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Background
Single-cell sequencing technologies have revealed a wealth of information regarding cel-
lular heterogeneity in health and disease in multiple tissues [1–8]. In particular, single-
cell RNA sequencing enables the identification of groups of cells in a population with 
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Background:  Xenobiotics are primarily metabolized by hepatocytes in the liver, 
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of drug efficacy, safety, and toxicity in the early phases of drug development. Recent 
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of cellular heterogeneity. However, little is known about the impact of hepatocyte spe‑
cialization on liver function upon metabolic challenge, including hepatic metabolism, 
detoxification, and protein synthesis.

Results:  Here, we investigate the metabolic capacity of individual human hepatocytes 
in vitro. We assess how chronic accumulation of lipids enhances cellular heterogene‑
ity and impairs the metabolisms of drugs. Using a phenotyping five-probe cocktail, 
we identify four functional subgroups of hepatocytes responding differently to drug 
challenge and fatty acid accumulation. These four subgroups display differential 
gene expression profiles upon cocktail treatment and xenobiotic metabolism-related 
specialization. Notably, intracellular fat accumulation leads to increased transcriptional 
variability and diminishes the drug-related metabolic capacity of hepatocytes.

Conclusions:  Our results demonstrate that, upon a metabolic challenge such as expo‑
sure to drugs or intracellular fat accumulation, hepatocyte subgroups display different 
and heterogeneous transcriptional responses.
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similar transcriptomic profiles, which is generally associated with similar functionality 
[9, 10]. In the liver, single-cell transcriptomic analyses have shown novel cell types and 
states involved in the development and progression of liver disease [1, 7, 11], as well as in 
the transcriptomic responses to xenobiotics [12]. However, drug toxicity and safety are 
generally assessed in primary human hepatocytes (PHH) as the gold standard model to 
study the drug metabolism in humans, which are widely considered a seemingly homo-
geneous population of cells [13, 14]. Whether all hepatocytes share the same functional 
molecular phenotype in vitro remains unknown.

In the liver, drug and xenobiotic metabolism is mainly performed by hepatocytes, the 
major and predominant cell type of the parenchyma [15–17]. The hepatic metabolism 
of drugs occurs in three phases. In phase I, oxidation, hydrolysis, reduction, and cycli-
zation reactions are catabolized mainly by the cytochrome P450 (CYP450) superfamily 
of monooxygenase enzymes. The main members are the isoforms CYP1A2, 2C9, 2C19, 
2D6, and 3A4, which account for the metabolism of around 70–80% of the clinically 
available drugs [18–20]. The expression of these cytochromes is induced by the pres-
ence of their substrate compounds, which are indirectly used as a measure of liver met-
abolic capacity [10, 21]. These substrates act as hepatocyte probes when administered 
to phenotype and monitor the cytochrome enzymatic activity, formally known as the 
“phenotyping cocktail approach” [22–28]. Phase II comprises conjugation reactions cat-
abolized mainly by transferase enzymes and are purposed to hydrophilize compounds 
for their elimination [29]. During phase III of xenobiotic metabolism, conjugated com-
pounds are excreted out of the cell through active transmembrane transporters [30]. The 
cytochrome superfamily consists of nearly 60 members in humans (Human Genome 
Project 2013), which may be expressed differently in individual cells when challenged by 
xenobiotics, leading to cellular heterogeneity that remains concealed in a bulk analysis.

An additional potential source of cellular heterogeneity is the intracellular accumula-
tion of triglycerides in hepatocytes, known as hepatic steatosis [31, 32]. This is a hallmark 
of non-alcoholic fatty liver disease (NAFLD) and is generally associated with metabolic 
dysfunction, inflammation, and risk of fibrosis [33, 34]. In culture, intracytoplasmic fat 
accumulation can be modeled by incubating primary human hepatocytes with free fatty 
acids (FFA) to mimic benign chronic steatosis [35, 36]. However, lipid accumulation is 
heterogenous in regards to the number and size of lipid droplets [37] and it still remains 
unclear whether all cells respond to lipid accumulation in a coordinated manner.

Moreover, the co-administration of five or more drugs (polypharmacy) is associated 
with a higher incidence of adverse drug reactions (ADR) and drug-induced liver injury 
(DILI) [38–40]. Importantly, a higher incidence of DILI has been reported in patients 
suffering from NAFLD [41–43]. Therefore, the precise molecular pathways commonly 
dysregulated between chronic accumulation of lipid and drug metabolism remain unex-
plored at cellular resolution.

Here, we report concealed cellular heterogeneity in primary human hepatocytes 
which are classically considered a seemingly homogenous population of cells and a “gold 
standard” for in vitro hepatic assays. The comparison between pseudobulk and single-
cell transcriptomics reveals four distinct hepatocyte subgroups that can be found also 
in fourteen human donors from publicly available data sets. We present evidence that 
chronic accumulation of lipids and xenobiotics leads to transcriptional variability and 
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the impairment of multiple metabolic pathways in a subgroup-specific manner. Our 
results suggest that liver steatosis combined with multiple drug intake differentially 
affects the transcriptional profiles of individual cells decreasing the expression of key 
cytochrome P450 genes.

Results
Single‑cell RNA‑seq reveals four major subgroups of hepatocytes showing cellular 

heterogeneity and functional specialization in primary human hepatocytes

Liver function is compartmentalized along the liver lobule, and the maintenance of 
liver function is regulated by liver-enriched transcription factors [44, 45]. Primary 
human hepatocytes are considered the gold standard model to predict drug responses 
in humans, but they are characterized by phenotypic instability in culture and rapid loss 
of the hepatic phenotype [13, 46]. Therefore, we aimed to investigate the level of cellular 
heterogeneity that remains in a seemingly homogeneous population of primary human 
hepatocytes (PHHs), and how this heterogeneity might affect pharmaco-toxicological 
studies [47].

Cryopreserved and metabolically competent PHHs from four donors were used 
as in  vitro model to characterize the metabolic profile of individual hepatocytes in 
response to a drug challenge and chronic accumulation of fat (Fig. 1A, “Methods”). The 
hepatocytes were plated for 6 h and incubated for 66 h with either vehicle (DMSO) or 
a five-drug cocktail. Chronic accumulation of fat was achieved by incubation with free 
fatty acids (FFA) corresponding to a 200 µM mixture of a 2:1 ratio of oleic acid to pal-
mitic acid for 72 h. In brief, four different conditions were studied: (i) vehicle (DMSO 
0.5% v/v); (ii) Cocktail (66 h five-drug cocktail incubation); (iii) FFA (2:1 oleic:palmitic 
acid), and (iv) FFA + Cocktail (combination of FFA incubation and five-drug cocktail) 
(Fig. 1A). Donors were healthy males between 18 and 57 years, with a body mass index 
(BMI) classified as normal, non-diabetic, and representing the most common age range 
commercially available (Additional file  2: Table  S1). After isolation of viable cells by a 
quick and non-harsh dead cell removal step, single-cell RNA-seq was immediately per-
formed using 10x  Genomics (Methods).

A total of 38,232 high-quality hepatocytes with an average of 2550 genes per cell were 
analyzed. Lenient doublet filtering was performed to account for polyploid hepatocytes 
(Methods). The variation in the number of cells profiled per donor was attributed in part 
to sample viability, technical differences in cell capture rates in each single-cell RNA-
sequencing (scRNA-seq) run, and sequencing depth (Additional file 1: Fig. S1, Methods).

