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ABSTRACT 

A high-quality tin oxide electron transport layer (ETL) is a key common factor to achieve high-performance 
perovskite solar cells (PSCs). However, the conventional annealing technique to prepare high-quality ETLs 
by continuous heating under near-equilibrium conditions requires high temperatures and a long fabrication 
time. Alternatively, we present a non-equilibrium, photoexcitation-induced passivation technique that uses 
multiple ultrashort laser pulses. The ultrafast photoexcitation and following electron–electron and 
electron–phonon scattering processes induce ultrafast annealing to efficiently passivate surface and bulk 
defects, and improve the crystallinity of SnO 2 , resulting in suppressing the carrier recombination and 
facilitating the charge transport between the ETL and perovskite interface. By rapidly scanning the laser 
beam, the annealing time is reduced to several minutes, which is much more efficient compared with 
conventional thermal annealing. To demonstrate the university and scalabilit y of this technique, t ypical 
antisolvent and antisolvent-free processed hybrid organic–inorganic metal halide PSCs have been fabricated 
and achieved the power conversion efficiency (PCE) of 24.14% and 22.75% respectively, and a 
12-square-centimeter module antisolvent-free processed perovskite solar module achieves a PCE of 20.26%, 
with significantly enhanced performance both in PCE and stability. This study establishes a new approach 
towards the commercialization of efficient low-temperature manufacturing of PSCs. 

Keywords: photoexcitation-induced passivation, ultrafast laser, carrier management, electron transport 
layer, perovskite solar cells 
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Sn dangling bonds) that are unavoidably formed in 
SnO 2 generate massive shallow trap states near the 
conduction band and result in carrier recombina- 
tion at the SnO 2 /perovskite interface [ 14 , 15 ]. To re- 
duce the carrier loss, the ETL film prepared by using 
CBD generally requires an annealing condition with 
a temperature of ≥170°C for ≥1 hour [ 11 –13 , 16 ]. 
This is in part because the ETLs normally show poor 
heat transfer and large thermal inertia for passiva- 
tion under near thermal equilibrium, which makes it 
challenging to reduce the annealing temperature and 
time, bringing additional energy costs. Currently, ex- 
cept for thermal annealing at high temperatures for at 
least 1 h, there is no better way to reduce the anneal- 
ing temperature of tin oxide films prepared by using 
the CBD method [ 17 , 18 ]. At the same time, thermal 
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NTRODUCTION 

norganic metal oxide semiconductors are widely
sed as electron transport layers (ETLs) for per-
vskite solar cells (PSCs), which efficiently extract
nd transport electrons from the perovskite layer
nto the electrode [ 1 –5 ]. Tin (IV) oxide (SnO 2 )-
ased ETLs offer desirable band alignment and
lectron mobility, while being processable at much
ower temperatures [ 6 , 7 ]. Among various deposition
ethods [ 8 –10 ], SnO 2 nanoparticle-based PSCs
repared by using chemical bath deposition (CBD),
hich provides conformal coverage between the per-
vskite layer and the electrode, have demonstrated
he best performance so far [ 11 –13 ]. However, the
ntrinsic defects (e.g. oxygen vacancies, tin intersti-

ials) and surface defects (e.g. hydroxyl groups and 
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Figure 1. Diagram of the photoexcitation-induced ultrafast passivation (PiP) process and phase transition of SnO 2 thin films. 
(a) Schematic of the PiP procedure during the annealing of SnO 2 thin films and the specific mechanisms of the annealing 
process including photoexcitation, electron–electron and electron–phonon scattering, rearrangement of atoms and defects 
passivation. (b) High-resolution TEM images of (i) original-SnO 2 and (ii) PiP-SnO 2 (the insets show fast Fourier transform 

patterns of the TEM images). 
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nnealing is general ly fol lowed by buried interface
assivation to further reduce surface defects, which
equires additional thermal annealing and compli-
ates the preparation process [ 19 , 20 ]. 
Herein, we report a novel non-equilibrium,

hotoexcitation-induced passivation (PiP) tech-
ique that uses ultrashort laser pulses. The ultrafast
hotoexcitation and following electron–electron
nd electron–phonon scattering processes induce
n ultrafast electron and phonon heating process,
hus ensuring efficient low-temperature annealing
f SnO 2 nanoparticle-based ETLs prepared by
sing CBD. By rapidly scanning a laser beam, the
nnealing process of a 5 cm × 5 cm sample can be
nished within 30 s at room temperature, which
acilitates the scale-up and energy saving of fabricat-
ng PSCs. The two representative perovskite-based
SCs fabricated via this method achieve a great en-
ancement in comparison with the control devices,
nd a power conversion efficiency (PCE) of 20.26%
or a 12-square-centimeter perovskite solar module
PSM) is achieved as well. 
Page 2 of 9 
RESULT AND DISCUSSION 

