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Abstract 

Secreted and membrane proteins represent a third of all cellular proteins and contain N-terminal signal peptides that are required for protein 
targeting to endoplasmic reticulum ( ER ) . Mutations in signal peptides affect protein t argeting , translocation, processing, and stability, and are 
associated with human diseases. Ho w e v er, only a few of them have been identified or characterized. In this report, we identified pathogenic 
signal peptide variants across the human genome using bioinf ormatic analy ses and predicted the molecular mechanisms of their pathology. 
We reco v ered more than 65 thousand signal peptide mutations, o v er 11 thousand w e classified as pathogenic, and proposed frame w ork f or 
distinction of their molecular mechanisms. The pathogenic mutations affect o v er 3.3 thousand genes coding for secreted and membrane proteins. 
Most pathogenic mutations alter the signal peptide h y drophobic core, a critical recognition region for the signal recognition particle, potentially 
activ ating the R egulation of Aberrant P rotein P roduction ( RAPP ) quality control and specific mRNA degradation. The remaining pathogenic 
variants ( about 25% ) alter either the N-terminal region or signal peptidase processing site that can result in translocation deficiencies at the ER 

membrane or inhibit protein processing. This work provides a conceptual framework for the identification of mutations across the genome and 
their connection with human disease. 
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ukaryotic cells have multiple intracellular compartments
hat require coordinated protein sorting. Ribosomes synthe-
ize thousands of proteins that must be transported to dif-
erent organelles, integrated into membranes, or secreted out-
ide of the cell ( 1 ) . Different intrinsic signals in the amino acid
equence act like postal codes to deliver proteins to specific
ellular locations ( 2 ,3 ) . The most numerous targeting signals
nclude signal peptides, N-terminal amino acid sequences that
irect the targeting and translocation of many secreted and
embrane proteins to the endoplasmic reticulum ( ER ) ( 4–7 ) .

ecreted and membrane proteins represent over 30% of the
uman proteome and participate in essential biological pro-
esses such as cell signaling, transport, and cell recognition
 8–10 ) . Defects in the trafficking of secreted or membrane pro-
eins contribute to the pathogenesis of many human diseases
 7 ,11–15 ) . 

Co-translational protein targeting involves nascent peptide
ecognition by a ribonucleoprotein complex known as the sig-
al recognition particle ( SRP ) . SRP co-translationally binds
he signal peptides or transmembrane domains of secreted or
embrane proteins once they are exposed from the ribosome’s

xit tunnel, forming SRP-ribosome-nascent-chain complexes
 SRP-RNC ) . When SRP binds to the RNC, it temporarily ar-
ests translation to allow targeting of the complex to the SRP
eceptor in the ER membrane. SRP then hands the RNC to
he SEC61 translocon for co-translational translocation into
he ER lumen. Signal peptidase cleaves signal peptides after
ranslocation, releasing the protein into the ER lumen. These
vents are summarized in Figure 1 A and have been described
n detail in multiple reviews ( 7 ,16–21 ) . 
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Signal peptides do not have a consensus sequence, but con-
tain three distinct regions with conserved physicochemical fea-
tures: a positively charged N-terminal region ( N-region ) ; a
hydrophobic region ( H-region ) , which consists of primarily
aliphatic amino acid residues; and a C-terminal region ( C-
region ) , which includes the cleavage site recognized by sig-
nal peptidase ( 4 , 5 , 22 ) ( Figure 2 A ) . The H-region is the most
critical region for SRP recognition, which is directly involved
in hydrophobic interactions between the signal peptide and
the methionine-lined binding pocket of the SRP54 subunit.
Some mutations in the H-region have been shown to lead to
severe defects in SRP recognition of the signal peptide ( 15 ,23–
25 ) ( Figure 1 B ) . In contrast, some signal peptide mutations in
the C-region have been shown to disrupt signal peptide cleav-
age, leading to the accumulation of precursor protein in the
ER membrane ( 26 ,27 ) ( Figure 1 C ) . Mutations in the N-region
can interfere with protein translocation efficiency, induce pro-
tein mistargeting and aggregation, or can lead to the accu-
mulation of precursor proteins at the ER membrane because
the signal peptide is not oriented correctly in the translocon
( 14 , 23 , 28 , 29 ) ( Figure 1 D ) . 

