factors are found in this group (Li et al. 1997, Duncan et al.
2020), and subsequently tRNAs have been found in a wide range
of giant viruses (Wilson et al. 2005, Fischer et al. 2010, Philippe et
al. 2013). The description of Acanthamoeba polyphaga mimivirus,
now classified in the species Mimivirus bradfordmassiliense, dramat-
ically expanded this set to include additional tRNAs, translation
factors (initiation, elongation, and termination) and, most strik-
ingly, four aminoacyl-tRNA synthetases genes (aaRS: Arginyl-RS,
Cysteinyl-RS, Methionyl-RS, and Tyrosyl-RS) (Raoult et al. 2004).
These genes encode for enzymes that attach cognate amino acids
to specific tRNAs, and are essential for the translation process that
up until that time had only been found in the genomes of cellular
organisms.

Subsequent discoveries have continued to expand the reper-
toire of translation-associated genes in giant viruses. Notably,
a metagenomic study recovered the genome of klosneuvirus
(Schulz et al. 2017), which encodes 19 aaRS genes, and culture-
based studies identified these genes in a wide range of other iso-
lates, including pandoraviruses and members of the Pimascovirales
and Asfuvirales orders (Philippe et al. 2013, Andreani et al. 2017).
Tupanviruses, members of the Mimiviridae family that have been
isolated from soda lakes in Brazil and the deep Atlantic Ocean,
represent the most remarkable example so far, with 20 aaRSs, 70
tRNAs, and 11 other translation factors encoded in their genomes
(Abrahdo et al. 2018). Excluding ribosomal proteins, tupanviruses
have even more translation-related elements than some cellu-
lar organisms, such as Encephalitozoon cuniculi (eukaryota), Nanoar-
chaeum equitans (archaea), and Candidatus Carsonella ruddii (bacte-
ria). The broad host-range described for tupanviruses in compar-
ison to other amoeba-infecting viruses might be related to its ex-
panded set of translation-related genes, which may allow tupan-
viruses to infect hosts with a broader range of codon usage pro-
files.

Like many other virologs in giant viruses, the functional role
of translation-related genes remains to be largely determined,



Table 1. Overview of functions encoded in giant virus genomes.

Moniruzzamanetal. | 5

Process

Notable enzymes

Prevalence

Relevant citations

Central carbon metabolism

Histones

Translation

Sphingolipid synthesis

Cytoskeleton

Ubiquitin signaling

Nutrient transporters and ion
channels

Vesicular trafficking

Immunoregulatory genes

Caspases

Polysaccharide metabolism

Rhodopsins

Cell cycle

Glycolysis, TCA cycle, and
fermentation enzymes

All four primary histones

tRNA synthetases, translation
termination factors

Entire pathway

Actin, myosin, dynein, and
kinesin

E1, E2, and E3 Ub-associated
enzymes, ubiquitin homologs

Ammonium, phosphate
transporters, and
K + transporters

SNARES, Rab- and Ran-like
GTPases, and Secl/Munc18-like
proteins

Virokines and virocepters

Caspase and Metacaspase-like
homologs

Glycoside hydrolases

Channelrhodopsins and
heliorhodopsins

Cyclins and components of the

Broadly distributed, but most
prevalent in Imitervirales

Broadly distributed, but most
prevalent in Pimascovirales and
medusavirus

Widespread but particularly
prevalent in members of the
Imitervirales

Coccolithoviruses

Widespread but particularly
prevalent in members of the
Imitervirales

Widespread

Prevalent in Algavirales and many
members of the Imitervirales

Imitervirales, Algavirales, and
Pimascovirales

Poxviruses, irodoviruses, and
asfarviruses

Poxviruses, irodoviruses, and
asfarviruses

Widespread

Imitervirales and coccolithoviruses

Poxviruses, Medusavirus, and
Clandestinovirus

Schvarcz and Steward (2018),
Rodrigues et al. (2019),
Moniruzzaman et al. (2020a),
Blanc-Mathieu et al. (2021)

Boyer et al. (2009), Yoshikawa et al.
(2019), Liu et al. (2021)

Raoult et al. (2004), Schulz et al.
(2017), Abrahdo et al. (2018)

Monier et al. (2009), Vardi et al.
(2009)

Ha et al. (2021), Kijima et al. (2021),
Da Cunha et al. (2022)

Iyer et al. (2006), poxvirus virologs
reviewed in Lant and de Motes
(2021)

Plugge et al. (2000), Frohns et al.
(2006), Monier et al. (2012, 2017)

Neveu et al. (2022)

Reviewed in McFadden and Murphy
(2000), Elde and Malik (2009)

Bideshi et al. (2005), Wilson et al.
(2017)

Reviewed in Speciale et al. (2022)

Rozenberg et al. (2020), Zabelskii et
al. (2020)

Mo et al. (2009), Yoshikawa et al.

anaphase promoting complex

(2019), Rolland et al. (2021)

although important insights have been gained through character-
ization of some translation genes in pandoraviruses and members
of the Imitervirales and Algavirales. One bioinformatic study exam-
ining tRNAs encoded in chloroviruses noted that 17 different tR-
NAs for 14 different amino acids clustered in the middle of the
viral genomes (Duncan et al. 2020). The authors suggested that
these tRNAs are primarily involved in overcoming the codon us-
age differences between chloroviruses and their host. tRNA genes
are also found in coccolithoviruses, prasinoviruses, and rhaphi-
doviruses, but to a lesser extent compared to chloroviruses (Wil-
son et al. 2009, Ogura et al. 2016, Fromm et al. 2022). In addi-
tion, an elongation factor (EF3) encoded by chloroviruses is ex-
pressed within the first hour of infection and appears to be impor-
tant for the synthesis of viral proteins throughout the replication
cycle (Yamada et al. 1993). In mimivirus, the role of methyonyl-
and tyrosyl-aaRSs were experimentally validated in activating ty-
rosine and methionine, respectively (Abergel et al. 2007). The si-
lencing of the mimivirus R458 gene, a homolog of the initiation
factor 4A, causes deregulation in translation of proteins associ-
ated with transcription, particle structure, DNA repair/topology,
and others (Bekliz et al. 2018). Although these results collectively
suggest that translation-associated genes can play key roles in
the translation of viral proteins, there is reason to doubt that all

of these genes are critical for viral propagation. For example, the
genome of Bodo saltans virus encodes five total aaRS genes, but
three appear to be nonfunctional pseudogenes that show signs
of recent nonsense mutations or ORF disruptions (Deeg et al.
2018). Moreover, a recent study developed extensive new tools
for the genetic manipulation of pandoraviruses and revealed that
most proteins involved in translation were not essential (Bisio
et al. 2023).