PiP of SnO 2 thin film 

The schematic of a home-built PiP set-up and the 
mechanism of PiP are shown in Fig. 1 a. A femtosec-
ond laser beam is reflected by a high-speed rotat- 
ing polygon mirror and then focused on the sample. 
The set-up has a laser scanning speed of > 36 m s −1 

in a working range of 300 mm, with a stage move-
ment speed of > 1.5 mm s −1 , which ensures anneal- 
ing a 5 cm × 5 cm sample in 30 s and a 10 cm ×
10 cm sample in 60 s, as shown in Fig. 1 a (i). The
detailed home-built PiP experimental set-up can be 
found in the Methods and Supplementary material . 
The demonstration and actual processing video can 
be found in the Supplementary movie . 

The PiP process is achieved by using ultrafast in- 
tensive excitation after laser pulse energy deposition 
in tens of femtoseconds, followed by the electron–
electron and electron–phonon scattering processes 
(in hundreds of femtoseconds), as shown in Fig. 1 a 
(ii). The interaction between the ultrafast laser and 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
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he SnO 2 film starts from direct photon absorption
y excitation of intrinsic free carriers and shallow
rap states. The absorption coefficient is 1650 cm 

−1 

t 1030 nm as measured. The carrier population wi l l
apidly rise up to the anti-bonding states (conduc-
ion band) by impact ionization via the electron–
lectron scattering process in tens of femtoseconds.
he population of anti-bonding states raises the free
nergy of the excited system, generating a stretching
orce on each bond, which efficiently cleaves weak
r metastable bonds, thus passivating the surface de-
ects and oxygen vacancies of the SnO 2 film [ 21 –23 ].
The following electron–phonon scattering pro-

ess to reach an equilibrium temperature of the elec-
ron and phonon system induces an ultrafast phonon
eating process (for 28 mJ cm 

−2 laser fluence, the
aximum temperature rise is 22.6 K) with a heat-

ng rate of > 10 13 K s −1 in hundreds of femtoseconds
see the Supplementary material for theoretical anal-
sis of temperature rise by PiP) and an ultrafast ther-
al gradient with the Gaussian distribution is gen-
rated in the focus zone ( Supplementary Fig. S1a )
 24 ]. On the way to cooling the excited system,
toms obtain excessive kinetic energy to align into an
rdered arrangement, thus passivating the bulk de-
ects of the SnO 2 and improving the crystallinity of
he SnO 2 [ 21 , 25 ]. This temperature gradient decays
apidly via thermal diffusion in 25 ns with a quench-
ng rate of ∼10 9 K s −1 . The accumulation temper-
ture after 50 consecutive laser pulses is only 6.5 K
 Supplementary Fig. S1b ), showing that the temper-
ture rise after each single pulse drops to near room
emperature before the next pulse arrives, demon-
trating that the accumulation effect is negligible in
he PiP process of the SnO 2 film. This shows that
he whole passivation process is completed very fast
ith much more energy and time efficiency com-
ared with the conventional annealing technique. 
The microscopic characterization of the SnO 2 

hin film cross sections using high-resolution trans-
ission electron microscope (HRTEM) and the
orresponding energy-disperse X-ray spectroscopy
f Sn, O, F and Pt ( Supplementary Fig. S2 ) present
 complete coverage over the fluorine-doped tin ox-
de (FTO) surface. By comparing the HRTEM im-
ges before and after the PiP, it is found that a large
umber of amorphous particles existed in the origi-
al SnO 2 (Fig. 1 b, part i-1). This is more clearly iden-
ified from the random distribution of Sn atoms in
he atomic-resolution image and the corresponding
ast Fourier transform (FFT) pattern (Fig. 1 b, part i-
). More representative HRTEM images of the orig-
nal SnO 2 are shown in Supplementary Fig. S3 . As
hown in Fig. 1 b, part ii-1, the PiP process leads to the
nO 2 undergoing a transformation from the amor-
hous phase to the crystalline phase, thus improv-
Page 3 of 9 
ing the crystallinity of the SnO 2 , which is confirmed
by the massive appearance of lattice fringes and reg- 
ularly arranged Sn atoms. The FFT pattern of the 
SnO 2 atomic-resolution image (Fig. 1 b, part ii-2) af- 
ter PiP corresponds to the [100] zone axes. More 
representative HRTEM images of the SnO 2 after the 
PiP are shown in Supplementary Fig. S4 . 