Misfolded and mistargeted proteins are often cytotoxic.
Cells have developed several quality control mechanisms to
prevent mistargeting or the accumulation of misfolded se-
cretory and membrane proteins ( 30–32 ) . These quality con-
trol mechanisms occur in the cytosol during protein tar-
geting or at the ER during translocation. One of them is
the preemptive quality control pathway, the Regulation of
Aberrant Protein Production ( RAPP ) , which senses the fail-
ure of SRP to recognize signal peptides, and specifically tar-
gets secretory and membrane protein mRNAs for degradation
er 25, 2023. Accepted: September 29, 2023 
enomics and Bioinformatics. 
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Figure 1. Mutations in signal peptides affect different molecular mechanisms. ( A ) Illustration of a normal targeting of secreted / membrane proteins to 
ER. When a nascent polypeptide containing signal peptide is exposed from the ribosome tunnel, it is co-translationally recognized by SRP. Then, the 
SRP-ribosome nascent chain complex is targeted to SRP receptor in the ER membrane. Finally, the nascent polypeptide is co-translationally translocated 
into the ER lumen through protein-conducting channel in SEC61 translocon, the signal peptide is clea v ed off b y signal peptidase ( SPase ) , and the mature 
protein is released from the ER membrane and transported further to extracellular space, or integrated into the plasma membrane, or remained in the 
ER lumen. ( B ) Mutations affecting h y drophobicity of signal peptide H-region lead to SRP recognition failure, activation of the RAPP pathway and 
degradation of the protein’s mRNA. ( C ) Mutations in signal peptide clea v age site may affect protein processing leading to accumulation of unprocessed 
protein in ER. ( D ) Mutations in signal peptide N-terminus may affect its interaction with SEC61 translocon decreasing protein translocation efficiency. 
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Figure 2. Detection of signal peptides and signal peptide missense variants at the whole human genome. ( A ) Graphical representation of signal peptide 
regions: N-terminal region ( N ) , h y drophobic region ( H ) , C-terminal region with clea v age site for signal peptidase ( C ) . The numbers are median lengths of 
the human signal peptides and their regions as determined in this work as shown in the figure panels C and D. ( B ) Relative number of proteins 
containing clea v able signal peptides among other proteins in human proteome. Genes coding proteins containing signal peptide sequences w ere 
selected from the UniP rotKB / Swiss-P rot and verified by SignalP 6.0. The number of proteins were determined by the exclusive stable Ensembl peptide 
identifiers. ( C ) Distribution of signal peptides relatively to their length in amino residues among all signal peptides. ( D ) Frequency distribution of signal 
peptide regions per amino acid sequence length in all signal peptides. ( E ) Percentage of missense variants detected inside and outside of the signal 
peptide coding sequences. ( F ) Distribution of the detected signal peptide missense variants between different signal peptide regions. The signal peptide 
variants include those located in the position +1 because it may affect signal peptide cleavage ( protein processing ) . 
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 15 , 24 , 25 , 33 , 34 ) ( Figure 1 B ) . Other quality control mecha-
isms in the cytosol involve the recognition of aberrant pro-
eins that have already been synthesized and released from the
ibosome. These are known to be targeted for degradation
y the ubiquitin / proteasome system in the cytoplasm ( 35 ) .
t the ER, misfolded or accumulated proteins activate the
nfolded Protein Response ( UPR ) , or ER-associated degrada-

ion ( ERAD ) ( 32 ,36–38 ) . Unprocessed precursors due to mu-
ations at the signal peptidase cleavage site or in the N-region
are modified with ubiquitin and subjected to degradation by
the proteasome, reviewed in ( 39 ) . 

The association between signal peptide variants and hu-
man diseases is likely underestimated. While there are sev-
eral reports of missense variants in signal peptides that are
associated with human diseases, researchers have experimen-
tally validated only a few variants ( 7 , 15 , 24 , 40–55 ) . Since it
is technically impossible to study the contribution of all sig-
nal peptide variants to the pathogenesis of human diseases,
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strategies of classification and prediction are needed to iden-
tify pathogenic signal peptide variants. Here, we report sin-
gle nucleotide polymorphisms ( SNPs ) in signal peptide cod-
ing sequences across the human genome and predicted their
pathogenicity. Using a rational stepwise classification strategy,
we identified more than eleven thousand predicted pathogenic
variants ( PPVs ) and their possible molecular mechanisms in a
number of human diseases. We validated some PPVs by com-
putational modeling of their interactions with SRP compared
to the wildtype sequence. Our analysis provides a conceptual
framework for how PPVs may alter the targeting, transloca-
tion, and processing of more than three thousand membrane
and secreted proteins. Identifying PPVs in signal peptides will
contribute to our understanding of the secretory pathway and
the genetic basis for human diseases. 

Materials and methods 

Identification of human proteins with signal 
peptides 

Gene-coding proteins with signal peptides were identified by
using the UniProtKB / Swiss-Prot database. The search com-
prised the following parameters: ‘annotation: ( type: signal )
AND reviewed: yes AND organism: ‘Homo sapiens ( Human )
[9606]’ ( 56 ) . These proteins were annotated with stable
ensemble protein IDs ( https:// m.ensembl.org/ info/ genome/
stable _ ids/index.html ) and the amino acid sequences were re-
covered as .fasta format by using the function ‘getSequence’
of the BiomaRt package ( 57 ). The SignalP 6.0 slow mode al-
gorithm through Python Programming Language 3.10.0 was
used to predict the presence of signal peptides and signal pep-
tide regions ( https:// www.python.org/ ) ( 58 ). See Supplemen-
tary File S1. 

Identification of human signal peptide variants 

To identify genetic variants associated with signal peptides, the
single nucleotide variation database (dbSNP) from NCBI was
used ( 59 ). The SnpEff algorithm predicted each variant’s effect
at the protein level, using the GRCh38.p13 human genome
for reference ( 60 ), Ensembl’s Variant Effect Predictor algo-
rithm selected missense variants that affected canonical pro-
teins ( 61 ). 

The generated datasets containing (i) signal peptide pro-
teins and (ii) human missense variants were matched based
on the Ensembl protein IDs. The variants that fell within the
signal peptide protein sequence were selected. The last amino
acid residue in the signal peptide just before the cleavage site
was denoted as ‘–1’, and the first amino acid residue in the
mature part as ‘+1’ (the location of the signal peptide cleavage
site is between the –1 and + 1 amino acid positions). The +1
amino acid residues were included in the analysis of wild type
signal peptides. The mutant versions were built by replacing
the reference (wildtype) amino acid with the respective amino
acid incorporated by the missense variant in Microsoft Excel.

Identification of signal peptide pathogenic variants 

The identification of a predicted pathogenic variant (PPV) in-
cluded a stepwise strategy of classification performed partially
in the R language and with Microsoft Excel (Supplementary
Files S3, S9). Three parameters were defined to detect mis-
sense variants that interfere with signal peptide recognition in
the hydrophobic core: 
• missense variants that modify the hydrophobic core (H- 
region); 

• variants that decrease the hydrophobicity; 
• variants that reduce the potential binding between the 

signal peptide and SRP. 