Replication, transcription, and mRNA maturation
Several genes involved in DNA replication, transcription, and
mRNA maturation are highly conserved in the Nucleocytoviricota
and are encoded in almost all members of this phylum. DNA repli-
cation is achieved using a family B DNA polymerase (PolB), which
is one of the best phylogenetic markers for giant viruses, and it
has been used extensively in PCR-based or marker gene surveys
of giant virus diversity (Short and Suttle 2002, Li et al. 2018, Endo
et al. 2020). Several helicases and topoisomerases are also highly
conserved and broadly represented in these viruses. A superfam-
ily I helicase (SFII) is often used as a marker gene in phylogenetic
reconstruction, whereas both family II and IB topoisomerases are
also found in a range of giant viruses but have somewhat comple-
mentary distributions and may play similar functional roles (Iyer
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Figure 2. Illustration of possible roles of virologs in diverse processes within virocells. Panel (A): overview of a eukaryotic cell featuring key organelles
and a virus factory. Each area highlighted using rectangles of different colors is shown in detail in panels (B)-(G). The top halves of panels (B)-(G)
represent processes in infected cells carried out in part by virus-encoded virologs, while the bottom halves represent processes as they occur in
healthy cells. Virus-encoded proteins and related processes or organelles are shown in shades of purple. Panel (B): virus infection of a cell and

subsequent injection of viral DNA initiate reprogramming of the healthy cell metabolism into a virocell. Viral-encoded potassium channels cause
depolarization of the host membrane and thereby facilitate viral entry. In the virocell, viral-encoded transporters help import nutrients, facilitating the
infection process. Panel (C): virologs involved in central carbon metabolism (glycolysis and TCA cycle—purple letters and arrows) potentially augment
cellular energy metabolism, leading to increased production of ATP. Panel (D): ROS cause damage to cellular components. During viral replication,
viral-encoded SODs potentially prevent damage to viral proteins and nucleic acids within the virocell. Panel (E): While histones in a regular cell
contribute to the structural organization of cellular DNA, within a virocell, viral-encoded histones can help package and organize viral DNA within the
capsid. Panel (F): many GVs encode tRNAs in their genomes, which can potentially augment the cellular tRNA pool to sustain viral protein production.
Panel (G): although the functions of viral-encoded actin and myosin genes have yet to be characterized, they could potentially assist in the localization
and structure of the virus factory. Viral myosin might help transport molecular cargoes related to virus replication and assembly processes along the
actin filaments. Abbreviations: Nuc—nucleus, ER—endoplasmic reticulum, VF—yvirus factory, Mt—mitochondria, GA—Golgi apparatus, Act—actin
filaments, GV—giant virus, TP—transporters, ROS—reactive oxygen species, SOD—superoxide dismutase, HoO—water, His—histone, RB—ribosome,

Pep—peptide chain, tRNA—transfer RNA, My—myosin, and CG—molecular cargo.

et al. 2006, Aylward et al. 2021). Some giant viruses, in particu-
lar members of the Imitervirales, also encode a MutS protein likely
involved in mismatch repair (Ogata et al. 2011, Priet et al. 2015,
Gallot-Lavallée et al. 2017, Claverie and Abergel 2018). Lastly, most
glant viruses appear to encode a multisubunit ribonucleotide re-
ductase (RNR), which facilitates dNTP production during replica-
tion (Gammon et al. 2010). The phylogeny of RNR subunits is often
inconsistent with other viral genes involved in DNA replication,
however, suggesting that they have been acquired multiple times
independently from different eukaryotic lineages (Filée et al. 2008,
Yutin and Koonin 2012a).

Almost all giant viruses also encode a multi-subunit RNA poly-
merase (RNAP) that they use for gene expression. Prasinoviruses
and chloroviruses are the primary exceptions to this, and they are
therefore dependent on host enzymes for transcription during the
nuclear stages of their infection (Moreau et al. 2010, Van Etten et
al. 2019). The RNAP encoded by most giant viruses is homologous
to the same enzyme used by bacteria, archaea, and eukaryotes for

gene expression, and it therefore represents a sophisticated tran-
scriptional apparatus that is essentially unknown elsewhere in
the virosphere except in some large bacteriophages (Ceyssens et
al. 2014, Sokolova et al. 2020, Weinheimer and Aylward 2020). Viral
RNAP allows many giant viruses to complete their infection cycle
in the cytoplasm, but some of these viruses can still use host en-
zymes for gene expression by transiently recruiting nuclear tran-
scriptional machinery to virus factories (Fabre et al. 2017). In ad-
dition to RNAP, several giant viruses also typically encode a wide
range of transcription factors, including several that are highly
conserved and are often used in phylogenetic reconstruction (Iyer
et al. 2006, Yutin et al. 2013, Guglielmini et al. 2019). Giant viruses
also often encode several genes involved in mRNA maturation,
including an mRNA capping enzyme and polyA polymerase (Priet
et al. 2015), providing some striking similarities to eukaryotic ma-
chinery. Phylogenetic analysis of viral genes involved in DNA repli-
cation and transcription has revealed signatures of ancient coevo-
lution and gene exchange with early eukaryotes (Box 3).



Box 3. Deeply intertwined coevolution of eukaryotes and
glant viruses

The highly conserved nature of virologs involved in DNA replica-
tion, transcription, and mRNA maturation suggests that these
are the most ancient enzymes in the Nucleocytoviricota and that
they were present in the last common ancestor of this phy-
lum. Hence, several phylogenetic studies have examined the
evolution of these enzymes in depth to shed light on their ori-
gins. These viral proteins were most likely acquired from cellu-
lar groups at some stage, but examining the evolutionary rela-
tionships between these proteins in giant viruses and eukary-
otes is complicated by the long stem branch leading to modern
eukaryotes (Betts et al. 2018). This long stem branch, together
with recent geochemical findings (Brocks et al. 2023), implies
that proto-eukaryotic lineages thrived on earth for hundreds of
millions of years prior to the emergence of the last eukaryotic
common ancestor (LECA). During this period, proto-eukaryotes
presumably coevolved with their viruses, and the ancestor of
the Nucleocytoviricota likely emerged at this time (Forterre and
Gala 2016). Phylogenetic analysis of RNA polymerase has sug-
gested that viruses acquired this gene from proto-eukaryotes
prior to the emergence of LECA, and then subsequently trans-
ferred a copy back (Guglielmini et al. 2019). Modern eukary-
otes have three copies of RNAP, and this reciprocal transfer may
have given rise to the RNAP II we see today. Likewise, mod-
ern eukaryotes have four copies of family B DNA polymerases,
and the delta polymerase (PolDelta) likely arose from a trans-
fer from giant viruses that took place prior to the emergence
of LECA (Takemura et al. 2015, Karki and Aylward 2023). Evi-
dence for eukaryotic acquisition of viral genes has also been
reported for topoisomerase II and actin (Da Cunha et al. 2022,
Guglielmini et al. 2022). These studies have demonstrated that
modern eukaryotic and viral genomes are a product of deeply
intertwined coevolution. Although the details of eukaryogenesis
remain enigmatic, several scenarios in which giant viruses play
central roles have been postulated (Takemura 2020, Bell 2022).

Central carbon metabolism

Genes involved in sugar and amino acid metabolism were ini-
tially observed in prasinoviruses that infect members of the
the prasinophyte genera Ostreococcus, Bathycoccus, and Micromonas
(Weynberg et al. 2009, 2011, Moreau et al. 2010), and subsequent
work identified the TCA cycle enzyme citrate synthase in tupan-
viruses (Rodrigues et al. 2019). A broad metagenomic survey of gi-
ant virus diversity identified the widespread presence of glycolysis
and TCA cycle enzymes in a wide range of giant viruses, especially
members of the Imitervirales and Algavirales (Moniruzzaman et al.
2020a). One recently isolated member of the Imitervirales that in-
fects Prymnesium kappa encodes a particularly large complement
of energy metabolism genes, including all four succinate dehydro-
genase subunits (Blanc-Mathieu et al. 2021). Interestingly, a virus
that encodes a complete glycolysis or TCA cycle pathway has not
been identified, indicating that viruses do not reconstitute com-
plete metabolic pathways using their own enzymes. It is possi-
ble that these enzymes are involved in boosting flux in existing
metabolic pathways and that the viruses are still reliant on some
host enzymes during infection. Although the activity of most of
these enzymes has not been experimentally verified, one study
examined a putative isocitrate dehydrogenase encoded in a pan-
doravirus and reported enzymatic activity (Aherfi et al. 2022). The
activity of other TCA cycle genes in pandoraviruses is unclear and
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many appear to be highly divergent from any cellular homologs,
however.