Morphology, optoelectronic properties 
and surface defect characterization of 
SnO 2 films 
To investigate the reasons why the PiP-SnO 2 thin 
film efficiently improves the cell performance, the 
surface morphology of SnO 2 thin films was stud- 
ied by using scanning electron microscopy (SEM) 
images, as shown in Fig. 2 a. Compared with the
smooth, bare FTO surface, the SnO 2 thin film 

deposited on the FTO is composed of compact 
nanoparticles. All SnO 2 thin films are uniform and 
full-coverage except for the much higher laser flu- 
ence. This is because at high laser fluence, SnO 2 
nanoparticles tend to coalesce into large crystallites, 
resulting in pinholes in the SnO 2 thin films. These 
large crystallites and pinholes act as carrier trap sites 
in the SnO 2 /perovskite interface where the energy is 
lost through non-radiative recombination pathways, 
resulting in a reduction in carrier lifetimes. The con- 
tact angle first increases with increasing laser fluence 
(Fig. 2 b), which indicates a reduction in surface hy-
drophilic groups. However, when the laser fluence is 
further increased, the non-uniformity of the surface 
increases the hydrophilicity. The transmittance spec- 
tra of the original-SnO 2 , 170°C thermal-annealed 
SnO 2 for 1 hour (170°C-SnO 2 ) and PiP-SnO 2 thin 
films on FTO substrates are shown in Fig. 2 c and
Supplementary Fig. S5a . There is a slight increase 
in the transmittance of the substrate with the PiP- 
SnO 2 thin films, which could contribute to the high 
J SC of the PSCs. Since the SnO 2 thin film is very
thin relative to the FTO layer, there is no clear differ-
ence in transmittance. The conductivity of the SnO 2 
thin films on the FTO shows an increase of > 20%
by the PiP (Fig. 2 d and Supplementary Fig. S5b ).
Moreover, the electron mobility of various ETLs 
measured by using a space charge-limited current 
method is shown in Supplementary Fig. S6 [ 26 ]. It
can be found that the electron mobility of the SnO 2 
is higher than that of the original-SnO 2 and 170°C- 
SnO 2 , which is beneficial to SnO 2 thin films to trans-
port electrons generated from the perovskite layer, 
thereby improving the cell performance. 

Since the film deposition takes place in a water- 
based solution, OH groups (surface defects) in- 
evitably appear in the SnO 2 thin film, which is 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
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Figure 2. Characterization of SnO 2 films. (a) Schematic illustration of morphologic change of original-SnO 2 , 170°C-SnO 2 and 
PiP-SnO 2 thin films on FTO substrate and corresponding top-view SEM. Scale bars are 200 nm. Comparison of (b) contact 
angle, (c) transmittance spectra and (d) conductivity of the original-SnO 2 , 170°C-SnO 2 and PiP-SnO 2 thin films on the FTO 
substrate. (e–g) The XPS spectrum of O1s of original-SnO 2 , PiP-SnO 2 and high-laser-fluence-treated SnO 2 thin films. 
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roved by the X-ray photoelectron spectrum (XPS)
n Fig. 2 e–g and Supplementary Fig. S7a . After the
alibration of the spectra by using the C1s peak, the
econvolution of the O1s peak was executed in de-
ail to detect the four oxygen species for each sam-
le. Generally, there are two kinds of OH groups
ommonly existing on the SnO 2 thin film surface
 27 ]. One is OH (bridge) integrated with two metal
ites at 531.5 ( ±0.1) eV and the other is OH (terminal) ,
hich binds to one metal site at 532.2 ( ±0.1) eV
 27 –29 ]. The relative proportions of OH (bridge) and
H (terminal) species for each sample are listed in
upplementary Table S1 . The relative proportions of
H (bridge) and OH (terminal) decrease both for 170°C-
nO 2 and PiP- SnO 2 thin films, which indicates that
he PiP achieves a similar effect to conventional high-
emperature thermal annealing. Compared with the
70°C annealing for 1 hour, the PiP is much more
ime-efficient. From the XPS results, we can con-
rm that the PiP process can not only drive the
nO 2 undergoing a phase transition from the amor-
hous state to the crystalline state, but also reduce
he metastable surface functional groups on SnO 2 
hin films, as shown in Supplementary Fig. S7b .
Page 4 of 9 
The metastable OH (bridge) and OH (terminal) could be 
cleaving after photoexcitation, which is also indi- 
cated by the enhanced Raman peak at 632 cm 

−1 

(corresponding to the fundamental active Raman 
vibration modes A 1g ) in Supplementary Fig. S8 
[ 30 , 31 ]. 