Across all four donors, Louvain clustering led to the detection of heterogeneity sepa-
rating four subgroups of hepatocytes, independently of the treatment (Fig. 1B, Additional 
file 1: Fig. S1B and C, Methods). Harmony [48] was used to correct for batch effects, and 
Louvain clustering was performed on the combined data set (Additional file 1: Fig. S2A). 
Overall, hepatocyte purity was confirmed by the expression of the hepatocyte-specific 
genes ALB, SERPINA1, and TTR​, among others (Fig. 1C, and Additional file 3: Table S2). 
Differential expression analysis was used to annotate the four subgroups of hepatocytes 
present in all four donors and treatment conditions (Fig. 1B, Additional file 3: Table S2, 
Methods). Representative marker genes illustrate functional specialization. For instance, 
ATF6, CYP8B1, and HMGCS2 for sterol and bile acid synthesis were up-regulated in 



Page 4 of 29Sanchez‑Quant et al. Genome Biology          (2023) 24:234 

subgroup I. Subgroup II was represented by LDHA, GSTZ1, and GSTO1, involved in 
the carbohydrate and phase II metabolism. Subgroup III was characterized by ABCC2, 
ABCC3, and APOB over-expression, among other genes (Additional file  1: Fig. S2B) 
involved in lipid and phase III metabolism (Fig. 1C). Lastly, subgroup IV was character-
ized by the loss of gene expression, which was 11-fold reduced compared to subgroup 
I (Fig.  1D, “Methods”). The instability of PHHs has been previously characterized for 

Fig. 1  Transcriptomic profiling reveals four subgroups of PHHs independently of donor and treatment 
condition. A Overview of experimental design. Purified cryopreserved PHHs from four human donors were 
plated, incubated with or without free fatty acids to model hepatic fat accumulation and with or without a 
phenotypic 5-drug cocktail (Sanofi-Aventis). B UMAP colored by subgroup, treatment, and donor showing 
that the annotated subgroups are found throughout all donors and conditions. C UMAP colored by 
expression levels of—from left to right: (i) key hepatocyte marker genes, (ii) bile acid and sterol metabolism; 
(iii) carbohydrate and phase II metabolism, (iv) lipid and phase III metabolism marker genes in four subgroups 
of hepatocytes. D Boxplot showing the percentage of cells in which a given gene is expressed, colored by 
the identified subgroups. E Bar plot showing the percentage of cells per subgroup assigned to phases G1, S, 
and G2M by performing cell cycle analysis using cyclone. F Dot plot highlighting marker gene expression in 
four subgroups of hepatocytes identified in vitro (top) and in vivo [1]. Subgroup marker gene expression was 
grouped by aggregated Louvain clusters (dot size: fraction of cells in the group; color scale: mean expression 
in the group)
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the loss of expression of liver-specific transcription factors and downstream target genes 
[49, 50].

Across all conditions, 38.2% of the cells were specialized in the metabolism of bile 
acids and sterols (subgroup I) [51]; 38.7% of the cells were enriched in genes involved 
in carbohydrate metabolism and phase II enzymes (subgroup II); 5.4% of the cells were 
responsible for lipid metabolism and expression of phase III enzymes (subgroup III) 
(Additional file  1: Fig. S2C); and 17.7% of the cells were losing expression (subgroup 
IV) (Additional file  1: Fig. S2C). To further investigate the metabolic specialization of 
the PHH subgroups, we focused our analysis on metabolic marker genes, taken from 
metabolicatlas.org (Methods). We found that clustering analysis using metabolic mark-
ers alone led to the identification of the same subgroups of hepatocytes as when using all 
genes (Additional file 1: Fig. S2E and 2F). These results suggest that differences between 
subgroups of hepatocytes might be driven by their metabolic function.

Interestingly, in subgroup III, the majority of the cells (73.2%) were assigned to S-phase 
according to the cell cycle phase classification using the tool cyclone (Fig. 1E, Additional 
file 1: Fig. S2A and S3) [52]. Moreover, subgroup II showed a higher expression level of 
stress marker genes such as RSP19, PRDX1, BAX, GSTA1, LGALS1, MTH1, and MTHM 
(Additional file 1: Fig. S2D, Additional file 3: Table S2). Likewise, subgroup II showed a 
low percentage of cells in which a gene is expressed, suggesting that these cells might be 
prone to lose their characteristic hepatocyte-like expression profile in culture.

To further characterize underlying upstream molecular events, we used the ChIP-X 
Enrichment Analysis tool, ChEA3 [53] to reconstruct the network of putative transcrip-
tion factors (TFs) regulating gene expression. We focused our analysis on the untreated 
cells (i.e., DMSO-treated cells) across all donors, to prevent potential effects due to 
treatment conditions. Considering the top 500 differentially expressed genes per sub-
group, key hepatic TFs, such as HNF4A [54, 55] and MLXIPL [56] were found among 
the top 25 predicted TFs. Only in subgroup IV a decrease in the expression levels of key 
transcription factors was detected (Additional file 1: Fig. S4A, Additional file 4:Table S3), 
while subgroups I, II, and III were defined by a unique combination of master regula-
tors (Additional file 1: Fig. S4A, Additional file 4:Table S3). To validate the specific TF 
activity per subgroup, we performed single-cell assay for transposase-accessible chro-
matin sequencing (scATAC-seq) on PHH incubated only with DMSO (Additional file 1: 
Fig. S4B). After scATAC-seq in one donor, we found that the promoter regions of sub-
group-defining marker genes were open and accessible to the TFs predicted by ChEA3 
in DMSO-treated cell (Additional file 1: Fig. S4, Methods).

Primary human hepatocytes retain functional specialization in vitro in the absence of liver 

zonation

Among the four subgroups of hepatocytes identified in vitro, only subgroups I, II, and 
III were considered functional and metabolically active. We then further investigated 
whether these three hepatocyte subgroups could also be identified in  vivo, using two 
distinct publicly available datasets [1, 5].

First, we investigated nine human livers described in Aizarani et al. in 2019 [1]. Hepat-
ocytes were extracted from the data set based on the expression of mature hepatocyte 
maker genes ALB, TTR​, and HNF4A. After performing Louvain clustering on the in vivo 
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hepatocytes (resolution 0.2), we used the transcriptional profiles of our subgroups (I, II, 
and III) to identify hepatocyte specialization per cluster. We observed that the transcrip-
tional profiles defining our subgroups are similarly expressed in hepatocytes in vivo with 
a correlation up to 0.94 for the top ten differentially expressed genes (DEGs) per sub-
group (Fig. 1F and Additional file 1: Fig. S5).

In vivo, expression profiles of hepatocytes are affected by their position in the liver 
lobule [7, 57, 58]. Therefore, we investigated whether the three hepatocyte subgroups 
identified as subgroups I, II, and III in vivo were related to liver zonation patterns (Addi-
tional file 1: Fig. S5A). Based on their expression profile, cells were scored for zonation 
marker genes (Additional file 1: Fig. S5B, Methods) and assigned to three zones: pericen-
tral, mid-zone, and periportal (Additional file 1: Fig. S5A and 5B). In subgroup I, 64.6% 
of cells were assigned to the periportal area, 6.6% to the midzone, and 46.5% to the peri-
central area. The majority of cells in subgroup II, 52.3%, were assigned to the midzonal 
area, with 12.1% of cells in the pericentral area and 27.9% in the periportal area. Sub-
group III showed an enrichment in mid- and pericentral expression profiles, 41.1% and 
41.4%, respectively, and 7.5% in the periportal area (Additional file 1: Fig. S5B and 5C, 
Methods).

Additionally, hepatocyte subgroups and zonation were found to be intertwined in vivo 
(Additional file 1: Fig. S5D, left). For instance, CYP27A1 in subgroup I was pericentrally 
enriched [59–61], while HSD11B1, involved in bile synthesis [62], was distributed peri-
portally (Additional file 2: Table S1; Additional file 1: Fig. S5, left). Remarkably, in vitro, 
PHH retained specialization into the three functional subgroups (I, II, and III) in the 
absence of zonation (Additional file 2: Table S1; Additional file 1: Fig. S5, right). In sub-
group I, the CYP27A1 and HSD11B1 had similar expression levels in all the cells. Simi-
larly, zonation marker genes in subgroups II and III were evenly expressed in all cells 
studied.

These findings were extended to additional publicly available data sets for five human 
donors [5] (Additional file 1: Fig. S5E and 5F, Methods). In these five donors, MacPar-
land et al. annotated six hepatocyte clusters, named Hep 1 to Hep 6 [5]. Based on marker 
gene overlaps, we found similarities in the gene expression profiles between those clus-
ters and our hepatocyte subgroup in vitro.