First, missense variants outside of the H-region were filtered 

out. Next, the change in hydrophobicity was estimated by sub- 
tracting the hydrophobicity of the amino acid of the variant 
from the amino acid of the wild type. The hydrophobicity es- 
timation was based on the Kyte & Doolittle scale ( 62 ). Sig- 
nal peptides with significant hydrophobicity decreases were 
considered for further analysis of the potential change in SRP 

interaction via the Boman Index. The potential protein inter- 
action index, or the Boman Index, was used to measure the 
variant’s overall impact on the signal peptide interaction with 

SRP. This parameter was estimated by subtracting the Boman 

Index of the wild type amino acid from its variant, followed 

by multiplication by 100 for scaling ( 63 ). Based on previous 
experiments ( 15 ), the change in the Boman Index ≤–20 was 
used as the cutoff for possible SRP recognition failure, RAPP 

activation, and induced mRNA decay. The variants that ful- 
filled these three parameters were classified as PPVs in the 
H-region. 

Detection of variants leading to signal peptidase failure was 
based on the selection of missense variants modifying the sig- 
nal peptide C-region or the position + 1. The amino acid po- 
sition ‘+1’, ‘–1’ and ‘–3’ were identified based on the cleav- 
age site. The predicted variants incorporating less frequent 
amino acids and potentially affecting signal peptidase recog- 
nition were classified as PPVs. 

To identify pathogenic variants in the N-region, the mis- 
sense variants that incorporate negatively charged amino 

acids aspartate (D) and glutamate (E) instead of polar, non- 
polar, or positively charged amino acids were also classified 

as PPVs. 

Computational modelling of the signal recognition 

particle targeting a signal peptide 

DeepMind’s AlphaFold ( 64 ,65 ) was used to predict how 

SRP54 and the signal peptide dock de novo . AlphaFold uses 
machine learning and artificial intelligence to predict sec- 
ondary , tertiary , and quaternary structures from the primary 
amino acid sequence. AlphaFold minimizes the root mean 

square deviation (RMSD) between atoms. RMSD is ultimately 
a measure of accuracy, the square root of the differences be- 
tween predicted and observed values. RMSD values closer to 

or below 0 indicate better models than those above 0. Thus,
minimizing RMSD leads to more optimal models. Rosetta On- 
line Server that Includes Everyone (ROSIE) uses AlphaFold’s 
model as a starting point before predicting how SRP54 and the 
signal peptide interact by further minimization of the RMSD 

and its own internal Rosetta Total Score generated by 1000 

model iterations ( 66 ,67 ). 
Models are submitted to ModelArchive (mode- 

larchive.org). The individual links for the models are: 
SRP54 with ALK WT signal peptide: 

modelarchive.org / doi / 10.5452 / ma-owxf7 

SRP54 with ALK W8R signal peptide: 
modelarchive.org / doi / 10.5452 / ma-w701z 

SRP54 with ALK S15Y signal peptide: 
modelarchive.org / doi / 10.5452 / ma-cm6gn 

https://m.ensembl.org/info/genome/stable_ids/index.html
https://www.python.org/
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The models were further validated according to CAPRI
uality assessment criteria with correct models defined as
ollows: 

Fnat (frequency of native contacts) > 0.1 -OR- 
Ligand rms (root mean squared) < 10.0 -AND- interface

ms (irms) < 4.0 

Supplementary File S11 provides validation of SRP54
osetta models with different ALK signal peptides. SRP54
ith ALK WT and SRP54 with ALK S15Y are valid as mod-

ls, but SRP54 with ALK W8R is not valid as a model that
emonstrates SRP54 and ALKW8R do not interact, and, thus,
n agreement with our prediction. 

olecular images 

he molecular images were created in PyMol ( 68 ). The SRP
ubunits were aligned on 7SL RNA using PDB coordinates
RY1, 5WR W, 5WR V, 4P3F and 1MFQ ( 69–72 ). The image
f the human signal peptidase complex was prepared by using
oordinates 7P2P ( 73 ). 

ssociation of signal peptide variants and human 

iseases 

enes with a PPV were surveyed for their association with
uman disease. The analysis was based on the Genetic As-
ociation Database (GAD) using the DAVID Bioinformatics
esources 6.8, NIAID / NIH. We filtered significantly enriched
iseases and disease categories by a false discovery rate lower
han 0.05. We estimated the association between a decrease
n protein expression and disease or cell phenotype using
he function ‘BioProfiler’ in IPA software (Qiagen, Version:
63620684). 

ssociation of signal peptide genes and biological 
rocesses 

he set of genes with PPVs was analyzed based on Protein
Nalysis THrough Evolutionary Relationships, a bioinfor-
atical analysis tool that groups genes based on evolutionary

elationships ( 74 ) (Supplementary File S10). We used a cut-
ff of 50 genes to define a group of genes that clustered for a
iological process. 

esults 

ignal peptides in human proteome 

here were 3607 genes encoding proteins with annotated sig-
al peptides in the UniProtKB / Swiss-Prot database ( 56 ) (Sup-
lementary File S1 UniProt). We assigned 4504 different pro-
eins stable Ensembl peptide identifiers to avoid redundancy
see Methods) and to accurately denote different isoforms
Supplementary File S1 Ensembl). To validate the presence of
ignal peptides in the recovered amino acid sequences and to
etermine the signal peptide regions, we analyzed these by
he predictive algorithm SignalP6.0 that was recently pub-
ished using the slow mode ( 58 ). As a result, we confirmed
he presence of 4142 different proteins with signal peptides
Supplementary File S1 SignalP6.0Slow). We chose the most
bundant protein isoforms as the reference for canonical tran-
cripts. Proteins with cleavable signal peptides contribute to
0% of the total human proteome (Figure 2 B, Supplementary
ile S1). Signal peptides are variable in length with a median of
2 amino acids (Figure 2 A, C). As previously mentioned, sig-
nal peptides have conserved functional domains. To annotate
these domains for each signal peptide, we used the slow mode
algorithm of SignalP6.0, which defines the borders of each of
the three domains for each signal peptide ( 58 ). These domains
vary in length with median values of 3 residues for the N-
region, 14 residues for the H-region and 5 residues in the C-
region (Figure 2 A, D, Supplementary File S1). The C-region is
the most conserved in length. Furthermore, signal peptide re-
gions are characterized by specific features. The N-region con-
tains 16.5% of positively charged amino acids, with almost
three times more arginine than lysine. Other amino acids such
as alanine, glycine, and proline are also frequently observed
in the N-terminal region with a frequency of 9.78%, 8.24%
and 9.22%, respectively. The least frequent amino acid in
the N-region is tyrosine (0.28%). The central H-domain pre-
dominantly contains hydrophobic amino acids such as leucine
(36.93%), valine (8.8%), and alanine (9.68%), while aspar-
tate (0.21%), asparagine (0.39%), and lysine (0.41%) are
rare. Finally, the C-region contains mostly alanine (20.14%),
glycine (16.16%), and serine (11.06%), while the presence of
methionine (0.9%), phenylalanine (0.99%), and asparagine
(1%) are rare (Supplementary File S2). Overall, these results
highlight that although human SPs are variable in amino acid
sequences, signal peptide regions preferentially contain spe-
cific groups of amino acids that support conserved functional
features. 