Carrier transport behaviors between 

SnO 2 films and perovskite films 
An ideal band alignment is critical to efficiently 
extracting electrons from perovskite to ETL and 
preventing hole quenching at the ETL/perovskite 
interface [ 15 , 32 , 33 ]. As shown in Fig. 3 a, the first
principle density functional theory (DTF) cal- 
culations reveal that the removal of metastable 
surface OH groups reduces the conduction band 
minimum, facilitating charge extraction. At the 
same time, it increases the valence band maxi- 
mum, so as to efficiently transfer electrons and 
block holes ( Supplementary Fig. S9 ) [ 7 ]. Ultravi-
olet photoelectron spectroscopy (UPS) supports 
that the deeper valence band is achieved (Fig. 3 b) 
[ 34 ]. Steady-state photoluminescence (PL) and 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
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ime-resolved photoluminescence (TRPL) mea-
urements were also carried out to probe the
hotocarrier dynamics between the SnO 2 layers
nd the perovskite layer (Fig. 3 c and Supplementary
ig. S10 ). The crystallinity of the deposited per-
vskite film on different SnO 2 films is consistent,
hich is confirmed by the results of X-ray diffraction
XRD) analysis ( Supplementary Fig. S11 ). The PiP-
nO 2 /perovskite film has a lower PL intensity and
horter carrier lifetime than the other films. Time-
esolved confocal PL lifetime mapping of selectively
nnealed SnO 2 by PiP-based perovskite film and the
RPL spectra of the corresponding region demon-
trate the more efficient electron extraction after
Page 5 of 9 
the PiP (Fig. 3 d). The dotted box in the middle is
the selectively PiP-SnO 2 /perovskite region, which 
exhibits a shorter PL lifetime than the original 
part. These results further support the reduction in 
charge recombination in the PiP-SnO 2 /perovskite 
interface. To further investigate the photocarrier 
dynamics at the ETL/perovskite interface, fem- 
tosecond transient absorption spectroscopy was 
employed, as shown in Supplementary Fig. S12 , 
to show the time-resolved difference absorption 
spectra in the 10 ps–1 ns timescale of different 
SnO 2 /perovskite films. The amplitude of the 
ground-state bleaching (GSB) signal is proportional 
to the number of photocarriers in the excited state. 
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Figure 4. Universality and scalability of PiP for PSCs and performance comparison of PSCs. (a) J–V curves and photovoltaic parameters of a repre- 
sentative antisolvent-processed PSC that used original-SnO 2 /FA 0.95 MA 0.05 , 170°C-SnO 2 /FA 0.95 MA 0.05 and PiP-SnO 2 /FA 0.95 MA 0.05 . (b) J–V curves and 
photovoltaic parameters of a representative antisolvent-free-processed PSC that used original-SnO 2 /FA 0.83 Cs 0.17 , 170°C-SnO 2 /FA 0.83 Cs 0.17 and PiP- 
SnO 2 /FA 0.83 Cs 0.17 . (c) J–V curves of the PSM recorded in the lab using a mask with an aperture area of 12 cm 