In order to increase the power of the in vivo and in vitro comparisons, we computa-
tionally integrated the two in vivo datasets, resulting in a human cohort of 14 donors 
(Additional file  1: Fig. S5F). The identified metabolic subgroups showed high gene 
expression correlation between in vivo and in vitro (Additional file 1: Fig. S5G). In sum-
mary, our results using publicly available data sets from human donors indicate that 
PHH in vitro retained functional specialization in the absence of liver zonation.

Phenotyping cocktail used to assess the induction of cytochrome P450 shows differential 

metabolic profiles among hepatocyte subgroups

In order to study the impact of cellular heterogeneity on liver function, we further 
characterized the hepatocyte subgroups by assessing their response to a phenotyping 
cocktail. The Sanofi-Aventis five-drug cocktail was used to simultaneously monitor the 
expression levels of the main five cytochrome P450 genes as a readout of the metabolic 
capacity of primary human hepatocytes [25, 63]. Therefore, this cocktail, consisting of 
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a mixture of individual selective substrates of CYP2D6 (metoprolol), CYP2C19 (ome-
prazole), CYP2C9 (S-warfarin), CYP3A (midazolam), and CYP1A2 (caffeine), was used 
to monitor CYP induction [64] and incubated for 66 h in primary human hepatocytes 
(Methods).

Incubation with the five-drug cocktail did not lead to substantial differences in the 
number of captured cells in each condition per subgroup (Additional file 1: Fig. S6A). 
Upon incubation, the induction of the mRNA of the five cytochrome P450 genes (CYPs) 
involved in the metabolism of the five-drug cocktail was monitored showing their up-
regulation in pseudobulk (Fig. 2A left, Additional file 1: Fig. S6B). However, differences 

Fig. 2  Subgroups of PHHs show different metabolic profile in response to 5-drug cocktail. A Violin plots 
depicting expression levels between Cocktail and DMSO of the five CYPs involved in the metabolism of 
the five-drug cocktail in pseudobulk (left), and in each hepatocyte subgroup (right) (* = p-value < 0.05 and 
|log2-fold change|> 1, t-test). B Volcano plot depicting the differential expression between Cocktail (green) 
and DMSO (purple) in pseudobulk. Text highlights the genes identified as DEGs in all subgroups. C Dot 
plot showing log2-fold change (color scale) and p-value (dot size) between Cocktail and DMSO for genes 
significantly up-regulated in all subgroups (left); representative subgroup-specific up-regulated genes 
(middle); and genes significantly down-regulated in all subgroups (right). D Venn diagram showing overlaps 
of significantly up-regulated genes upon cocktail treatment between the subgroups. E Scatter plot depicting 
enrichment of the genes specifically up-regulated in the metabolically active hepatocyte subgroups I, II, and 
III in pathways known to be involved in the metabolism of given chemical compounds (Drug.CTD database). 
The size of the dot corresponds to the number of overlapping genes in a given pathway
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in the basal transcriptional levels were observed between subgroups showing transcrip-
tional heterogeneity in a seemingly homogenous population of PHH (Fig.  2A, right). 
While the pseudobulk shows the expected mRNA basal levels of CYP2C9 compared to 
CYP1A2 and CYP2D6 [65], scRNA-seq identified subgroups of hepatocytes with dif-
ferent basal mRNA levels of CYPs. Additionally, a subgroup-specific upregulation of 
CYPs upon cocktail incubation was also detected. For instance, in pseudobulk, CYP2C9 
was up-regulated 1.7-fold in Cocktail, while in subgroup III only a 1.1-fold change was 
detected. Likewise, CYP3A4 was not significantly up-regulated in subgroup III, but a 
4-fold increase was detected in subgroup I (Fig. 2A, right).

Thus, we wondered whether the subgroup of hepatocytes shared global transcriptional 
signatures in response to xenobiotics. We first analyzed global changes upon five-drug 
cocktail incubation, detecting 161 significantly up-regulated genes compared to DMSO 
(Fig. 2B and Additional file 1: Fig. S6C). All genes with a corrected p-value below 0.05 
and a log2 fold change greater than 1 were designated as significantly up-regulated in 
cocktail-treated cells. Genes with log2 fold change below − 1 were considered signifi-
cantly up-regulated in DMSO-treated cells (Fig. 2B and C, Additional file 1: Fig. S6D, 
Additional file  6: Table  S5, Methods). Additionally, removing hepatocyte subgroup IV 
(characterized by the loss of expression) leads to the detection of 205 significantly up-
regulated genes (Additional file 1: Fig. S6C, Additional file 5: Table S4).

Investigating the shared and subgroup-specific signatures in response to five-drug 
cocktail, only eight genes were significantly up-regulated upon cocktail treatment in all 
four subgroups: CYP1B1, POR, CYP1A1, CYP1A2, RGS9, GDF15, CYP2A7, and CYP2B6 
(Fig. 2B and C). These genes were also detected as significantly up-regulated in the pseu-
dobulk analysis and correspond to genes involved in the phase I metabolism of xenobiot-
ics [20, 21].

We focused our attention on subgroup-specific DEGs that might be concealed by stud-
ies performed in bulk (Fig. 2C middle). We found subgroup-specific upregulated genes 
that were not detected as significantly up-regulated in the pseudobulk analysis. For 
example, upon five-drug cocktail incubation, hepatocytes in subgroup I (bile acid and 
sterol metabolism) specifically up-regulated ATF3 and SRD5A2; subgroup II (carbohy-
drate and phase II metabolism) specifically up-regulated CYP2U1 and SLC4A7; and sub-
group III (lipids and phase III metabolism) specifically up-regulated PLIN2 and OSGIN 
(Fig. 2C middle). A similar number of genes were specifically up-regulated in every met-
abolically active hepatocyte subgroup: 122 genes in subgroup I, 102 genes in subgroup II, 
and 126 genes in subgroup III. Meanwhile, only 64 genes were specifically up-regulated 
in subgroup IV (Fig. 2D). These results revealed subgroup-specific transcriptional signa-
tures in response to xenobiotics that might be undetected in bulk studies.

Additionally, gene ontology (GO) analysis of subgroup-specific DEGs was performed 
using the Comparative Toxicogenomics Database (CTD) to explore toxicological inter-
actions. This database is particularly suited for drug-disease or drug-phenotype interac-
tions [66]. GO analysis using CTD showed that each hepatocyte subgroup specialized in 
the metabolism of certain xenobiotics, based on their differential transcriptomic profile 
(Fig. 2E, Additional file 1: Fig. S6E). For instance, the metabolic pathway of abrine was 
up-regulated across all hepatocyte subgroups I, II, and III. However, some compounds 
were only enriched in two subgroups, like cisplatin, in subgroups I and II. Finally, the 



Page 9 of 29Sanchez‑Quant et al. Genome Biology          (2023) 24:234 	

pathways for the metabolism of other compounds were only enriched in one subgroup, 
like of ciglitazone and aflatoxin B1, enriched in subgroups II and I, respectively.

In summary, these results indicate that upon five-drug cocktail treatment, hepatocyte 
subgroups showed differential transcriptional responses, characterized by shared meta-
bolic pathways and subgroup-specific transcriptional profiles associated with different 
potentials for metabolizing endobiotic (endogenous) and xenobiotic (exogenous) chemi-
cal compounds.

Intracellular lipid accumulation leads to differential transcriptional variability 

among hepatocyte subgroups

Recently, it has been shown that changes in cytochrome P450 activity correlate with 
altered lipid metabolism [67–69]. For example, hepatic steatosis affects the transcrip-
tomic profile of parenchymal and non-parenchymal cells as well as the cellular com-
position in the liver [32, 70, 71]. Particularly in hepatocytes, the lipid metabolism is 
disrupted upon fat accumulation through an alteration of key enzymes in the lipid syn-
thesis, storage, and clearance pathways [72]. Furthermore, an increase in the production 
of chemokines has been observed, associated to the inflammation occurring in NAFLD 
[73].