Missense variants modifying signal peptides 

To detect signal peptide variants, we used the dbSNP-NCBI
repository to recover all reported human single nucleotide
polymorphisms (SNPs) ( 75 ). We further categorized these
SNPs by effect: synonymous, missense, upstream, down-
stream, in-frame and out-of-frame shifts, and deletions using
SnpEff 5.0 software ( 60 ). We selected missense variants and
annotated these SNPs with the Variant Effect Predictor algo-
rithm ( 61 ). Out of 1 540 002 missense variants in genes coding
for proteins with signal peptides, 65 655 or over 4% of mis-
sense variants were actually located within the signal peptides
of 3506 unique proteins (Figure 2 E, Supplementary File S3).
This means that 82% of signal peptide-containing proteins
have at least one missense mutation in their signal peptide
(Supplementary File S3). The distribution of missense variants
showed that 12 003 change the N-region; 37 526 change the
H-region; and 16 126 change the C-region. (Figure 2 F, Sup-
plementary File S3). Most variants (57%) were found in the
H-region, the lengthiest domain in signal peptides. 

As stated above, we used two approaches for detection of
signal peptides in the proteins, UniProt and SignalP6.0 (slow
mode). Comparing signal peptides detected by these meth-
ods, we observed that while the majority (83%) of the sig-
nal peptides are the same regardless of the method used, 17%
of signal peptides have alternative lengths (see Supplemen-
tary Text and Supplementary Figure S1). Moreover, we ob-
served that UniProt and SignalP6.0 distributed residues dif-
ferently between the H- and C-regions. Although it is impossi-
ble to evaluate whether UniProt or SignalP6.0 is more precise
without reliable experimental data, our results suggest that
the research groups working with secretory proteins need to
pay careful attention to the algorithms used to predict signal
peptides. Although we completed analysis of all alternative
variants (see Supplementary Text, Supplementary Files and
Supplementary Figures S1–S3), we chose to utilize SignalP6.0
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exclusively as it is the most up-to-date software for signal pep-
tide prediction. 

Numerous variants modifying the signal peptide 

H-region are predicted to disrupt SRP recognition 

and activate RAPP 

The central hydrophobic signal peptide H-region contains
most of the missense variants ( n : 37 526, or 57%) (Figure
2 F). This region is crucial for signal peptide interaction with
SRP, the first step for targeting secreted proteins to the ER
( 23 ) (Figure 1 A). Previously, we have shown that mutations
that reduce the hydrophobicity of the H-region impair SRP
recognition and lead to mutant protein mRNA degradation
through the RAPP pathway ( 15 ,23–25 ) (Figure 1 B). To predict
mutations that activate RAPP, we selected missense variants in
the H-region protein coding sequence (Figure 3 A) and classi-
fied these variants by their effect on H-region hydrophobicity.
SRP recognition of the H-region is impaired when changes be-
tween wildtype and mutant signal peptides result in a notable
hydrophobicity decrease (Figure 3 B). In contrast, SRP recog-
nition still occurs when hydrophobicity increased or slightly
changed. We previously demonstrated with a range of muta-
tions that the more drastic a hydrophobicity change in the
H-region causes a loss of SRP client mRNA ( 15 ). We applied
the Boman Index ( 63 ), a parameter to estimate protein bind-
ing, to predict SRP interaction with each signal peptide H-
region variant. The Boman Index is the sum of the solubility
values for all amino acid residues in a protein sequence di-
vided by the number of residues. In our analysis, Boman In-
dex provides an overall estimate of peptide binding to SRP.
When the Boman Index value is high, the protein has a high
binding potential. Based on our previous experimental analy-
ses of disease-causing mutations in the signal peptides ( 15 ), we
found that changes in the Boman index of these secretory and
membrane proteins correlate well with the observed changes
in the mRNA expression (Figure 3 C). Therefore, changes in
the Boman index score induced by signal peptide variants can
be used to predict decay of the mutant protein mRNAs. As
a result, we identified 8539 missense variants, or 23% of to-
tal H-region missense variants which substantially decreased
both the hydrophobicity and the signal peptide-SRP interac-
tion and classified them as PPVs due to their propensity to
activate RAPP (Figure 3 D, Supplementary File S3 PPV Class).