2 . Average PCE evolution of the unen- 
capsulated (d) FA 0.95 MA 0.05 and (e) FA 0.83 Cs 0.17 devices measured over a 180-h stability test under light soaking with AM1.5G-simulated illumination 
(RH ∼ 20 ± 5%). The shaded regions represent the variation range of the PCE obtained from six cells. (f) Cross-sectional SEM images of original- 
SnO 2 /FA 0.83 Cs 0.17 /i-BABr/spiro/Au and PiP-SnO 2 /FA 0.83 Cs 0.17 /i-BABr/spiro/Au aged under continuous AM1.5G-simulated illumination for 180 hours. 
The degraded area of the perovskite film at the SnO 2 /perovskite interface is marked by the dashed line. 
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his signal decays when the perovskite undergoes
lectron-hole recombination or charge transfer
o an accepting layer [ 35 ]. It can be clearly seen
hat the GSB signal of the perovskite based on the
iP-SnO 2 decays faster compared with the other
wo samples in the same timescale, which supports
he more rapid charge transfer to the SnO 2 ETL
 36 ]. The decay traces of SnO 2 /perovskite have
een well fitted with a three-exponential function
Fig. 3 e) and the relevant decay time constants are
ollected in the inserted table. As shown in Fig. 3 f,
he fastest time constant τ 1 more likely arises from
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the excitation of electrons [ 37 ]. The faster time 
constant τ 2 is plausibly attributed to the electron 
transfer from the photoexcited perovskite to the 
SnO 2 conduction band, while the slowest time 
constant τ 3 is all within 40 0–60 0 ps, which can be
ascribed to the charge recombination dynamics of 
the perovskite as reported previously [ 38 , 39 ]. The
τ 2 for the PiP-SnO 2 /perovskite film is much shorter, 
which indicates the significant enhancement of the 
electron-transfer rate (1/ τ 2 ). There is a slight in- 
crease in τ 3 , indicating that the electrons can survive 
for a longer time in the PiP-SnO 2 -based perovskite. 
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niversality and scalability of PiP for 
SCs 
o evaluate the effect of the PiP of the SnO 2 thin
lm on cel l performance, we fabricated antisolvent-
rocessed PSCs that have the layered architec-
ure FTO/SnO 2 /(FAPbI 3 ) 0.95 (MAPbBr 3 ) 0.05 
FA 0.95 MA 0.05 )/spiro-OMeTAD/Au, where MA is
ethylammonium and FA refers to formamidinium.
he typical current density–voltage ( J –V ) curves
re shown in Fig. 4 a and Supplementary Figs S13
nd S14 a–c. It is worth noting that the hysteresis is
uppressed after the PiP. The PiP-SnO 2 -based PSCs
chieve a champion PCE of 24.14%, with an open-
ircuit voltage ( V OC ) of 1.17 V, a J SC of 24.85 mA
m 

−2 and a fil l factor (FF) of 0.83. The correspond-
ng stabilized power output (SPO) is 23.53% for the
iP-SnO 2 -based devices ( Supplementary Fig. S14d )
nd the statistical distributions of the photovoltaic
arameters are plotted in Supplementary Fig. S15 .
he external quantum efficiency (EQE) spectra
f corresponding perovskite devices well match
ith the J SC measured by using the J–V curves
 Supplementary Fig. S16 ). 
To prove that the PiP of SnO 2 is a univer-

ally applicable methodology, we fabricated
SCs with another type of perovskite by using
ntisolvent-free processing, FA 0.83 Cs 0.17 PbI 3 –x Cl x 
FA 0.83 Cs 0.17 ). The representative J–V curves and
orresponding SPOs are compared in Fig. 4 b and
upplementary Fig. S17 , and the statistical result
s shown in Supplementary Fig. S18 . The corre-
ponding EQE spectra show an integrated J SC of
3.94 and 23.73 mA cm 

−2 for dev ices w ith and
ithout PiP, respectively ( Supplementary Fig. 19 ),
hich match well with the measured J SC . For the cell
sing PiP-SnO 2 , we achieve a PCE of 22.75% with
egligible hysteresis. The FF increases from 78% to
0% and the V OC increases from 1.123 to 1.167 V. To
emonstrate the scalability of this approach, we fab-
icated PSMs consisting of 6-sub cells connected in
eries and obtained a PCE of 20.26% on an aperture
rea of 12 cm 

2 with a high geometric FF ( ∼97.7%)
y precise control of the P1–P2–P3 process (the
–V curves and a photograph of the PSM are shown
n Fig. 4 c). The details of the PSM architecture
nd the statistical result of the PCE are shown in
upplementary Fig. S20 . An obvious increase in V OC 
or both FA 0.95 MA 0.05 , FA 0.83 Cs 0.17 and FA 0.83 Cs 0.17 
SMs is observed in Supplementary Fig. S21 , which
an be attributed to the reduction in the charge
ecombination at the SnO 2 /perovskite interface. In
ddition, PSCs using PiP-SnO 2 also have improved
erformance compared with PSCs using SnO 2 
onventionally annealed at 170°C-SnO 2 . Further-
ore, as shown in Fig. 4 d and e, the long-term
Page 7 of 9 
stability of the devices with PiP-SnO 2 under light 
soaking with AM1.5G-simulated i l lumination at 
a temperature of 20 ± 5°C is greatly enhanced 
compared with other annealing conditions when 
stored under ambient air conditions with 20% ±
5% relative humidity (RH) without encapsulation 
over 180 hours. Upon introducing the PiP strategy 
to passivate the SnO 2 layer, the bulk morphology of 
the SnO 2 /perovskite bilayer featuring well-defined 
interfaces is markedly stabilized under continuous 
AM1.5G-simulated i l lumination for 180 hours 
(Fig. 4 f and Supplementary Fig. S22 ). Taken to-
gether, our results suggest that the PiP of SnO 2 is an
effective and universal approach to significantly en- 
hance PSC performance and facilitates the scale-up 
of PSCs. 