Increased glucose metabolism is a common aspect of virocell
metabolism in a wide variety of viruses (Sdnchez-Garcia et al.
2021, Sumbria et al. 2021), including norovirus, herpesviruses, and
some relatively small RNA viruses such as Dengue and Zika virus
(Vastag et al. 2011, Allonso et al. 2015, Fontaine et al. 2015, Pas-
salacqua et al. 2019, Pang et al. 2021). It is, therefore, plausible
that giant virus-encoded enzymes play a role in hijacking host
metabolism that is similar to that observed in other viruses. For
example, if a cell is in a quiescent state at the time of infection, in-
creasing flux in central carbon metabolism may lead to increased
energy availability for viral replication. Although the reason gi-
ant viruses encode their own central metabolic enzymes rather
than simply manipulating cellular homologs remains unknown,
itis possible that this allows the viruses to more precisely control
the process of metabolic hijacking, potentially instigate this pro-
cess earlier in the infection cycle, or increase the amount of sub-
strate used for processes such as post-translational modifications
that are necessary during infection. Moreover, by encoding these
enzymes, viruses may obviate possible red queen dynamics that
could occur if viruses were solely reliant on cellular genes, which
could mutate and thereby evade viral control. Some of these possi-
bilities have been discussed in a recent review (Brahim Belhaouari
et al. 2022).

Aside from genes involved in glycolysis and the TCA cycle,
other central metabolic enzymes have also been found in giant
viruses. One study examined the genome of Oceanusvirus kaneo-
hense (Tetraselmis virus 1) and identified several genes involved in
fermentation, including pyruvate-formate lyase and mannitol-1-
phosphate dehydrogenase (Schvarcz and Steward 2018). It was hy-
pothesized that the host may use fermentation for energy genera-
tion during low oxygen conditions, which can occur during periods
of high respiration in eutrophic ocean waters. Importantly, many
algal blooms lead to anoxia due to the high respiration of both
algae and heterotrophic bacteria, suggesting that viral-mediated
fermentation could play an important role in viral infection dur-
ing these periods of high host cell density.

Sphingolipid metabolism

Sphingolipids are essential structural components of all eukary-
otic membranes and are important signaling lipids in diverse cel-
lular pathways. Viruses exploit membrane lipids such as sph-
ingolipids in all steps of their replication cycle, including dur-
ing cell entry and egress. Diverse viruses remodel their host’s
sphingolipid metabolism during infection, including human im-
munodeficiency virus (HIV), hepatitis C virus, and rhinoviruses
(Schneider-Schaulies and Schneider-Schaulies 2015). Moreover,
sphingolipids are known to be enriched in lipid rafts that are in-
volved in viral entry in a receptor-mediated manner. One of the
most extensively researched phenomena of mimicry in the Nu-
cleocytoviricota is the coordination of sphingolipid biosynthesis in
the context of viral infection of the coccolithophore Emiliania hux-
leyi by its eponymous virus EhV. Emiliania huxleyi often forms large
scale algal blooms that are routinely infected by EhV, which is
thought to lead to demise of the bloom. A near-complete path-
way for sphingolipid biosynthesis is encoded by the EhV genome
(Wilson et al. 2005), and to-date this is the only virus that encodes
for such enzymes, although diverse viruses rewire their host sph-
ingolipids as part of their infection cycle (Schneider-Schaulies and
Schneider-Schaulies 2015). Phylogenomic investigation has pre-
dicted that several genes in this pathway have been horizontally
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transferred between E. huxleyi and its virus, or vice versa (Monier et
al. 2009). Experimental work on the viral-encoded rate limiting en-
zyme serine palmitoyltransferase of this pathway (Ziv et al. 2016),
has confirmed its functional activity and demonstrated it has dif-
ferent substrate specificity than its algal homolog. This metabolic
shift is part of the major lipid rewiring induced by viral infection
that leads to production of odd-based fatty acids (Schleyer et al.
2019).

Interestingly, the EhV-encoded sphingolipid biosynthesis path-
way is upregulated during infection, concomitant with the down-
regulation of the host counterpart (Rosenwasser et al. 2014), re-
sulting in both the production of virus-specific glycosphingolipids
(vGSLs) that are highly enriched in the virus membranes as well as
the induction of programmed cell death (PCD) during lytic phase
of infection (Vardi et al. 2009, Schleyer et al. 2019). Since these
lipids are integrated into the virion, they can affect virion struc-
tural integrity and virion decay rate under UV stress in the upper
ocean. Furthermore, since vGSLs are produced exclusively during
viral infection of EhV, it has been used successfully as an effec-
tive metabolic biomarker to detect active viral infection during
E. huxleyi blooms (Vardi et al. 2009, Fulton et al. 2014, Laber et al.
2018). High vGSL-producing strains of EhV, which are extremely
virulent and harbor a greater infectivity at high host densities,
provide a selective advantage under laboratory conditions. How-
ever, field data obtained from natural environments suggest a bet-
ter survival rate of slow glycosphingolipid producing EhVs, where
lower host densities are encountered (Nissimov et al. 2019). The
metabolic arms race between the virus and its algal host around
the sphingolipid biosynthetic pathways is reflected by the produc-
tion of variety of GSL molecules with diverse chemical composi-
tion between susceptible, resistant (Hunter et al. 2015, Schleyer et
al. 2023) and virocells of E. huxleyi cells (Vardi et al. 2009, Schleyer
et al. 2019). Lastly, virus-derived sphingolipids can be detected in
extracellular vesicles released by infected cells, which suggests
that they may act as intercellular communicating signals during
viralinfection in algal blooms (Schatz et al. 2017,2021). These vesi-
cles can lead to faster viral infection dynamics and prolong half-
life of viral infectivity.

Cytoskeletal dynamics

Some of the most recently discovered virologs include the cy-
toskeletal components actin, kinesin, and myosin. Kinesin ho-
mologs were the first to be identified in the small genomes of
viruses that infect crustacea (the “mininucleoviridae” within the
Pimascovirales) (Subramaniam et al. 2020), and subsequent stud-
ies of metagenome-derived viruses identified multiple actin and
myosin homologs (so-called viractins and virmyosins) in other
viruses (Ha et al. 2021, Kijima et al. 2021, Da Cunha et al. 2022).
Most of the actin and myosin homologs appear to be encoded by
members of the Imitervirales. A metatranscriptomic analysis of gi-
antviruses in surface waters near the coast of California identified
expression of several of these cytoskeletal components, confirm-
ing that they are expressed in natural conditions (Ha et al. 2021),
but the precise role they play during infection remains unknown.

Similar to the hijacking of host central carbon metabolism,
the subversion of the host cytoskeleton during infection is also
widespread in different lineages of eukaryotic viruses (Taylor et al.
2011). Actin plays an important role in poxvirus egress and inter-
cellular transmission (Rottner and Stradal 2009, Taylor et al. 2011),
and similar dynamics have been observed for other giant viruses
(Murti et al. 1985, Jouvenet et al. 2006). Viral interactions with the
cytoskeleton can occur at several stages of infection, such as ini-
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tial contact with cells, cell entry, and egress (Taylor et al. 2011). The
precise role of viral-encoded actin, myosin, and kinesin homologs,
therefore, remains unclear due to the complexity of cellular reor-
ganization that can occur during viral infections as well as the
numerous processes that involve cytoskeletal dynamics.