To shed light on the effect of lipid accumulation on the metabolic capacity of func-
tional subgroups of PHH, hepatic steatosis in vitro was modeled by incubating the cells 
with a 200-µM mixture of a 2:1 ratio of oleic acid to palmitic acid [35] (Methods). This 
mixture has previously been shown to mimic benign chronic steatosis with minor lipo-
toxic and apoptotic effects [35, 36]. First, we investigated whether — and to what extent 
— fat accumulation triggers a coordinated transcriptional response in PHHs. Thus, the 
coefficient of variation for DMSO- and FFA-treated cells was calculated per subgroup. 
Overall, cells losing expression (subgroup IV) showed the highest transcriptional vari-
ability (Fig. 3A, Additional file 1: Fig. S7A). Moreover, lipid accumulation significantly 
increased the variability in functional subgroups I and II, but decreased it in subgroup 
III (Fig.  3A). This indicated that subgroup III showed a more coordinated response 
towards accumulation of lipids.

Secondly, we observed that the proportion of cells treated with FFA differed between 
the functional hepatocyte subgroups. More than 74% of the cells in subgroup IV were 
FFA-treated cells, while in subgroup III 24% of the cells were FFA-treated cells. A similar 

(See figure on next page.)
Fig. 3  Intracellular lipid accumulation increases loss of expression and transcriptional variability. A Box 
plots depicting the coefficient of variation per gene in cells treated with DMSO or with FFA per subgroup 
(* = p-value < 0.05, Mann–Whitney U). B Bar plot showing the percentage of cells treated with DMSO or 
with FFA in every subgroup. C Stacked violin plots of the genes used in Fig. 1 to identify the subgroups, 
split into DMSO- and FFA-treated cells (top) and top 5 up-regulated genes upon fat accumulation per 
subgroup (bottom) in DMSO and FFA treatments (* = p-value < 0.05 and |log2-fold change|> 0.75, t-test). D 
Heatmap depicting the logarithmic mean expression of genes related to lipid metabolism, lipid storage, 
NAFLD-related genes, inflammation, and stress response in DMSO- and FFA-treated cells per subgroup (↑ 
indicates up-regulation towards DMSO; ↓ indicates down-regulation towards DMSO, t-test). E Scatter plot of 
the gene ontology (GO) analyses using gprofiler of the genes up-regulated upon fat accumulation in each of 
the subgroups. The top 7 most significantly enriched terms are depicted
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percentage of FFA-treated cells were found in subgroups I and II (Fig.  3B, Additional 
file 1: Fig. S7B).

To explore global changes triggered by lipid accumulation, differential expression 
analysis was performed between FFA- and DMSO-treated cells. Compared to cocktail-
treated cells, fewer up-regulated genes (3.5 times) were detected in FFA-treated cells 

Fig. 3  (See legend on previous page.)
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over DMSO expression level (Additional file 1: Fig. S7C). Thus, genes with a corrected 
p-value below 0.05 and a log2 fold change greater than 0.75 were designated as signifi-
cantly up-regulated in FFA-treated cells. Genes with log2 fold change below − 0.75 were 
considered significantly up-regulated in DMSO-treated cells (Additional file 1: Fig. S7C, 
Methods).

Thirdly, to track down the impact of intracellular fat accumulation on cellular identity, 
transcriptional changes in the previously selected marker genes — defining the hepat-
ocyte subgroups — were investigated (Figs. 1F and 3C top). No significant changes in 
mean expression were observed for most of these marker genes upon accumulation of 
fat. Only HMGCS2, a key enzyme responsible for the synthesis of ketone bodies [74, 75] 
was significantly up-regulated in subgroup I upon fat accumulation (Fig. 3C, top).

In the metabolically active subgroups (I–III), the top five significantly up-regulated 
genes under fat accumulation were known markers of lipid droplet formation and lipid 
metabolism (Fig. 3C, bottom). For instance, the lipid droplet-associated perilipin protein 
PLIN2 was significantly up-regulated in all subgroups, which has previously been shown 
to be relevant in diet-induced NAFLD [76, 77]. The inflammation marker TNFAIP3, also 
discovered to ameliorate NAFLD and be protective against its progression [78, 79], was 
up-regulated among the five top DEG genes in subgroup I (Fig. 3C).

Subsequent analysis of fat-metabolism-related pathways and genes involved in stress 
response [80] showed subgroup-specific signatures upon intracellular fat accumulation 
(Fig. 3D, and Additional file 3: Table S2 and Additional file 5: Table S4). For example, 
CYP4A11, involved in NAFLD progression by inducing ROS-related lipid peroxidation 
and inflammation [81, 82], was significantly up-regulated in subgroups II and III; and 
CIDEC, a promotor of triglyceride accumulation [83, 84], was significantly up-regulated 
in subgroups I, II, and III. Cells losing expression (IV), up-regulated LGALS1 [85, 86], 
and HSPB1 [87, 88] (Fig. 3D and Additional file 1: Fig. S6D), which are known markers in 
the gene ontology pathway GO:0006950: “response to stress.”

To identify the main biological processes associated to each metabolically active 
subgroup upon fat accumulation, gene ontology (GO) analyses were performed using 
all the significantly up-regulated genes per subgroup. Subgroup I showed gene over-
laps in pathways related to cellular response to lipids, together with lipopolysaccharide 
and chemokine metabolism [89] (Fig.  3E). For instance, chemokines CXCL8, CXCL1, 
CXCL10, and CXCL11 were up-regulated in FFA condition (Additional file 8: Table S7), 
suggesting that lipid accumulation could lead to increased inflammation through 
chemokine signaling [90, 91]. Moreover, subgroup II exhibited a high overlap of genes 
involved in the regulation of triglyceride metabolic processes, as well as in the acylglyc-
erol catabolic process, denoting that these cells were rather involved in the clearance of 
neutral lipids [92, 93]. Finally, subgroup III cells showed enrichment in lipid, monocar-
boxylic acid, and fatty acid-related metabolic processes and lower transcriptional vari-
ability, most likely due to their coordinated response to fat accumulation [94–96].

Taken together, in metabolically active hepatocyte subgroups I and II, intracellular 
lipid accumulation increased transcriptional variability, thus affecting the fine-tuned 
regulation of lipid metabolism. Importantly, in subgroup III, specialized in the metabo-
lism of lipids, transcriptional variability was reduced upon fat accumulation, suggesting 
a robust and tight coordinated response to chronic accumulation of lipids.
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Intracellular lipid accumulation impairs drug metabolism phases I, II, and III, 

with concomitant up‑regulation of stress‑related pathways

Large inter-individual variability has been observed in the metabolism of CYP sub-
strates in vivo. This variability might be caused by genetic, epigenetic, and environmen-
tal factors. For instance, the simultaneous administration of five or more drugs, known 
as polypharmacy, is highly common in the clinical practice [38]. The co-administration 
of drugs increases the risk for developing hepatotoxicity and adverse drug reactions 
(ADRs), such as drug-induced liver injury (DILI) [97, 98]. Additionally, a higher inci-
dence of DILI has been reported in patients suffering from NAFLD [41–43]. Therefore, 
we assessed the impact of fat accumulation in the phase I metabolism of drugs, using the 
previously characterized phenotyping cocktail (Sanofi-Aventis) (Fig. 2). The expression 
of the individual CYPs targeted by the drug cocktail was analyzed, comparing Cocktail- 
and FFA + Cocktail-treated cells (Fig. 4A). In all subgroups, fat accumulation decreased 
the expression levels of the five targeted cytochromes (Fig.  4A). For instance, in sub-
groups I, II, and IV, CYP3A4 was significantly up-regulated upon cocktail treatment, 
but its induction was attenuated upon chronic lipid exposure. In subgroup III, the larg-
est magnitude change of CYP expression was observed. Notably, CYP2D6, CYP2C19, 
CYP2C9, and CYP3A4 were significantly down-regulated in comparison to baseline 
DMSO levels upon FFA + Cocktail treatment.