CONCLUSION 

In summary, in this study, we developed a novel non- 
equilibrium PiP technique for the low-temperature 
fabrication of PSCs. The ultrafast and efficient 
electron–electron and electron–phonon scatter- 
ing ensure room-temperature annealing of SnO 2 
nanoparticle-based ETLs prepared by using CBD 

with an ultrafast heating rate, which efficiently 
passivates the surface and bulk defects of SnO 2 . 
By rapidly scanning a laser beam, the annealing 
process at room temperature can be finished in a few
minutes, which normally takes hours by continuous 
thermal annealing at 170°C, reducing the energy 
cost and fabrication time. Our PiP technique has 
been demonstrated to be a universal and scalable 
approach in different types of PSCs and PSMs, 
and shows significantly enhanced performance in 
both PCE and stability ( Supplementary Table S2 ). 
This study establishes a new approach towards 
the commercialization of efficient low-temperature 
manufacturing of PSCs. 

METHODS 

SnO 2 ETL fabrication 

The FTO substrate was first etched by using a fem-
tosecond laser scanning system and then cleaned by 
sonicating in detergent, deionized water and ethyl al- 
cohol for 30 min each. The CBD solution was pre-
pared by dissolving 5 g of urea, 100 μL of mer-
captoacetic acid and 5 mL of HCl (37 wt%) into
400 mL of deionized water and then adding 1.096 g
of SnCl 2 �2H 2 O to the solution (0.012 M). The
cleaned FTO substrate was immersed in the diluted 
CBD solution (0.002 M) and reacted at 90°C. Af-
ter 3 hours, the SnO 2 deposited FTO substrate was 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad245#supplementary-data
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ashed by sonicating in deionized water for 5 min.
he thus prepared SnO 2 thin film was then pro-
essed under different annealing conditions. 

he home-built PiP set-up 

 femtosecond laser source (TANGOR-100 W, Am-
litude) with a center wavelength of 1030/515 nm,
ulse duration of ∼425 fs and osci l lator frequency
lose to 40 MHz was integrated into a polygon laser
canning system (LSE3 00 STD, Nex t scan tech-
ology) that was equipped with a high-precision
inear stage (PRO165LM, Aerotech). An attenuator
2-EWP-R-0515-M, Altechna) was placed in the op-
ical path to adjust the laser pulse energy fluence. The
olygon laser scanning speed could be up to 100 m
 

−1 . To measure the exact pulse energy, a photodi-
de power meter was used (S120VC, Thorlabs). The
n-scan resolution and the cross-scan resolution were
et to 0.9 and 20 μm, respectively, so that the laser
pot (45 μm) could fully cover the sample. The laser
canning speed was 36 m s −1 and the stage moving
peed was 1.66 mm s −1 . 

SM laser etching 

1, P2 and P3 were all scribed by using a femtosec-
nd laser machine (Pharos-10 W, light conversion).
he FTO glass was first etched to form the mod-
le substrate with six strips (P1) with a laser power
f 0.15 W, pulse duration of 10 ps, repetition rate of
0 KHz and laser scanning speed of 250 mm s −1 . Af-
er the deposition of the spiro-OMeTAD film, the
ample was re-etched to form P2 lines with a laser
ower of 0.3 W, pulse duration of 2 ps, repetition rate
f 200 KHz and laser scanning speed of 500 mm s −1 .
inally, an effective series of connected modules was
ormed by etching the Au to form P3 lines with a laser
ower of 5 mW, pulse duration of 260 fs, repetition
ate of 1 KHz and laser scanning speed of 20 mm s −1 .
ith precise control of the P1–P2–P3 process, we
chieved a high geometric FF ( ∼97.7%). 

UPPLEMENTARY DATA 

upplementary data are available at NSR online. 
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