DNA packaging

Histones represent some of the most intriguing examples of vi-
rologs identified in giant virus genomes. These genes were ini-
tially identified in viruses of the Marseilleviridae (Boyer et al. 2009,
Thomas et al. 2011), which encode fused genes with homology to
H3-H4 and H2B-H2A core histones. Subsequent analysis of Acan-
thamoeba castellanii medusavirus revealed individual genes with
homology to all four core histones (H2A, H2B, H3, and H4) as
well as the linker histone (H1) (Yoshikawa et al. 2019). Another
study cultivated a medusavirus relative, clandestinovirus, that
also encodes four core histones (Rolland et al. 2021). Viral-encoded
histones have low amino acid identity to eukaryotic homologs
(< 30%) and phylogenetic analysis of the different core histones
have placed them at the root of their respective clades, indicat-
ing they have an ancient evolutionary origin. In addition to those
found in marseilleviruses and their relatives, a recent examina-
tion of a broad diversity of metagenome-derived giant viruses
genomes revealed that histone subunits are also encoded by
a wide range of viruses within the Imitervirales and Algavirales
(Moniruzzaman et al. 2020a).

In marseilleviruses, core histones are packaged in the virion,
and it has been hypothesized that they play a role in viral genome
organization (Boyer et al. 2009, Fabre et al. 2017, Okamoto et al.
2018). Recent studies have reported crystal structures of mar-
seillevirus histones and demonstrated that they indeed form nu-
cleosome structures similar to eukaryotic homologs (Liu et al.
2021, Valencia-Sanchez et al. 2021). One study also demonstrated
that the histones are essential for viral infectivity (Liu et al. 2021).
Histones, therefore, appear to be a unique case among virologs in
that they are not necessarily involved in manipulation of the host
during infection, but rather are used to preserve the integrity of vi-
ral DNA in virions. A recent review has comprehensively discussed
the presence of histone subunits in both members of the Nucleo-
cytoviricota as well as other viral lineages (Talbert et al. 2022).

Nutrient and ion transport

Several transporters and ion channels have been identified in gi-
antviruses, and some of the mostin-depth experimental work has
been performed on these virologs. The first example of a potas-
sium channel encoded by a virus was found in chloroviruses, and
extensive molecular characterization demonstrated its ion selec-
tivity (Plugge et al. 2000). This ion channel is packaged in virions
of Paramecium bursaria chlorella virus (PBCV-1) and is responsi-
ble for rapid depolarization of the cell membrane that facilita-
tion of DNA release into the cell in the initial stages of infection
(Kang et al. 2005, Frohns et al. 2006). Subsequent studies have
found that potassium channels are common in a wide range of
glant viruses (Siotto et al. 2014, Moniruzzaman et al. 2020a), and
confirmation of ion selectivity has also been reported in a pro-
tein encoded by a member the Imitervirales (Kukovetz et al. 2020).
Hence, channel-mediated membrane depolarization is potentially
a common aspect for cell entry among viruses that do not exploit
host phagocytosis or macropinocytosis for uptake. A wide range
of other ion channels have been reported in giant viruses, such
as mechanosensitive ion channels, but their role during infection
remains largely unknown (Greiner et al. 2018).
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Other studies have shown that viral-encoded transporters can
influence nutrient acquisition during infection. One notable study
examined an ammonium transporter encoded in a prasinovirus
thatinfected Ostreococcus tauri, a small algae that is globally abun-
dant in coastal waters (Monier et al. 2017). This study showed
that the ammonium transporter was expressed and altered
cellular nitrogen uptake during infection. This was an important
finding not just for clarifying the role of this viral transporter, but
also for demonstrating that virologs can have important impli-
cations for global biogeochemical cycling. Indeed, a diverse array
of nutrient transporters have also been identified in giant virus
genomes, including several high affinity phosphate transporters
that are potentially involved in nutrient acquisition during infec-
tion (Weynberg et al. 2011, Monier et al. 2012, Moniruzzaman et
al. 2020a). Collectively, these findings suggest that giant viruses
manipulate the nutrient transport dynamics of their hosts sub-
stantially during infection, which may be critical in environments
such as the ocean where the lack of particular macronutrients
may limit virion production.

Vesicular trafficking

Numerous giant virus genomes encode components of vesicu-
lar trafficking machinery that potentially play important roles
in cell entry, virion morphogenesis, and egress. Soluble N-
ethylmaleimide-sensitive factor attachment protein receptors
(SNARES), typically involved in vesicle fusion, were first identi-
fied in mimiviruses and coccolithoviruses (Wilson et al. 2005,
Kloepper et al. 2007). Subsequent analysis identified a Rab GT-
Pase encoded in mimivirus (Zade et al. 2015), which was found
to have structural similarities to mammalian Rab5 proteins in-
volved in regulating endosomal trafficking (Ku et al. 2017). Work
focusing on medusavirus has alsoidentified Ran-like GTPases that
are potentially involved in nuclear import/export (Yoshikawa et
al. 2019). Most recently, a genomic survey identified a broad di-
versity of SNAREs, Ras superfamily GTPases, N-ethylmaleimide-
sensitive factors, and Secl/Munc18-like proteins across a wide
range of viruses within the Algavirales, Imitervirales, and Pimascovi-
rales, demonstrating that these genes are commonly encoded in
numerous giant virus lineages (Neveu et al. 2022). Moreover, this
study also expressed several giant virus SNAREs and showed that
they can form stable complexes with neuronal SNARE proteins,
indicating that they are functional.

Vesicular trafficking is likely a critical component of virion
morphogenesis that recruits membranes derived from the en-
doplasmic reticulum (ER) to the virus factory, where they ulti-
mately give rise to the inner membrane of new virions (Mutsafi et
al. 2013, Suérez et al. 2013). Treatment with vesicular trafficking
inhibitors leads to defective virion morphogenesis in marseille-
viruses (Arantes et al. 2016), cedratviruses (Silva et al. 2018), or-
pheoviruses (Souza et al. 2019), and pandoraviruses (Andrade et
al. 2019), suggesting that vesicular trafficking from the ER is a key
component of successful infection. Transcriptomic evidence sug-
gests that some of the SNARE and Rab proteins are expressed only
a few hours post infection, consistent with the hypothesis that
they are inactive in the early stages of infection and primarily
play a role during virion assembly (Wilson et al. 2005, Legendre
et al. 2010). It remains unclear whether these virologs are directly
involved in virion morphogenesis, however; given their patchy dis-
tribution across giant viruses it has been suggested that they are
more likely involved in interfering with host vesicular trafficking
rather than participating in core virion morphogenesis processes
themselves (Neveu et al. 2022). In addition, one recent study on a

dynamin virolog provided experimental evidence that it was in-
volved in mitochondrial remodeling (Sheikh et al. 2023), suggest-
ing that the scope of viral manipulation of host membranes ex-
tends well beyond the nucleus and ER.

Interestingly, membrane vesicles also play key roles in cell en-
try and egress in giant viruses (Rodrigues et al. 2016). Phagocytosis
is the preferred mechanism of cell entry for the largest viruses,
but for hosts in the genus Acanthamoeba this process is stimu-
lated only for virions > 500 nm in size (Korn and Weisman 1967).
Smaller marseilleviruses are only 250 nm in diameter, but dur-
ing infection they induce the formation of large membrane vesi-
cles that can encase dozens to thousands of virions as they are
released from cells (Arantes et al. 2016). These membrane-bound
groups are large enough to stimulate phagocytosis and can, there-
fore, go on to infect new hosts. The molecular mechanisms that
underpin the formation of giant vesicles during marseillevirus in-
fection are unclear, but it underscores the dramatic impact that
viruses have on vesicular trafficking and membrane dynamics
during infection.