Variants at or near the signal peptidase cleavage 

site leading to preprotein processing failure 

We identified 16 126 missense variants in the C-terminal re-
gion and +1 position upstream of the cleavage site (Figure 4 ,
Supplementary File S3 PPV Class). While variants in the sig-
nal peptide H-region can impair recognition by SRP, variants
in the signal peptide C-region can affect the cleavage of the sig-
nal peptide that is required to generate mature proteins (Figure
1 C). The signal peptide C-region is characterized by the (–3,
–1) rule which specifies restrictions for the amino acids at –3
and –1 positions near the cleavage site (–1 is the amino acid on
the N-terminal side of the cleavage site while +1 is the amino
acid on the C-terminal side of the cleavage site) ( 22 ). In our
analysis, positions –3 and –1 are notably more conserved (e.g.
alanine consists of > 25% of residues in –1 and –3) than po-
sition +1 (Figure 4 B), which agrees with the ‘–3, –1’ rule that
small, neutral amino acids are predominant in these positions
(Figure 4 C). We used residue abundance at each position in the
C-region in the wild type sequence to predict missense variants 
that lead to impaired signal peptide cleavage (Figure 4 D). For 
example, tyrosine is a rare ( < 0.5%) amino acid in the –3, –1 

and +1 positions (Figure 4 C); thus, a missense mutation to ty- 
rosine would be considered a PPV in any of those positions.
As a result, 2267 missense variants (14% of all missense vari- 
ants detected in the C-region) were retrieved and classified as 
PPVs. We show their distribution among amino acid positions 
in the C-region in Figure 4 E. 

To validate PPVs in the C-region, we compared our predic- 
tion with the data available in the ClinVar repository. Clin- 
Var archives the relationships between human genetic varia- 
tion and phenotypic expression with references and automat- 
ically archives any variant reported in other databases. Using 
this tool, we observed that 16 out of the 19 C-region variants 
(84%) in the ClinVar repository affect the –3 and –1 positions,
and we identified 12 of them (75%) as PPVs by our strategy 
(Supplementary file S4). 

Signal peptide N-region variants that likely affect 
protein translocation through the SEC61 translocon 

While the roles of the signal peptide H- and C-regions in SRP 

recognition and signal peptide cleavage are relatively well es- 
tablished, the function of the N-region is not well understood.
Residues in the N-region affect the secretion efficiency of bac- 
terial proteins ( 76 ), and the presence of positively charged 

amino acids (lysine and arginine) in this region is important 
for correct orientation of preproteins in the SEC61 translo- 
con in eukaryotes ( 77 ). The positive charge of the N-region 

is also particularly important for the efficient translocation of 
small secretory proteins in humans ( 28 ). Thus, missense vari- 
ants affecting the positive charge of the N-region likely result 
in decreased translocation efficiency and contribute to disease 
(Figures 1 D, 5 A). The association of N-region variants with 

clinical disease is less evident than for the H-region or the C- 
region, and most of the negatively charged N-region variants 
in the ClinVar repository annotated ‘uncertain significance’ 
due to limited data available. We identified in wild-type N- 
region sequences that acidic residues are not common (Figure 
5 B). Further, our analysis revealed 12 003 missense variants 
in the N-region, and 705 (6%) of these introduced negatively 
charged amino acids and were identified as PPVs (Figure 5 C).
Although the clinical data for signal peptide N-domain vari- 
ants are still minimal, our evaluation provides a concept for 
contribution of mutations in this region to human diseases. 

Computational modeling of SRP and signal peptide 

interactions 

To test how mutations in signal peptides potentially affect in- 
teraction with SRP and verify our prediction of the pathogenic 
variants and their possible molecular mechanisms, we created 

in-silico models to show the interaction of wild-type and mu- 
tated signal peptides with SRP54, a subunit of SRP. We se- 
lected ALK protein (ALK receptor tyrosine kinase) for this 
analysis. ALK is a representative membrane protein, and as 
we found, it is one of the proteins containing multiple muta- 
tions in the signal peptide (Supplementary Files S3 and S5).
Our model used amino acids 1–20 of the ALK signal pep- 
tide; this region covers the entire N- and H-regions and a part 
of the C-region as determined by SignalP6.0 (Figure 6 A). We 
chose two different mutations: W8R, which is predicted to 

affect hydrophobicity dramatically and is designated a PPV 
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Figure 3. Gene variants affecting the signal peptide H-region can be pathogenic by inducing SRP recognition failure. ( A ) Schematic representation of 
positions of missense variants modifying the signal peptide H-region sequence. These variants can affect interaction with SRP. SRP image was created 
in PyMol by aligning the SRP subunits on 7SL RNA. The SRP subunits are marked. ( B ) Hydrophobicity scale of amino acids substitutions resulted from 

missense variants relatively to wildtype amino acids in signal peptides. Color gradient represents the effect on the hydrophobicity after replacing 
wildtype amino acid with a mutant variant—blue is high and red is low hydrophobicity. The scores of hydrophobicity per amino acid were estimated by 
Kyte-Doolittle scale. ( C ) Missense variants potentially reducing the SRP interaction and activating protein’s mRNA degradation via RAPP pathway. The 
changes in the potential protein interaction across signal peptide sequences (Boman index, Y-axis) positively correlate with the changes in protein’s 
mRNA le v els e xperimentally detected (X-axis). Correlation analy sis w as completed b y Pearson test. R -squared: 0.732. F distribution v alue: 40.95. 
Freedom degrees of numerator: 1. Freedom degrees of denominator: 15. P value: < 0.0 0 01. ( D ) Summary of the strategy used for the identification of 
PPVs affecting signal peptide H-region. 
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Figure 4. The incorporation of less frequent amino acids in signal peptidase cleavage region potentially leads to signal peptide processing failure and 
disease. ( A ) Schematic representation of the signal peptidase targeting the signal peptide C-region. The str uct ure of signal peptidase complex is 
visualized within the ER lipid bilayer. ( B ) Protein sequence logo plot. Amino acid postions respectively to the signal peptide cleavage site are shown on 
the X-axis. The height of amino acid symbols within the stack indicates the relative frequency of each amino per position measure in bits (Y-axis). ( C ) 
Table of the relative frequency of each amino acid per signal peptide position. Less to more frequent amino acids are indicated with blue and orange, 
respectively. Middle values are indicated with white. ( D ) Summary of the strategy used for identifying PPVs that potentially affect the signal peptide 
clea v age b y signal peptidase. ( E ) Distribution of PPVs per signal peptide amino acid position. 