Additionally, to identify global transcriptional changes between Cocktail and 
FFA + Cocktail, differential expression analysis was performed in pseudobulk (Meth-
ods). Using DMSO as a baseline expression, 264 genes were up-regulated uniquely under 
Cocktail treatment; 234 genes were commonly up-regulated in both Cocktail treatment 
and FFA + Cocktail; and 602 genes were up-regulated solely in FFA + Cocktail, suggest-
ing that more biological processes are affected (Fig. 4B, Additional file 1: Fig. S6D and 
S8A, Additional file 6: Table S5 and Additional file 9: Table S8). To further investigate 
the affected pathways, gene ontology (GO) analyses were performed on these genes 
(Fig. 4C). Specifically, upon Cocktail treatment, we observed an evident enrichment in 
pathways responsible for the metabolism of xenobiotic compounds (Fig. 4C, top, green). 
Genes commonly up-regulated upon Cocktail and FFA + Cocktail were less specific for 
drug metabolism and showed an enrichment in pathways for general stimulus responses 
(Fig.  4C, middle, beige). Finally, the genes specifically up-regulated in FFA + Cocktail 
showed an enrichment in stress-related pathways (Fig. 4C, bottom, magenta). The per-
centage of genes in each category was similar in all four subgroups of hepatocytes, sug-
gesting that drug metabolism was similarly affected by the accumulation of fat (Fig. 4D). 
In addition, a down-regulation of key hepatic marker genes was observed in FFA + Cock-
tail (Additional file 1: Fig. S8B). For instance, CYP2A7 was up-regulated in subgroups I, 
III, and IV upon Cocktail treatment, but the induction was impaired in the presence of 
fat (Additional file 1: Fig. S8B).

With the aim of dissecting the impact of chronic accumulation of fat on drug metabo-
lism, we compared FFA + Cocktail and Cocktail treated cells in a gene set enrichment 
analysis (GSEA) (Methods) [99]. Among the top significant enriched pathways, the 
metabolism of xenobiotics by the CYP450 family was down-regulated (Fig.  4E), while 
the insulin resistance pathway was up-regulated in the presence of fat (Additional file 1: 
Fig. S8C), indicating a dysregulation of multiple metabolic pathways. For example, while 
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Fig. 4  Intracellular lipid accumulation impairs drug metabolism phases I, II, and III. A Scatter plot depicting 
the log2-fold change of the 5 induced cytochromes between cocktail and DMSO (green), and between 
FFA + Cocktail and DMSO (red) in each subgroup (* = p-value < 0.05 and |log2-fold change|> 1, t-test). Dot 
size corresponds to the number of cells in which the gene is expressed. B Venn diagram showing the overlap 
of DEGs between Cocktail- vs. DMSO-treated cells (green) and FFA + Cocktail vs. DMSO-treated cells (red). C 
Scatter plot of the gene ontology (GO) analyses using gprofiler of the genes up-regulated specifically upon 
cocktail treatment (green); up-regulated specifically upon FFA + Cocktail treatment (magenta), and in both 
Cocktail and FFA + Cocktail (beige). The top 5 most significantly enriched terms are depicted. D Bar plot 
showing for each subgroup the percentages of genes specific to (a) Cocktail vs. DMSO (green); (b) genes 
up-regulated in both, Cocktail vs. DMSO and FFA + Cocktail vs. DMSO (beige); (c) specific to FFA + Cocktail vs. 
DMSO (magenta). E GSEA plot for FFA + Cocktail vs. Cocktail on the pathway of “Metabolism of xenobiotics by 
CYP450,” enriched in the Cocktail vs. DMSO-specific genes. F Heatmap depicting log2-fold change to DMSO 
level of genes involved in drug-metabolism related pathways that were enriched in Cocktail vs. FFA + Cocktail 
treatment
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chronic exposure to lipids did not trigger a consistent up-regulation of the insulin resist-
ance pathway, the combination of FFA + Cocktail led to the up-regulation of NFKBIA, 
TRIB3, CREB3L3, IRS2, SLC2A1, SOCS3, PIK3CD, CREB5, RELA, and CPT1B in all 
subgroups (Additional file 1: Fig. S8D). Moreover, upon incubation with Cocktail, drug 
metabolism-related genes were up-regulated consistently in all functional subgroups of 
hepatocytes (I, II, II) (Fig. 4F). However, in the FFA + Cocktail treatment, subgroup III 
showed a drastic down-regulation in multiple phase I CYPs, e.g., CYP2C19, CYP2C8, 
CYP2C9, CYP2D6, CYP3A4, and CYP3A5; in phase II enzymes, GSTA1, GSTA2, and 
SULT2A1; and in phase III enzymes, SLCO1B1 and ABCG5, exhibiting an overall impair-
ment in all three phases of drug metabolism (Additional file 1: Fig. S9).

In summary, we observed that intracellular lipid accumulation led to an impairment 
of drug metabolism characteristics for each subgroup, in which multiple metabolic 
pathways are simultaneously affected. Therefore, primary human hepatocytes lose their 
drug-related metabolic specificity in the presence of chronic accumulation of lipids.

Discussion
The application of single-cell genomics technologies allows the dissection of subtle dif-
ferences within a seemingly homogeneous population of cells, which has been dem-
onstrated in a plethora of organs, tissues, and cell types, including the liver [100–102]. 
The assessment of safety, toxicity, and efficacy of drugs is generally performed in bulk 
analyses, representing average features of the most abundant transcripts or the most 
abundant cell type [35, 50]. However, this approach hinders the assessment of cellular 
heterogeneity and the identification of cellular phenotypes that might be rare or display 
opposite transcriptional responses upon exposure to xenobiotics.

To circumvent this limitation, we have used single-cell transcriptomics to assess the 
metabolic profiles of individual PHHs, a gold standard human in vitro liver model, to 
study drug-related metabolic capacity in healthy condition and in response to environ-
mental factors. Across all donors and treatment conditions, four major subgroups of 
hepatocytes were identified. Consistently with previous literature on PHHs [103–105], 
we identified a subgroup of PHHs losing the characteristic mature hepatocyte signature 
after 72 h in culture (subgroup IV, Fig. 1, Additional file 1: Fig. S2). For instance, in this 
subgroup, we observed a down-regulation of upstream liver-enriched transcription fac-
tors such as MLXIPL (ChREBP), RXRA, NH1H4 (FXR), PPARA​, HNF4A, and CEBPA 
[106, 107] (Additional file 1: Fig. S7B). Further analysis of metabolic profiles showed that 
subgroups I, II, and III were specialized in sterol and bile acid, carbohydrate and phase 
II, and lipids and phase III metabolism, respectively. Thus, we defined subgroups I, II, 
and III as metabolically active based on their respective transcriptional profiles (Fig. 1). 
Interestingly, in subgroup II, a high expression of stress markers was observed, suggest-
ing that this group is prone to eventually lose mature hepatocyte-like expression (Addi-
tional file  1: Fig. S2) [108, 109]. This observation is supported by the high correlation 
between subgroup II and subgroup IV in vitro (Additional file 1: Fig. S4F). Moreover, the 
percentage of cells in each subgroup changed upon treatment, suggesting that fat accu-
mulation and xenobiotics might change the number of cells per hepatocyte subgroup 
and the functional specialization of the liver tissue.
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Another source of functional specialization is the well-known hepatic zonation in the 
liver. The zonation patterns found in vivo due to the oxygen and nutrient gradient along 
the lobule axis are not conserved in 2D in vitro models [91, 110–114]. To deeply investi-
gate if hepatocyte subgroups are related to reminiscent liver zonation, we have compared 
our findings in vitro with two publicly available in vivo data sets comprising a cohort of 
14 human donors [1, 5]. We have revealed the presence of the three metabolically active 
subgroups in vivo, mostly independent of zonation. Therefore, subgroup specialization 
and hepatocyte zonation might play both a key role in liver function. Since liver zonation 
has a profound impact in transcriptional regulation in individual cells [10], it is techni-
cally challenging to dissect the role of hepatocyte subgroups in vivo.