Ubiquitin signaling

Ubiquitin signaling is a critical regulator of a wide range of cel-
lular processes, and it is not surprising that viruses have evolved
strategies to manipulate this system during infection (Lant and
de Motes 2021). The ubiquitination process involves a cascade of
three enzymes: E1 Ub-activation enzymes, E2 Ub-conjugating en-
zymes, and E3 Ub-ligating enzymes (Komander and Rape 2012).
Homologs of all of these components have been reported in
various members of the Nucleocytoviricota. For example, many
poxviruses encode E3 homologs with ubiquitin ligase activity
(Mansouri et al. 2003, Nerenberg et al. 2005) and homologs of E1
and E2 enzymes have been reported in members of the Mimiviri-
dae and Phycodnaviridae (Iyer et al. 2006). Members of the Imitervi-
rales appear to encode a particularly large complement of ubig-
uitin signaling genes; Rheavirus sinusmexicani (Cafeteria roenber-
gensis virus) encodes a E1 Ub-activating enzyme and six E2 Ub-
conjugating enzymes (Fischer et al. 2010), while O. kaneohense en-
codes 14 E3 and one E2 enzyme (Schvarcz and Steward 2018). Both
R. sinusmexicani and O. kaneohense also encode several deubiquiti-
nation enzymes and one ubiquitin homolog each, and these genes
are also commonly found in poxviruses (Afonso et al. 1999, Baw-
den et al. 2000, Tulman et al. 2004, Fischer et al. 2010), indicating
that widespread manipulation of ubiquitination during infection
is widespread in the Nucleocytoviricota.

Experimental analysis of the roles of ubiquitin signaling vi-
rologs has been done in both poxviruses and African Swine Fever
Virus (ASFV). ASFV encodes a homolog of a E2 Ub-conjugating en-
zyme, which is expressed throughout infection and packaged into
the virion. Inhibition of the proteasome during infection by ASFV
severely limited viral production (Barrado-Gil et al. 2017). The E2
virolog is recruited to virus factories during infection, where it
may play a role in modulating several different key aspects of
virion biogenesis (Freitas et al. 2018). Other studies have provided
evidence that this virolog is also involved in suppressing the host
immune response by antagonizing interferon signaling (Barrado-
Gil et al. 2021, Riera et al. 2022), highlighting the various poten-
tial benefits of hijacking the host proteasome during infection.
Proteasome inhibition experiments also showed that a functional
ubiquitin-proteasome complex was required for viral gene ex-
pression, formation of virus factories, and viral DNA replication
in vaccinia virus (Satheshkumar et al. 2009, Teale et al. 2009).
Proteasome activity appears to be particularly important early in



infection where it is necessary for viral genome release (Mercer et
al. 2012). Poxviruses also encode several E3 Ub-ligases that have
been shown to be important for virulence, though their precise
roles remain unclear (reviewed in Lant and de Motes 2021).

Many members of the Nucleocytoviricota also encode numerous
repeat domains that are linked to ubiquitin signaling. Ankyrin
repeats are some of the most common functional annotations
that arise in computational analysis of giant virus genomes, and
many proteins with these motifs often contain F-box-like do-
mains that interact with host ubiquitin ligases (Mercer et al.
2005, Sperling et al. 2008). Kelch repeats that likely mediate in-
teractions with the cullin family of E3 ubiquitin ligases are also
common in giant viruses, and in poxviruses these repeats have
been linked to virulence (Kochneva et al. 2005, Beard et al. 2006,
Balinsky et al. 2007). Protein repeat content has been linked to
genome size in giant viruses, suggesting that larger viruses en-
code a higher capacity for complex protein-protein interactions
(Shukla et al. 2018). Some of these protein-protein interaction do-
mains are likely involved other functions unrelated to the protea-
some, however, and may not necessarily be involved in ubiquitin
signaling.

Control of ROS

In cellular organisms, SOD is a key protein in regulating redox
homeostasis and mitigating oxidative stress (Miao and St. Clair
2009). When ROS in the cell accumulate to a toxic level, SODs
catalyze the reduction of superoxide radicals (O2®-) to molecu-
lar oxygen and hydrogen peroxide (Sheng et al. 2014). All four cel-
lular SOD families contain redox-active metal ions at their active
sites: nickel in Ni-SOD, manganese in Mn-SOD, iron in Fe-SOD, and
copper-zinc in Cu,Zn-SOD. Homologs of Cu, Zn-SOD have been
found in several phylogenetically divergent giant viruses, includ-
ing mimiviruses, chloroviruses, and poxviruses. During viral in-
fection and replication, high ROS levels inside the host cell could
damage viral DNA and replication machinery, and viral-encoded
SOD may mitigate this damage. The chlorovirus PBCV-1 was found
to produce an enzymatically active Cu,Zn-SOD and package it in
the virion, and it was suggested that the SOD protein was involved
in mitigating oxidative stress early in viral infection, potentially
leading to a shorter replication cycle and larger burst size (Kang et
al. 2014). Megavirus chilense of the Mimiviridae family also encodes
and expresses a fully active Cu,Zn-SOD. Interestingly, the activa-
tion of this viral SOD protein seems to be independent of cop-
per chaperon proteins, unlike its eukaryotic counterpart (Lartigue
et al. 2015). Similar to the chloroviruses enzyme, the Megavirus-
encoded SOD presumably decreases the concentration of ROS in
the early stages of viral infection.

The Amsacta moorei entomopoxvirus AMV255 was also re-
ported to express a catalytically active Cu,Zn-SOD (Becker et al.
2004), although the protein was not essential for viral infection.
Most known SOD homologs encoded by other poxviruses are not
enzymatically functional and lack both the zinc and the cop-
per ion binding domain required for catalytic activity (Smith et
al. 1991, Almazan et al. 2001). Intriguingly, the SOD-like proteins
encoded by two leporipoxviruses, shope fibroma virus (SFV) and
myxoma virus (MYX) do not have copper binding residues, but
retain the capacity to bind zinc and cellular copper chaperones,
which is typically required for the activation of eukaryotic SODs
(Cao et al. 2002, Teoh et al. 2003, 2005). It was hypothesized that
the SOD homologs in these viruses did not have antioxidant func-
tion, but instead act as decoys to sequester cellular copper chap-
erones, and thereby downregulate host SOD activity. This may in-
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crease ROS levels in the host intracellular environment, and in
turn inhibit apoptosis and stimulate cell proliferation (Teoh et al.
2005). The contrasting roles of SODs encoded by different mem-
bers of the Nucleocytoviricota underscore the difficulty in assigning
definitive functional roles to viral enzymes based on bioinformatic
predictions alone.

Cell cycle

The eukaryotic cell cycle is strictly controlled by various cellular
proteins such as cyclins, cyclin-dependent kinases (Cdk), cell divi-
sion cycle proteins (Cdc), and various other kinases. A wide range
of mammalian viruses have been found to encode proteins that
manipulate the host cell cycle and control replication (Mo et al.
2012, Fan et al. 2018), and these include proteins with clear ho-
mologs in eukaryotes (i.e. virologs). Herpesviruses, baculoviruses,
and even retroviruses have been shown to encode cyclins used to
subvert the cell cycle (Nicholas et al. 1992, Belyavskyi et al. 1998,
LaPierre et al. 1998), demonstrating that many viruses have in-
dependently acquired these genes and converged on a common
strategy for manipulating host growth dynamics. Here, we will
focus on poxviruses and other members of the Nucleocytoviricota
where these genes have recently been described.