 

 

 

 

 

 

 

 

 

 

according to our algorithm, and S15Y, which does not de-
crease hydrophobicity and is not a PPV (Figure 6 ). We
used ROSIE (Rosetta Online Server that Includes Everyone)
( 66 , 67 , 78 ) to determine the best protein folding model and
find whether the H-domain of ALK signal peptides will dock
into the SRP54 M-domain hydrophobic pocket. We graphed
the distribution of the top 100, and 1000 models in Rosetta
Total Score and root-mean-square-deviation (RMSD) coordi-
nates in Figure 6 B–D, central panels. Lower RMSD values in-
dicate more similar structures to the reference, and we indi-
cated the most minimized, and therefore more reliable, mod- 
els. Comparing models of SRP54 with WT and S15Y sig- 
nal peptides, we observed that both signal peptides (WT and 

S15Y) are predicted to be in the hydrophobic pocket of SRP54 

(bottom left dots in the graphs, Figure 6 B, C, central panels). In 

contrast, the ALK W8R mutant does not show models in the 
bottom left of the graph and therefore does not have a struc- 
ture that matches the reference inside the SRP54 hydropho- 
bic pocket (Figure 6 D, central panel). We then used PyMol 
( 68 ) to visualize the indicated top Rosetta models to determine 
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Figure 5. Variants introducing negatively charged amino acids in the signal peptide N-region are potentially pathogenic. The presence of positively 
charged amino acids is a main trait of signal peptide N-region. The N-terminal positive charge is required to orientate the nascent polypeptide across 
SEC61 translocon. The incorporation of negatively charge amino acids potentially impair signal peptide orientation. ( A ) Strategy for selecting PPVs in the 
N-region. ( B ) Bar chart summarizing the non-polar, polar, negative and positive amino acids detected in all wildtype and mutated signal peptides. ( C ) Bar 
chart summarizing the total variant amino acid distribution in non-pathogenic and pathogenic variants. 
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here the signal peptides are docking with SRP54 (Figure 6 B–
, right panels). Supplementary File S11 provides validation
f SRP54 Rosetta models with different ALK signal peptides.
RP54 with ALK WT and SRP54 with ALK S15Y are valid
s models, but SRP54 with ALK W8R is not valid as a model
emonstrating that SRP54 and ALKW8R do not interact, and,
hus, in agreement with our prediction. 

Our analyses demonstrate that while wild-type and S15Y
ariant signal peptides successfully dock in the SRP54 hy-
rophobic pocket crucial for signal peptide recognition, W8R
oes not (Figure 6 B–D, right panels). Earlier, we showed
hat the loss of SRP interaction with signal peptide triggers
APP protein quality control leading to mRNA degrada-

ion. Thus, we propose that activation of the RAPP path-
ay and loss of the ALK expression is a molecular mech-

nism of pathologies associated with W8R mutation. Thus,
sing the in-silico molecular modelling, we are able to dis-
inguish between predicted pathogenic and non-pathogenic
ariants. This approach may be helpful for a detailed eval-
ation of mutation outcomes for other proteins in wide
pplications. 
 

Validation of PPVs by experimental data extracted 

from the literature 

To verify that our strategy can identify variants that lead to
RAPP and induce mRNA decay, we searched the literature for
studies that report mRNA expression for proteins with signal
peptide variants. Though few studies quantitatively analyzed
signal peptide mutant mRNA and protein expression, our pre-
dictions match the experimentally evaluated mRNA levels ex-
pressed in different mutant cell lines (Table 1 ). 

Once we classified variants as PPV, we compared our list
with the information available in ClinVar. Based on clinical
data, this database classifies human variants in terms of their
pathogenic effect. As a result, of the 43 verified pathogenic
variants that affect the signal peptide H-region, 30 ( ∼70%)
were correctly identified as PPV by our algorithm (Supple-
mentary file S4). Thus, we could predict most of the clinical
variants modifying the signal peptide H-region. 

Together, our data demonstrate that the proposed bioinfor-
matic strategy can be used to identify human signal peptide
variants which impair SRP recognition and activate protein
quality control pathways leading to different human diseases.
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Figure 6. in silico molecular modeling of SRP54 interactions with signal peptides. ( A ) Positions of mutations W8R (PPV, marked in red) and S15Y (NPV, 
marked in black) in the signal peptide of ALK receptor tyrosine kinase. Signal peptide was predicted by SignalP6.0. (B–D) Modeling of the wild-type ALK 
signal peptide ( B ) and the mutants, S15Y ( C ), W8R ( D ). The hydrophobicity of each signal peptide was determined using the Kyte-Doolittle scale and 
shown in the left panels. Signal peptide mutants (red line) are compared to the WT ALK signal peptide (black line) to determine the predicted change in 
h y drophobicity. T he top 1 00 (pink) and top 1 0 0 0 (blue) models of the corresponding signal peptides and SRP are created using R OSIE (R osetta Online 
Serve that Includes Everyone) and their distribution is shown in the central panels. The top models, which are most minimized, are labeled. These top 
models were selected and visualized by the use of PyMol and shown in the right panels. W ild-t ype signal peptide (WT) is shown in green, mutated 
signal peptides are in orange, and M-domain of SRP54, a subunit of SRP, is shown in light blue. 
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Predicted pathogenic variants in human diseases 