In vitro, we were able to assess the drug metabolic capacity of the hepatocyte sub-
groups by means of a well-known phenotyping cocktail (Fig. 2). The drug metabolism 
in vitro can be defined by three major phases. In phase I, oxidation, hydrolysis, reduc-
tion, and cyclization reactions are catabolized mainly by the cytochrome P450 (CYP450) 
superfamily of monooxygenase enzymes. The main members are the isoforms CYP1A2, 
2C9, 2C19, 2D6, and 3A4, which account for the metabolism of around 70–80% of 
the clinically available drugs [19, 20]. This strategy, formally known as the “cocktail 
approach,” has been used to monitor the cytochrome enzymatic activity and changes in 
the induction of their corresponding mRNA levels in bulk [22–28]. We have selected 
the Sanofi-Aventis cocktail to dissect changes in the transcriptome of individual human 
hepatocytes. The Sanofi-Aventis cocktail can be used in different species, including 
mouse [63, 115], primates [116, 117], dogs and minipigs [116, 118], and humans, and in 
both in vivo [25, 63, 117] and in vitro studies [116].

With the Sanofi-Aventis cocktail, we have revealed transcriptomic responses in indi-
vidual cells that were otherwise concealed in bulk studies. For instance, a high percent-
age of cells in subgroup IV might lead to an underestimated effect of drug induction, 
which is highly relevant in the safety evaluation of xenobiotics [119]. Additionally, explo-
ration of toxicological interactions (i.e., CTD) showed that each hepatocyte subgroup 
is specialized in the metabolism of certain xenobiotics, which suggests that certain 
subgroups of hepatocytes could be more susceptible to develop adverse drug reactions 
(ADRs) and toxic metabolites when challenged by a specific compound (Fig. 2E). Fur-
thermore, we anticipate that chronic liver diseases might also affect the percentage of 
cells in each hepatocyte subgroup and therefore have major implications in the assess-
ment of drug efficacy, safety, and toxicity in the early phases of drug development.

To extend the impact of cellular heterogeneity in the human liver, we have mimicked 
hepatic steatosis and early stages of non-alcoholic fatty liver disease (NAFLD) by load-
ing the cells with intracellular lipids (Fig. 3) [35, 120]. Chronic accumulation of fat led to 
an increase in transcriptional variability in subgroups I and II, indicating transcriptional 
noise and random fluctuation in the mRNA level in individual cells. Importantly, in sub-
group III, specialized in the metabolism of lipids, transcriptional variability was reduced 
upon fat accumulation, suggesting a robust and tight coordinated response to chronic 
accumulation of lipids. In fact, it is well-known that after two-third partial hepatectomy, 
there is a prominent hepatic fat accumulation in the first round of DNA synthesis before 
mitotic activity [121, 122]. During partial hepatectomy-induced regeneration, four con-
tinuous waves of hepatic replication have been described as associated to a tight control 
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on the number of hepatocytes entering into cell cycle. Interestingly, three waves of 
hepatic fat accumulation were coupled to hepatocyte replication [123], suggesting that 
lipid accumulation and cell cycle in hepatocytes are co-regulated processes. However, 
the precise molecular mechanism underlaying changes in cell cycle and fat accumulation 
still remains unknown [124].

It is also possible, that the lipid accumulation leads to increased inflammation in a spe-
cific cell population. Upon fat accumulation, we found subgroup-specific signatures in 
which lipopolysaccharide and chemokine metabolism were upregulated in subgroup I 
(Fig. 3). Subgroup I is the largest in our studied primary hepatocytes. These results rein-
force the notion that changes in the proportion of hepatocyte subgroups might deter-
mine the functional outputs in response to environmental or dietary factors.

For instance, hepatic fat accumulation also occurs during heathy aging [125], and an 
age-related increase in transcriptional variability has been reported in several tissues 
and cell types [9, 94, 96, 126]. Additionally, aging affects the hepatocyte function [127] 
and cytochrome P450 enzymes [40, 128–130]. Therefore, further investigations on the 
age-associated cellular heterogeneity and drug metabolism could anticipate the unex-
pected adverse drug reactions or drug-induced liver toxicity in the elderly.

Additionally, in the elderly, the co-administration of drugs known as polypharmacy 
is highly common for the treatment of age-related comorbidities, increasing the risk 
for the development of ADRs and, more specifically, DILI [38, 39]. In all subgroups of 
hepatocytes, intracellular lipid accumulation diminished their capacity to metabolize 
the five-drug cocktail (Fig. 4). Especially, subgroup III, responsible for lipid and phase 
III metabolism, showed the most prominent decrease in the five targeted cytochromes 
simultaneously (Fig. 4).

Conclusions
In summary, cellular heterogeneity is affected by intrinsic and extrinsic factors which 
might lead to aberrant metabolism, producing toxic metabolites and associated stress-
related responses and inflammation. Intracellular lipid accumulation increases tran-
scriptional variability and loss of expression in vitro, diminishing the capacity for drug 
metabolism in individual cells. Extrapolating these results to in vivo human biology, our 
findings would suggest that fat accumulation could further accelerate age-related pro-
cesses by means of increased transcriptional noise and susceptibility to adverse drug 
reactions. Assessing the impact of cellular heterogeneity on tissue function will shed 
light on novel molecular mechanisms underlaying chronic or age-related pathologies.

Methods
An outline of the experimental design is shown in Fig.  1. Briefly, commercially plate-
able and interaction-qualified cryopreserved human hepatocytes (Lonza, Walkersville, 
MD, USA) were purchased from Lonza from four different donors: HUM180812 (male, 
57  years old, Hispanic) and HUM4152 (male, 18  years old, Caucasian), HUM181641 
(male, 56  years old, Caucasian) and HUM4190 (male, 26  years old, Caucasian) (Addi-
tional file 2: Table S1). All donors had a body mass index in the normal range and were 
not diabetic (Additional file  2: Table  S1). Cell lines were not authenticated and were 
not checked for mycoplasma contamination. The first two donors were processed 
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simultaneously in a first batch, and the second two in a second batch, aiming for a maxi-
mum of eight samples processed at a time.

Cell culture

Each cryovial of PHH was thawed and plated according to Lonza’s “Suspension and 
plateable cryopreserved hepatocytes: technical information and instructions.” the pro-
tocol was followed stepwise minutely, using the recommended thawing and plating 
media (Lonza, MCHT50, and MP250, respectively). The cells were dispensed and mixed 
using only wide orifice tips (Rainin, Ref. 17014297). For efficient cell seeding densities 
and attachment, cells were counted using the Trypan Blue Exclusion Method and seeded 
into Collagen-I coated plates at a density of approximately 100,000 cells/cm2 following 
Lonza’s instructions (Lonza, “Suspension and Plateable Cryopreserved Hepatocytes 
Technical Information and Instructions”). Six hours post-seeding, cells were washed 
with 1 mL of pre-warmed Maintenance Medium (Lonza, MCHT50) before the addition 
of treatment media. The treatment medium was renewed every 24 h for a total incuba-
tion period of 72 h post-seeding. Free fatty acids (FFA) consisting of a 200 µM mixture 
of a 2:1 ratio of the unsaturated oleic acid to the saturated palmitic acid were added to 
the maintenance media, to mimic the levels in human steatosis [35]. In order to facilitate 
FFA uptake, pre-bounding of free fatty acids to 1% bovine serum albumin in a 1:5 molar 
ratio (Sigma-Aldrich) was performed by heating the mixture at 40 °C for 2 h [36].