An important factor in cell cycle control in the mammalian cell
is the Anaphase Promoting Complex or Cyclosome (APC/C) com-
posed of various proteins including APC11 and APC2. Virologs of
APC11 have been found in orf virus (ORFV), a poxvirus, which can
bind to APC2 in the cyclosome but lacks ubiquitin ligase activ-
ity. Binding of this virolog to APC/C prevents cell cycle progres-
sion and leads to accumulation of cells in G2/M phase. PACR pro-
motes viral propagation but is not an essential protein in ORFV
(Mo et al. 2009). Homologs of PACR can be found in a range of other
poxviruses, indicating this is a common strategy in this family (Mo
et al. 2009, Fan et al. 2018).

Numerous virologs of cell cycle regulators have recently been
found in the genomes of medusavirus, cultivated from hot spring
water in Japan using A. castellanii, and clandestinovirus, cultivated
from wastewater using Vermamoeba vermiformis (Yoshikawa et al.
2019, Rolland et al. 2021). Both of these giant viruses likely be-
long to the same broad lineage, though their loss of some hall-
mark giant virus genes and orthologous displacement of others
have obscured their overall evolutionary relationship to other gi-
ant viruses (Zhang et al. 2023). Clandestinovirus in particular was
found to encode a plethora of cell cycle manipulating proteins in
its genome, including virologs of Cyclin A2 and Cdc123. Cyclin A2
can bind to either CDK1 and CDK?2 to regulate G2-M phase and
S phase, respectively. Cdc123 interacts with eukaryotic initiation
factor 2 (eIF2) and is involved in promotion of G1 to S phase transi-
tion. Medusavirus encodes a Cyclin B homolog, which is predicted
to be associated with the M-phase promoting factor (MPF) that
is involved in regulating G2-M phase transition (Fan et al. 2018,
Yoshikawa et al. 2019). The presence of these putative cell cy-
cleregulators may endow clandestinovirus and medusavirus with
substantial control over the host growth phase. The infection cy-
cles of clandestinovirus and medusavirus both contain a nuclear
phase and are rather long, with viral release beginning only 16
and 14 hours postinfection, respectively, which may make control
of cell division particularly important for these viruses.

Light sensing

Rhodopsins are light energy transducers that play important roles
in energy production and phototaxis in a wide range of microbial
lineages (for a recent review; see Rozenberg et al. 2021). Multiple
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studies have identified homologs of rhodopsins in the genomes
of giant viruses, including several members of the Imitervirales
(Needham et al. 2019, Moniruzzaman et al. 2020a, Farzad et al.
2022). Moreover, several environmental surveys have found that
viral rhodopsins are widespread in marine environments (Yutin
and Koonin 2012b, Philosof and Béja 2013, Lopez et al. 2017, Olson
et al. 2018, Ha et al. 2023). Viral rhodopsins fall into several dis-
tinct groups and have been acquired from cellular lineages mul-
tiple times independently. The first study to examine these genes
in glant viruses identified two distinct but evolutionarily related
clades of viral rhodopsins, termed groups I and II, that encom-
passed a broad phylogenetic diversity (Yutin and Koonin 2012b).
It was suggested that these rhodopsins arose from an ancient vi-
ral acquisition due to their divergence compared to extant cellular
homologs. One study examining a group I rhodopsin encoded in a
choanoflagellate virus suggested that these enzymes act as proton
pumps and are potentially involved in energy metabolism during
infection (Needham et al. 2019), but a subsequent study provided
evidence that rhodopsins in this group are cation channels (i.e.
channelrhodopsins) (Zabelskii et al. 2020). Structural analysis of
a member of the viral group Il rhodopsin clade also suggested that
these are channelrhodopsins (Bratanov et al. 2019).

A separate group of channelrhodpsins are also prevalent in
marine giant viruses (Rozenberg et al. 2020). These rhodopsins
have been shown to act as light-driven anion pumps, and they
are widespread in a wide range of both green algae and giant
viruses. Phylogenetic analysis has revealed that they form a dis-
tinct clade compared with the group I and II viral rhodopsins, and
that viruses most likely acquired them recently from green algal
hosts. The exact role that channelrhodpsins play during viral in-
fection remains unclear, but it has been hypothesized that they
allow viruses to manipulate cellular signaling pathways during
infection. For example, channelrhodopsins may allow viruses to
influence phototaxis and swimming behavior in their hosts, pos-
sibly driving cells toward nutrient conditions more permissive for
viral production (Gallot-Lavallée and Archibald 2020, Rozenberg
et al. 2020).

Lastly, heliorhodopsins, a new group of rhodopsins that is
widespread in bacteria, archaea, and protists, have also been
found in giant viruses (Pushkarev et al. 2018). The function
of viral heliorhodopsins is somewhat enigmatic due to their
inverted membrane topology and divergent evolutionary history
compared to other rhodopsins. One recent study working with a
coccolithovirus heliorhodopsin has provided in vitro evidence that
they act as proton pumps that depolarize the host membrane
during infection (Hososhima et al. 2022). This could possibly in-
terfere with host defenses or as a mechanism for superinfection
exclusion.

Polysaccharide metabolism

Many viral proteins are glycosylated by host-encoded glycosyl-
transferases (GTs) located at the ER and Golgi apparatus (Olofsson
and Hansen 1998). Viral-encoded GTs have been reported for some
bacteriophages, poxviruses, herpesviruses, and baculoviruses, but
rather than modifying viral structural glycoproteins, these en-
zymes are mainly expressed as virulence factors to modify host
molecules, or to protect viral DNA from host restriction enzymes
(Markine-Goriaynoff et al. 2004). In 1993, studies of chloroviruses
suggested that they encode enzymes to glycosylate their struc-
tural proteins (Wang et al. 1993). Subsequent work showed that
PBCV-1 encodes for at least seven putative GTs involved in the
glycosylation of the Vp54 major capsid protein (Van Etten 2003).
The Vp54 glycan repertoire is complex and atypical (De Castro et

al. 2013), synthesized by a set of GTs with multiple functional do-
mains (Speciale et al. 2019). It has been hypothesized that these
rare glycans could extend the range of potential hosts (Piacente et
al. 2014b), maintain the structural integrity of virions (Van Etten
et al. 2017), or mediate adhesion to the host (Piacente et al. 2015).

Chlorovirus genomes also encode enzymes involved in the syn-
thesis of hyaluronan and chitin, two polysaccharides that accu-
mulate on the surface of the infected cells early during infec-
tion (DeAngelis et al. 1997, Graves et al. 1999, Kawasaki et al.
2002). It is unclear what role these cell surface polysaccharides
play during infection, but a number of hypotheses have been
proposed, including that they impair the attachment of addi-
tional chloroviruses (i.e. superinfection exclusion; Graves et al.
1999), protect the infected cell from the uptake and digestion
by grazing protists, or stimulate cell clumping cells (thereby in-
creasing the probability of future infections) (Van Etten et al.
2017). Chloroviruses also encode for numerous polysaccharide-
degrading enzymes that are involved in degrading the cell wall
of the host both during viral entry and exit (Kawasaki et al. 2002,
Van Etten et al. 2017).