Using our strategy and taking into account all signal peptide
regions, we identified 65 655 variants and 11 622 of them
as PPVs (Supplementary file S3). These variants affect 3506
genes, and we found PPVs in different locations of the cor-
responding signal peptides in 3344 of these genes (162 genes
of 3506 do not have any classified PPVs) (Figure 7 A, Supple-
mentary File S3). Based on our analysis and potential molec-
ular mechanisms (Figure 1 ), we propose that PPVs associated
with the signal peptide N-region affect signal peptide orienta-
tion and efficiency of protein translocation through the SEC61
translocon; PPVs associated with H-region induce the RAPP
pathway with mRNA degradation of the secreted / membrane
protein; and PPVs associated with C-region inhibit signal pep-
tide cleavage affecting protein processing (Figure 7 B). To eval-
uate the potential association of PPVs with particular diseases,
we investigated the linkage of these genes with human dis-
ease using the Genetic Association Disease Database ( https://
geneticassociationdb.nih.gov/). Most genes with detected PPV
are connected with metabolic and cardiovascular diseases and
cancer. Reproductive and vision disease variants had a higher
fold of enrichment compared to genes associated with a par-
ticular disease (Figure 7 C). Remarkably, several PPVs con-
tribute to the most severe human diseases defined in mortal-
ity ( 79 ). The identified PPVs are associated with the devel-
opment of coronary heart disease (ACE, THBD, LDLR, etc.),
ischemic stroke (F5, GP1BA), Alzheimer’s (APOE, CD33,
TREM2, SORL1), neonatal conditions(SFTPA1, SFTPA2,
SFTPB, SFTPD), lung cancer (SEMA3B, WNT5B, RECK), res-
piratory infection (ADAM33, CCL1, CXCL1, MUC1), di-
abetes mellitus (INS, EGFL8, KIR3DL1), diarrheal diseases
(LTF, UGT1A7, UGT1A8, UGT1A9, UGT2B7), and kidney
disease (A CE, A GT, PXDN, COLEC11). The Supplementary
files S6-8 summarize the distribution of genes with associated
PPV per illness class and disease. 

Furthermore, since PPVs may reduce protein levels and lead
to loss of protein function, we also evaluated the association
between decreased protein expression and associated diseases
and cellular function by using Ingenuity Pathway Analysis
(QIAGEN). Based on experimental data, the loss of protein
function is mainly associated with increased cell death and
cancer (Supplementary file S8). Together, our results demon-
strate that the bioinformatics approaches applied in this study
allow us to associate PPVs with particular human diseases and
connect them with a molecular basis of the disorders based on
the severity of the mutation and its position in the signal pep-
tide regions. 

Discussion 

The association between gene variants of protein targeting
signals and human diseases remains poorly explored. In this
work, we developed a bioinformatic approach to identify and
classify PPVs affecting signal peptide coding sequences. We
identified 65 655 missense variants in signal peptides across
the human genome and predicted 11 622 of these variants
as pathogenic. Our data indicates that previously reported
pathogenic variants affecting signal peptides are only a tip of
the iceberg – our findings significantly widen the scope of the
studies on diseases associated with secretory / membrane pro-
teins. We have highlighted that signal peptides can be impaired
differently depending on their affected regions, resulting in
distinct molecular mechanisms (Figure 1 B, C, Figures 3 –5 ).
PPV mechanisms are summarized in Figure 7 B. PPVs likely in- 
duce loss of protein expression through mRNA degradation,
decreased protein translocation efficiency, protein mistarget- 
ing, or cleavage inhibition ( 7 , 24 , 50 ). The predicted pathogenic 
variants can be used for further analysis with future medi- 
cal applications, including targeting mutations’ effects by drug 
development. 

SRP-signal peptide interaction is an essential step in most 
secreted and membrane protein biogenesis. Mutations in the 
SRP subunits are associated with many human diseases ( 13 ).
The signal peptide H-region plays the most crucial role in 

the process of signal peptide recognition by SRP ( 23 ). The 
current work identified 37 526 mutations in this region, and 

classified 8614 as PPVs. We also used computational model- 
ing to simulate SRP interactions with wild-type and mutant 
ALK signal peptides to demonstrate how PPVs may interact 
with SRP. These models clearly show that the ALK signal pep- 
tide containing a charged amino acid in the H-domain cannot 
interact with the SRP54 subunit of SRP (Figure 6 ). We have 
previously demonstrated that mutations in the signal peptide 
H-region trigger the RAPP protein quality control leading to 

the degradation of the mutant protein mRNAs ( 15 , 24 , 25 ).
In the current work, we predict that variants reducing the 
signal peptide hydrophobicity, and decreasing the potential 
signal peptide binding to SRP (Figure 3 ), trigger mRNA de- 
cay as a characteristic for the RAPP activation (see compari- 
son of the prediction with published experimental data in Ta- 
ble 1 ). Thus, pathological activation of the RAPP pathway is 
the most likely molecular mechanism of these signal peptide 
variants. 

However, even if a mutated secretory protein is still tar- 
geted to the ER membrane, it may be translocated inefficiently.
Signal peptide hydrophobicity also determines whether sig- 
nal peptides can autonomously facilitate the opening of the 
SEC61 translocon (‘strongly’ gating signal peptides) or if their 
translocation requires additional components, such as the 
translocon-associated protein (TRAP), SEC62 or SEC63 ( 80–
83 ). Compared to strong hydrophobic signal peptides, pro- 
teins with weak hydrophobic signal peptides translocate less 
efficiently. It was shown recently that some proteins with weak 

hydrophobic transmembrane spans and signal peptides re- 
tained at the SEC61 translocon, and they need engagement 
of SEC63 and BiP for their release from SEC61, their translo- 
cation and folding in ER ( 83 ). Thus, some mutations that de- 
crease the hydrophobicity of the signal peptide may result in 

less efficient translocation and may engage other components 
of the protein transport machinery to compensate the translo- 
cation defects or result in degradation of defective proteins. 