Drug cocktail preparation and storage

The individual components of the 5-drug cocktail [24] were dissolved in sterile DMSO, 
filtered through a 0.2-µM syringe filter (Merck, SLGVV255F), and stored at − 80  °C 
for a maximum of six months (“compound stock concentration”, Additional file  11: 
Table S10). The individual drugs were mixed at 200 × concentration (“working concen-
tration”, Additional file 11: Table S10) and added to the cells to a final concentration of 
80  µM Caffeine (Sigma-Aldrich, Ref. 56396-100MG), 5  µM Midazolam (LGC Chemi-
cals, Ref. LGCFOR1106.00), 17 µM Omeprazole (TRC Chemicals, Ref. 0635000), 20 µM 
S-Warfarin (Sigma-Aldrich, Ref. UC214-5MG) and 23 µM Metoprolol (TRC Chemicals, 
Ref. M338815). The final DMSO concentration used on the cells was 0.5% (v/v), in all 
conditions.

Single‑cell RNA‑seq sample preparation and sequencing

After a total of 72-h incubation in a treatment culture medium, cells were detached with 
pre-warmed 0.25% Trypsin (Gibco, 25200056) for 7 min, followed by trypsin inactiva-
tion. The dissociated cells were then collected to pellet by centrifugation at 100 × g for 
5  min at room temperature (RT). Cells were washed twice with 1  mL of pre-warmed 
1 × PBS pH 7.4 (Gibco, 10010023), followed by cells pelleting at 100 × g for 5 min at RT. 
A live-cell selection was performed using a Dead Cell Removal Kit (Miltenyi Biotec, 
130–090-101) as follows: cells were pelleted at 100 × g for 5 min at RT, resuspended in 
100 µL of dead-cell removal microbeads and incubated for 15 min at RT. Dead cells were 
positively selected by passing the cell suspension through a MS column and perform-
ing a wash with a total of 2 mL of binding buffer. Living cells were eluted from the col-
umn and collected in 2-mL Eppendorf tubes. After pelleting by centrifugation at 100 × g 
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for 5  min at RT, cells were resuspended in 1xPBS pH 7.4 supplemented with 0.04% 
BSA (Miltenyi Biotech, 130–091-376), stained with trypan blue to assess viability, and 
counted in a hemocytometer. A single-cell suspension was obtained by dissociating cells 
with wide orifice pipette tips and preparing the target cell stock concentration for load-
ing the 10 × chip.

Single-cell RNA-seq libraries were prepared from each sample following the 
10x Genomics Single Cell 3′ Reagent Kit User Guide (v3 or v3.1, manual CG000183 
and CG000204, respectively) in the Chromium Controller (10x Genomics). The quality 
control of cDNA and obtained final libraries was performed using a Bioanalyzer High 
Sensitivity DNA Analysis assay (Agilent). Library quantification was performed using 
the Collibri™ Library Quantification Kit (Thermo Fischer Scientific, A38524500) in a 
QuantStudio™ 6 Flex Real-Time PCR System (Thermo Fisher Scientific). Both batches 
were sequenced in a NovaSeq6000 sequencer (Illumina) at the HMGU Core Facility 
for NGS Sequencing. The first batch (HUM180812 and HUM4152) was sequenced in 
a S2 flowcell at a depth of 250,000 reads per cell. The second batch (HUM181641 and 
HUM4190) was sequenced in a SP flowcell at a sequencing depth of 20,000 reads per 
cell. The sequencing length was set as indicated by 10x Genomics: 28/8/0/91.

Single‑cell ATAC‑seq sample preparation and nuclei isolation

After a total of 72-h incubation in treatment culture medium (DMSO), cells were trypsi-
nated with pre-warmed 0.25% Trypsin (Gibco, 25200056) for 7 min, followed by inacti-
vation. Approximately 500,000 cells were pelleted at 100 × g for 5 min at RT. Cells were 
washed twice with 1 mL of cold 1 × PBS pH 7.4 (Gibco, 10010023), centrifuged down 
at 500 rcf for 5 min at 4 °C and resuspended in 1 mL of homogenization buffer (5 mM 
MgCl2, 25  mM KCl, 10  mM Tris buffer pH 8.0, 250  mM sucrose, 1% DTT, protease-
inhibitor (Life Technologies, 1187358001), 0.2% NP-40 and 0.3% Triton-X). Cells were 
transferred to a 2-mL homogenizer and 5 strokes were performed with the lose pestle 
(A) followed by 10 min incubation on ice and 25 strokes with the tight pestle (B). Nuclei 
were then transferred to a 2-mL Eppendorf tube. The douncer was rinsed using addi-
tional 400 µL of HB and added to the tube, which was then centrifuged at 500 rcf for 
5 min at 4 °C. After discarding the supernatant, the pellet was resuspended in 1 mL of 
swelling buffer (10 mM Tris–HCl pH7.5, 2 mM MgCl2, 3 mM CaCl2) and 1 mL of pre-
chilled swelling buffer with 10% glycerol was added drop-wise and then pipette-mixed 
5 times [131]. The mixture was incubated for 10  min on ice with occasional flicking. 
Then, the nuclei were pelleted and resuspended in 1 mL of 10 × Genomics Wash Buffer 
(10 mM Tris–HCl pH 7.4, 10 mM NaCl, MgCl2, 1% BSA, 0.1% Tween-20 and nuclease-
free water), counted nuclei per µL and incubated for 15 min on ice. Proceeding to nuclei 
lysis, nuclei were centrifuged at 500 rcf at 4 °C for 5 min. Then, the supernatant discarded 
and nuclei resuspended in 200 µL of 10x Genomics Lysis Buffer with 0.2% NP-40 instead 
of the original 0.1% concentration (10 mM Tris–HCl pH 7.4, 10 mM NaCl, MgCl2, 1% 
BSA, 0.1%Tween-20, 0.01% Digitonin, as a minor 0.2% NP-40 and nuclease-free water). 
Nuclei were lyzed for 10 min on ice and then 1 mL of wash buffer was added followed by 
rocking the tube gently. Nuclei were pelleted at 500 rcf for 5 min at 4 °C, then 500 µL of 
PBS added without resuspending and nuclei spun down at 500 rcf for 5 min at 4 °C.
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Tagmentation, library preparation, and sequencing

Tagmentation reaction was prepared following the 10 × Genomics demonstrated pro-
tocol [131]. In brief, isolated nuclei were resuspended in 500 µL of 1X Nuclei Storage 
Buffer, pelleted at 500 rcf for 5 min at 4 °C, and discarding the supernatant. The trans-
position master mix was prepared by mixing 7 µL of ATAC Buffer and 3 µL of ATAC 
enzyme [131]. Then, using the Nuclei Concentration Guidelines calculator, 5 µL of the 
mixture of nuclei (2.9 µL) and diluted Nuclei Storage Buffer (2.1 µL) were incubated for 
60 min at 37 °C in a thermocycler.

Single-cell ATAC-seq library was prepared following the 10x Genomics Chromium 
Next GEM Reagents Kit and Reagent Kit User Guide (v1.1, manual CG000209, RevD) 
[131] in the Chromium Controller (10x Genomics). The cDNA and library’s quality were 
assessed in a Bioanalyzer 2100 using the High Sensitivity DNA Analysis assay (Agilent). 
Final libraries’ quantification was performed using the Collibri™ Library Quantification 
Kit (Thermo Fischer Scientific, A38524500) in a QuantStudio™ 6 Flex Real-Time PCR 
System (Thermo Fisher Scientific). Sequencing was performed in a SP 100 flowcell in 
a NovaSeq 6000 sequencer (Illumina) at the HMGU Core Facility for NGS Sequencing 
with the sequencing length recommended by 10x Genomics (50, 8, 16, 50). Approxi-
mately, 50,000 reads per nucleus were yielded.

Read alignment, counting, and filtering of the combined batches

Reads were aligned to GRCh38 and counted using 10x Genomics Cellranger 4.0.0 with 
standard parameters for each batch individually (Additional file 3: Table S2). The result-
ing count matrices were combined into a count matrix of 63,527 cells times 19,971 
genes. Cells with at least 1000 counts and 500 genes were kept. Genes were kept if they 
were present in at least 5 cells and had fewer than 5 million reads. Scrublet [132] was 
used to identify doublets. Due to hepatocytes being subject to polyploidyzation, a leni-
ent cutoff of 0.15 was used to avoid unwanted removal of tetraploid hepatocytes. This 
led to 1.7% of cells being annotated as doublets and subsequently being removed. Lastly, 
cells with more than 1% mitochondrial reads were removed, resulting in a filtered matrix 
of 49,378 cells times 16,256 genes.