Mimivirus and its close relatives also possess a versatile glyco-
sylation machinery for the biosynthesis of rare glycans previously
thought to be restricted to bacteria (Piacente et al. 2012, Notaro et
al. 2022). These glycans have been found in association with the
layer of fibers surrounding the viral capsids, which vary in sugar
composition according to the clade (Notaro et al. 2022). It is sug-
gested that such complex machinery comes with a fitness cost
after it was shown in mimivirus that several GT genes are lost
after repeated passaging (Boyer et al. 2011). The resulting emer-
gence of a bald version of the virus (M4) highlights how glycosy-
lated fibers might be important in natural settings where compe-
tition between viruses for the same amoeba host is high (Boyer et
al. 2011, Notaro et al. 2022). Glycosylated fibers may also shape
interactions between giant viruses and their viral parasites, the
so-called “virophages.” For example, the inability of the M4 strain
to successfully propagate a parasitic virophage illustrates the po-
tential role of fibers and their glycosylation for virophage attach-
ment (Boyer et al. 2011). Overall, fibril glycans are important for
interactions with the host cell (Luther et al. 2011, Piacente et al.
2014a), and may play a role in protecting the virions from the en-
vironment or the conditions found inside the phagocytic vacuole
(Luther et al. 2011, Piacente et al. 2014a, 2015).

Interestingly, many members of the Nucleocytoviricota also en-
code collagen homologs in their genomes, which are thought to
also play a role in virion stability. Collagens are a class of proteins
found most notably in animals, where they provide structure for
tissues. To date collagen-like have been identified in most pan-
doraviruses, pithoviruses, and members of the Mimiviridae (Bau-
mann 2016). It was originally hypothesized that collagen is part
of the dense network of fibers surrounding giant viruses such as
mimivirus (Klose et al. 2010), but the resistance of the fibers to
treatment with lysozyme and collagenase cast doubt on this idea
(Luther et al. 2011). Nevertheless, biotinylation has shown these
collagen-like proteins to be present on the surface of mimivirus
particles (Shah et al. 2014) indicating they play a structural role.
Interestingly, viral collagen has been shown to be modified after
translation. Lysine residues are hydroxylated, and then glucosy-
lated, as opposed to the galactosylation conserved across animals
(Luther et al. 2011).

As new giant virus genomes become available, more putative
glycogenes are being found for which their functions have yet to
be elucidated. Klosneuviruses, e.g. have one of the most complex
glycosylation machineries observed in viruses, with 30 GTs
encoded by the recently sequenced fadolivirus (de Oliveira et al.



2022, Speciale et al. 2022). Another member of the Imitervirales that
infects a marine haptophyte, Biavirus raunefjordenense, encodes
for 48 putative GTs genes, the highest number of GTs found for a
giant virus to date (Van Etten et al. 2017, Speciale et al. 2022). In
general, although GTs have been characterized most in
chloroviruses and members of the Mimiviridae, these genes
have also been found in the genomes of marselleiviruses,
medusaviruses, molliviruses, pandoraviruses, and pithoviruses
(Piacente et al. 2015, Van Etten et al. 2017, Speciale et al. 2022),
suggesting that viral-encoded glycosylation is a widespread
phenomenon in giant viruses.

Immunoregulation

The immunomodulatory genes encoded by poxviruses and her-
pesviruses were the earliest virologs to be discovered, and they
remain the most thoroughly investigated. Although herpesviruses
belong to the phylum Peploviricota and are unrelated to the Nucle-
ocytoviricota, historically their immunomodulatory virologs have
been studied together with those of poxviruses, and so we will in-
clude some discussion of these viruses where appropriate. Other
reviews have discussed viral-encoded immunomodulatory genes
in more detail (McFadden and Murphy 2000, Elde and Malik 2009,
Haller et al. 2014).

The examination of immunomodulatory virologs has also been
instrumental in providing insights related to the interplay be-
tween viruses and both the innate and adaptive arms of the ver-
tebrate immune system. For example, to limit cross-talk between
infected and neighboring cells, viruses deploy decoy receptors and
cytokines referred to as viroceptors and virokines, respectively.
Textbook examples of viroceptors are the soluble I[FN« (Colam-
onici et al. 1995, Symons et al. 1995) and IFNy receptors (Up-
ton et al. 1992, Alcami and Smith 1995) encoded by poxviruses
of which vaccinia B8R and B18R are the best studied instances.
Uniquely, these receptors are not membrane bound, like their cel-
lular counterparts, but secreted to sequester extracellular inter-
feron. Several essential cytokines such as like IL-10 (Moore et al.
1990, Ouyang et al. 2014) and IL-6 (Moore et al. 1996, Russo et al.
1996) are also encoded by large DNA viruses. Notably, IL-10 is en-
coded by several unrelated viruses and has been acquired inde-
pendently by poxviruses and herpesviruses that infect hosts rang-
ing from mammals to fish (Ouyang et al. 2014). The independent
acquisition of the same cellular gene by different viruses is rare
overall, but it has been documented for cellular factors that are
largely viewed as master regulators.

Cell death is a common infection outcome that can either en-
hance or diminish viral propagation (Danthi 2016), and it comes
to no surprise that some immunomodulatory virologs manipu-
late cell death pathways. BCL2 family proteins, which display pro-
and antiapoptotic activities, are encoded by several members of
the Nucleocytoviricota (Afonso et al. 1996, Brun et al. 1996, Cuconati
and White 2002). Other studies have illustrated the fundamental
roles for effectors of emerging cell death pathways like necrop-
tosis in tipping infection outcomes. The executioner of necropto-
sis, MLKL, has been acquired independently by both poxviruses
and RNA viruses. Poxviruses encode the kinase-like domain of
MLKL (Palmer et al. 2021), which functions as a pseudosubstrate
of RIPK3 to suppress necroptosis (Petrie et al. 2019). Repeated du-
plications and losses of poxvirus encoded MLKL indicate a volatile
history of this virolog that is suggestive of a molecular arms race
(Palmer et al. 2021). In contrast, caliciviruses (e.g. noroviruses),
which are single-stranded RNA viruses, have hijacked and repur-
posed the MLKL 4HB domain to drive viral egress by cell lysis. Sur-
prisingly, this virolog appears to catalyze cell death independent
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of established cellular effectors of necroptosis, apoptosis, and py-
roptosis (Wang et al. 2023). The poxvirus and calicivirus MLKL vi-
rologs demonstrate that viruses may capture different domains
to drive distinct activities.

New insights into the activation of immune responses and
counteraction by viruses can be gleaned from recently discovered
virologs. For instance, a family of ultraconserved micropeptides
that comprise the mitochondrial response (MISTR) circuit (Sorouri
etal. 2020, 2022) have been acquired by three distinct members of
the Nucleocytoviricota that collectively infect mammals, fish, and
algae. The independent acquisition by viruses that infect diver-
gent hosts implies that these factors are linked to core cellular
processes. Indeed, MISTR factors interface with electron transport
chain complexes. MISTR consists of MISTR1, MISTR AntiViral, and
MISTR Hypoxia encoded by the NDUFA4, C150rf48, and NDUFA4L2
genes, respectively. Cellular and viral MISTR factors impact im-
mune responses including virus-induced apoptosis (Sorouri et
al. 2022) in a manner reflecting their patterns of gene regula-
tion. Specifically, host MISTRAV, which is an interferon-stimulated
gene, is proapoptotic, while the virolog encoded by squirrelpox is
antiapoptotic. Likewise, downregulation of cellular MISTR1 by im-
mune cues is antiapoptotic. The MISTR virologs point to essen-
tial roles for poorly understood higher-order configurations of the
electron transport complexes—known as respiratory chain super-
complexes (Sorouri et al. 2020)—in the playbook of infection. Fu-
ture functional characterization of virologs of other interferon-
stimulated genes will provide increased resolution of conflict oc-
curring in the early stages of infection. An exciting example is
the gene encoded by squirrelpox (Darby et al. 2014) that is sim-
ilar to OAS—a fundamental antiviral interferon stimulated gene
that senses double-stranded RNA (Wickenhagen et al. 2021, Zhou
et al. 2021, Lee et al. 2023).