In contrast, mutations that increase the hydrophobicity of 
the H-region are predicted to increase the interaction between 

SRP and the signal peptide. It was demonstrated previously 
that an increase in signal peptide hydrophobicity also leads 
an increase in pulling force, suggesting faster translocation 

through the SEC61 translocon ( 84 ). In fact, there appears to 

be both lower and upper hydrophobicity bounds for signal 
peptide insertion in the ER membrane. There is a hydropho- 
bicity barrier that has to be overcome for the signal peptide or 
transmembrane span to be pulled through SEC61 ( 84–86 ). It 
was also shown that increasing the signal peptide hydropho- 
bicity of pseudorabies virus glycoprotein gC impaired proper 
ER translocation ( 87 ). It was shown that highly hydrophobic 
signal peptides do not engage BiP during translocation, thus,

https://geneticassociationdb.nih.gov/
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Figure 7. Potentially pathogenic signal peptide variants are connected with disease-associated genes and cause multiple molecular mechanisms. ( A ) 
Venn diagram summarizing the distribution of genes with PPVs per affected signal peptide region. ( B ) Possible molecular mechanisms of PPVs. Scheme 
of the typical signal peptide with marked regions is shown. Numbers represent average lengths of the signal peptide or its respected regions in amino 
acid residues as determined in this work. PPVs, localyzed in the signal peptide N-region, affect protein translocation efficiency through the translocon; 
PPVs, localyzed in the H-region, trigger mRNA degradation of the secreted / membrane protein through the RAPP pathway; and PPVs localyzed in the 
C-region inhibit protein processing. ( C ) Dot plot showing the number of genes per disease class. False Discovery Rate (FDR) as raw P -value correction. 
Fold enrichment obtained through comparing the background frequency of total genes annotated per disease class to the sample frequency 
representing the number of genes inputted that fall under the same disease class. 
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hese proteins may indicate a propensity to misfolding and
ggregation in stress conditions ( 83 ). Only 11% of H-region
ariants we analyzed moderately or significantly increased hy-
rophobicity (Supplementary File S3), and only seven vari-
nts were found in ClinVar. Thus, the pathology of mutations
ncreasing signal peptide hydrophobicity is still questionable.
owever, if some of these variants are associated with a dis-

ase, the molecular mechanism is likely due to defects in their
ranslocation and folding, but not related to inefficient recog-
ition by SRP inducing RAPP. 
The variants introducing changes to the signal peptide in

he C-region, which modify the specific amino acids recog-
ized by signal peptidase (position –3, –1 and +1 with respect
o the cleavage site), are also predicted as pathogenic by de-
reasing the likelihood of correct signal peptide cleavage. We
how in the Figure 4 B, C, that there are clear preferences for
pecific amino acids in the positions –3 and –1, while the ap-
earance of the others was scarce. The +1 position was less
onservative than the –1 and –3 positions, with only methion-
ine, proline, and tryptophan being relatively rare. Variants in-
corporating less conserved amino acids are potentially more
likely to confer disease risk and were considered PPVs ( 88–
90 ) (Figure 4 C, D). Most PPVs detected in the C-region af-
fect the –1 position (Figure 4 E). The –1 position corresponds
to the more conserved position in the signal peptide C-region
of wild-type sequences (Figure 4 B). Most pathogenic variants
affecting the C-region in the ClinVar repository are at the –1
position (Supplementary file S4). More information regarding
the distribution of amino acids in the C-region, particularly
between algorithms and the distribution of PPVs, is presented
in Supplementary Files S2 and S3. These results support the
idea that human missense variants affecting the amino acids
targeted by signal peptidase and particularly in the –1 position
promote the retention of membrane / secreted pre-proteins at
the ER membrane and, induce protein loss of function and
increase the risk of human diseases ( 26 ,27 ). Thus, the molec-
ular mechanism of the pathogenic signal peptide variants near
the cleavage site is likely associated with defects in the protein
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processing and, consequently, protein degradation and the loss
of function. 

The signal peptide N-region is less conserved than the C-
region. In bacteria, this region determines the efficiency of
protein secretion and possible interaction with membrane
lipids. Mutations in this region do not dramatically inter-
fere with SRP recognition, although they slightly modulate
that process in mammals. Few experimental findings sug-
gest that the correct orientation of signal peptide across the
SEC61 translocon requires positively charged amino acids dis-
tributed in the N-terminal region. Small proteins are suscep-
tible to losing the positive charge in the signal peptide N-
region. As a result, the newly synthesized pre-proteins are
accumulated intracellularly because of impaired transloca-
tion ( 28 ). We propose that variants incorporating negatively
charged amino acids in the signal peptide N-region have a
higher chance of inducing impaired translocation by affecting
the required signal peptide N-terminal positive charge (Fig-
ure 5 ). Indeed, a group of 38 small proteins, including HCRT
(narcolepsy, rs1327645071), CCL2 (neural tube defects and
HIV, rs898151976), CCL7 (nephrogenic systemic fibrosis and
toxic black mold infections, rs1439804640), CCL8 (tenosyn-
ovitis and T-Cell non-Hodgkin Lymphoma), INSL5 (Cryp-
torchidism, rs751653318), IGF1 (Pituitary Gland Disease,
rs3730195), GYPA (malaria susceptibility, rs371519566) and
others showed gene variants affecting the N-region charge.
With our classification system, it will be much easier to iden-
tify and validate experimentally whether the human missense
variants disturbing the N-region charge affect the transloca-
tion of these proteins. 

Our findings provide a conceptual map for establishing the
molecular basis for many human diseases associated with sig-
nal peptide mutations. It can serve as a source of PPVs and
their association with the molecular mechanism of diseases
for a broad group of academic and clinical researchers. More-
over, our analyses can be used to identify new and currently
unknown PPVs using genome sequencing data obtained af-
ter this publication. Our classification system provides an im-
portant starting point for further models that will need to in-
clude other factors such as dominant, recessive, or dominant-
negative mutations, variant frequency, gene copy number, ma-
ture protein features (size and domains), presence of homol-
ogous proteins, the effect of loss of function mutations, SRP
dependency, gender, and estimated impact on fundamental bi-
ological processes. 

Data availability 
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Models are submitted to ModelArchive (mode-
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