Programmed cell death

Caspases (Cysteine-dependent aspartate-directed proteases) are
a family of endoproteases mostly known as orchestrators of PCD
in animals during development, tissue homeostasis, and pathol-
ogy. Caspases belong to a broader family of C14 proteases that in-
cludes a wide range of metacaspases and paracaspases encoded
by plants, fungi, and even bacteria, where they have been impli-
cated in regulatory roles (Minina et al. 2017). Although many an-
imal viruses encode a wide range of caspase inhibitors that sup-
press cell death and provide the viruses with enough time undergo
their replication cycle (Best 2008, Connolly and Fearnhead 2017),
research over the last few decades has shown that many viruses
often co-opt host caspases in several unexpected ways during in-
fection (Connolly and Fearnhead 2017).

Several members of the Nucleocytoviricota also encode their own
caspase-like C14 proteases. Caspases are common in ascoviruses,
where they have been implicated in the induction of a modified
form of apoptosis that promotes viral transmission (Bideshi et al.
2005). In some ascoviruses the viral caspases do not seem to in-
duce apoptosis, but they are still necessary for infection and they
may play a role in the remodeling of actin fibers that is similar
to that seen during apoptosis (Bideshi et al. 2005, Asgari 2007,
Connolly and Fearnhead 2017). Other studies have found a broad
diversity of metacaspases encoded by other members of the Nu-
cleocytoviricota, in particular members of the Imitervirales and Al-
gavirales that reside in marine environments, but it remains un-
clear what role they may play during infection (Wilson et al. 2017,
Moniruzzaman et al. 2020a).

Insights into the role of viral caspases can be gleaned from
studies of viruses that co-opt host metacaspases. This has been
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studied in depth in the coccolithovirus E. huxleyi virus (EhV), where
it has been shown that host metacaspases are upregulated and
activated during successful infection, and that reduction in cas-
pase activity leads to decreased viral production (Bidle et al. 2007).
Predicted metacaspase cleavage regions can be found in several
EhV-encoded proteins, suggesting that caspase activity is needed
for the maturation of viral proteins. This has also been suggested
for chloroviruses and other members of the Algavirales, where key
enzymes such as the DNA-packaging ATPase (chloroviruses) and
DNA polymerase (Ectocarpus siliculosus virus) contain predicted
caspase cleavage sites (Bidle et al. 2007, Van Etten et al. 2019). In-
deed, caspase cleavage of viral proteins has also been implicated
in the proliferation of a wide range of different RNA and DNA
viruses (Connolly and Fearnhead 2017), demonstrating that co-
option of host caspases is widespread in viruses.

Conclusions and perspectives

The prevalence of viruses within the phylum Nucleocytoviricota in
the biosphere raises many important questions. Perhaps most
obviously, why do these viruses encode so many unusual genes
that are not often found in other viral lineages? The evolution-
ary forces that drive the accumulation of diverse virologs in the
Nucleocytovirocota—and genome gigantism in general—have re-
mained largely unclear. Several hypotheses have been put forward
to explain how a complex set of encoded proteins may benefit
glant viruses (for a broader review of tradeoffs in viral life his-
tory traits, see Edwards et al. 2021). First, the complex structural
components encoded in many members of the Nucleocytoviricota—
which often encode multiple capsid proteins and a wide range of
other structural elements integrated into virions—may enhance
capsid stability and prevent decay in the environment. Rates of
virion decay are quite high in marine viruses (Suttle and Chen
1992), and enhanced virion stability may be a major benefit that
glant viruses have compared to smaller viruses. High virion sta-
bility may be particularly important for viruses that infect low-
abundance hosts in which the time in between infections is long.
Second, a broad range of virologs may allow giant viruses
to broaden their tropism and infect hosts spanning a broader
phylogenetic breadth. Indeed, the virus factories of many giant
viruses appear capable of viral production in a range of different
hosts—mimivirus has even been reported to replicate in human
macrophages, albeit in specific laboratory conditions (Ghigo et al.
2008). Third, viruses may be able to partially circumvent red queen
dynamics by removing their reliance on some cellular proteins
that could otherwise mutate or evade viral manipulation during
infection. Encoding a range of virologs thereby provides enhanced
control over cellular dynamics. Lastly, it is likely that many vi-
rologs increase infection efficiency, potentially by decreasing the
latent period of infection. One rare study that directly compared
the infection dynamics of a giant virus and an RNA virus capable
of infecting the same protist host found that the burst size was
much larger for the RNA virus, but the latent period was shorter
for the giant virus (Lawrence et al. 2006). Although more stud-
ies directly comparing the infection programs of giant viruses to
smaller viruses infecting the same host are necessary to make
any generalizations, this study hints that giant viruses may have
greater infection efficiency at the cost of total progeny produced
compared to smaller viruses. These tradeoffs are generally consis-
tent with those observed when comparing the life history strate-
gles of different bacteriophages (De Paepe and Taddei 2006).
Another important future frontier will be understanding the
evolutionary origins of individual virologs and the extent to which

virus-host gene exchange has shaped the evolution of both gi-
ant viruses and eukaryotes. Most virologs likely represent cases
of host-to-virus gene transfer that have taken place over vary-
ing time-scales. While genes involved in DNA replication or tran-
scription likely represent ancient gene transfers that were ac-
quired by members of the Nucleocytoviricota early in their evolu-
tion, other virologs, such as some rhodopsins and ammonium
transporters, represent clear cases of recent acquisition from dis-
tinct cellular lineages (see Fig. 3 for examples; broader discus-
sion in Box 3). Although the mechanisms of gene transfer from
eukaryotes to viruses are often unclear, recent studies suggest
that selfish genetic elements may be a major conduit of host-to-
virus gene transfer (Fixsen et al. 2022, Rahman et al. 2022). More-
over, other recent studies have begun to highlight how viruses
can also transfer genes back into their host lineages, demonstrat-
ing that widespread bidirectional gene exchange is a major fac-
tor that shapes both viral and eukaryotic genomes (Irwin et al.
2018, 2022). Many giant viruses can endogenize into the genomes
of their hosts, representing the largest endogenous viral elements
recognized to date (Moniruzzaman et al. 2020b, 2022). Although gi-
ant virus endogenization is best characterized in the green algae,
it appears to be quite common across a wide range of other pro-
tist groups (Filée 2014, Aylward and Moniruzzaman 2021, Hannat
et al. 2021), and has been studied for decades in the brown algae
Ectocarpus siliculosus (Muller et al. 1990).

Our understanding of giant viruses has advanced dramatically
in the last two decades. After the discovery of mimivirus, it re-
mained a possibility that giant viruses were an obscure lineage
that infected primarily amoeba. But in-depth phylogenomic stud-
ies quickly demonstrated that mimivirus was part of a broader
lineage that included poxviruses, iridoviruses, asfarviruses, and
chloroviruses—all groups that had largely been studied individu-
ally prior to that point (Iyer et al. 2001, 2006). Subsequent culture-
based and metagenomic approaches demonstrated that many
of these groups are widespread in a broad range of ecosystems
around the globe, and belong to the same phylum. We now know
that eukaryotic viruses with large dsDNA genomes and a complex
array of encoded proteins encompass an astounding diversity that
includes a broad range of protist viruses and many emerging ani-
mal pathogens. Future work that continues to expand our under-
standing of the diversity of these viruses in the biosphere, the roles
of encoded virologs during infection, and the impact of host-virus
gene exchange on cellular and viral evolution will undoubtedly
yield many more surprises in the years to come.
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