Normalization and initial clustering

Scran was used for library size normalization with parameter min.mean = 0.05. After 
normalization, cells with more than 20,000 normalized counts were removed. Scanpy 
functions were used for calculating principal components (PCs) and clustering. Shortly, 
the top 50 PCs were used to construct a neighboring graph before calculating a UMAP 
embedding and Louvain clusters. For two samples, encapsulation of the cells in droplets 
partially failed during the 10X library preparation (wetting failure). Therefore, an ini-
tial Louvain resolution of 0.5 was used to verify that cells stemming from these samples 
clustered separately. Indeed, some cells from one of the failed samples clustered apart 
from the rest of the cells, and another two clusters showed fractal structures that were 
not present in the samples where encapsulation worked correctly. Hence, based on the 
knowledge of the wetting failure, these three clusters were removed, resulting in a final 
matrix of 38,232 cells times 16,256 genes. To remove batch effects in downstream analy-
sis, the two batches were integrated using Harmony [48].
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Subgroup annotation based on individual donor analysis and clustering

In each of the four donors, the resolution of the Louvain clustering was selected so that 
every cluster contained every treatment condition (Additional file 1: Fig. S2A). Then, the 
top 1000 genes per Louvain cluster were calculated using sc.tl.rank_genes_groups with 
n_genes = 1000. To find out which clusters were shared between donors, the percent-
age of overlaps between the top 1000 genes per cluster was calculated and hierarchi-
cal clustering was performed. By this approach, three distinct groups of similar Louvain 
clusters were detected between donors (Additional file 1: Fig. S1C). Two of the donor-
specific clusters did not group together with clusters from other donors. Therefore, they 
were labeled as individual clusters to inspect where they would fall on the integrated 
data set (Additional file 1: Fig. S1C). Due to differences in sequencing depth, one group 
was identified in the first batch which was assigned to the cells losing expression. After 
integration and putting the group labels from the individual donor analysis on top of 
the combined UMAP, Louvain clustering was performed, showing that cells from the 
second batch that we had assigned to subgroup II were clustering with the cells losing 
their expression from the first batch. Therefore, those cells we re-labeled as losing their 
expression, subgroup IV (Additional file 1: Fig. S2A). One of the two donor-specific clus-
ters that could initially not be assigned to a shared cluster was split into two clusters 
on the combined data set, which were assigned to subgroup I and subgroup II, respec-
tively. The other individual cluster could be associated to the cells losing their expres-
sion. Marker genes were taken from reported literature to assign metabolic preferences 
to the functional subgroups I, II, and III (Additional file 3: Table S2).

Comparison to publicly available in vivo data

Data were obtained from GEO (Accession number GSE124395) [1]. Genes with zero 
expression across all cells, and cells that did not express any genes, were removed. Dur-
ing further filtering, cells with 100 to 6000 genes and 800 to 30,000 reads were kept and 
genes were kept if they were covered in at least 10 cells, resulting in a count matrix of 
11,059 cells times 19,416 genes. To keep the processing comparable to our data, normal-
ization was performed using scran with parameter min.mean = 0.05. After normaliza-
tion, cells with more than 20,000 normalized counts were further removed, resulting in a 
count matrix of 11,043 cells times 19,416 genes. Clustering was performed using scanpy 
functions as described above. Louvain clustering was performed at a resolution of 0.08 
to computationally separate the cell types in this data set from each other. Expression 
of mature hepatocyte markers, such as ALB, HNF4A, and TTR​ was used to identify the 
hepatocyte cluster. Louvain clustering with a resolution of 0.2 was then performed on 
the hepatocytes to identify hepatocyte subgroups in  vivo. The expression of marker 
genes used for subgroup identification in our data was investigated on the Louvain clus-
ters. Based on this marker gene expression, Louvain clusters were assigned to subgroups 
I, II, and III (Fig. 1D, Additional file 1: Fig. S5A).

As zonation impacts gene expression along the pericentral-periportal axis in  vivo, 
we investigated its connection to our subgroups. Zonation markers were taken from 
Aizarani et al. (2019) [1]. Based on the 35 zones reported in their study, the genes were 
grouped into three zones, pericentral, mid, and periportal through binning. Then sc.
tl.score_genes was used to calculate scores for each of the three zones (Additional 
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file 1: Fig. S5C). Cells were assigned to pericentral [133] if they had a central vein (CV) 
score > 0.45 and a periportal (PV) score < 1. If cells had a PV score >  = 0.65 and a CV 
score <  = 0.45, they were assigned to periportal. The rest of the cells were assigned to 
mid-zone (Additional file 1: Fig. S5B and C). For each of the three subgroups, the per-
centage of cells in CV, mid, and PV was calculated subsequently (Additional file 1: Fig. 
S5B). For visualization purposes, the subgroups were separated and zonation marker 
genes for each subgroup were depicted on a UMAP for the in vivo data set and for our 
in vitro data (Additional file 1: Fig. S5D).

To further investigate the presence of our four hepatocyte subgroups in vivo, an addi-
tional human data set was downloaded from GEO (Accession number GSE115469) [5] 
filtered and normalized as before. In order to reduce potential noise, genes were removed 
if they were not present in at least three cells and counts were log-transformed for better 
comparability between datasets. Hepatocytes were isolated based on the authors’ anno-
tation available at GSE115469. Scanpy functions were used as described above to per-
form clustering with a Louvain resolution of 0.5 to separate subgroups of hepatocytes, 
leading to six Louvain clusters highly overlapping with the clusters reported in the initial 
study. Marker gene expression of the three identified subgroups in our data was again 
used to assign the six Louvain clusters to the three subgroups. To increase power, the 
two in vivo data sets were integrated using scGen [134] (Additional file 1: Fig. S4E). The 
top 10 DEGs per our in vitro subgroups were calculated and their scaled mean expres-
sion was correlated to the combined in vivo scaled mean expression. This showed a high 
correlation of marker genes between identified subgroups in  vitro and in  vivo (Addi-
tional file 1: Fig. S4F).

Analysis of upstream regulators using ChEA3 and single‑cell ATAC‑seq

After defining metabolically functional subgroups in our in vitro data, we first calculated 
the top 500 DEGs per subgroup under DMSO in comparison to each other. To assess 
what drives the basal functional specialization of the subgroups, these top 500 genes per 
subgroup were taken as input for the online tool ChEA3 [53] which predict transcription 
factors regulating the gene expression per subgroup. For the purpose of visualization, 
five transcription factors among the top 25 per subgroup were depicted as a stacked vio-
lin plot (Additional file 1: Fig. S2E).

Raw reads were aligned to GRCh38 using cellranger-atac 2.1.0. Transcription factor 
binding site (TFBS) annotation was downloaded from ReMap2022 (https://​remap​2022.​
univ-​amu.​fr/) and filtered to only retain the binding sites of the top 25 transcription fac-
tors per subgroup that were predicted by ChEA3 (Additional file 4: Table S3). Using the 
fragment file obtained as output from cellranger-arc, we constructed the count matrix 
for these binding sites using epiScanpy’s function epi.ct.peaks_mtx(). This resulted in a 
matrix of 360,878 barcodes × 4,029,591 TFBS. Cells were removed if they had fewer than 
2000 TFBS covered, a nucleosome signal score of > 5, and a TSS-enrichment score of < 2. 
TFBS were removed if they were present in fewer than 30 cells. Furthermore, highly 
variable TFBS were selected by running epi.pp.highly_variable() with parameter min_
score = 0.515. To only consider binding sites at close proximity of the subgroup-specific 
genes, TFBS were annotated by the genes in their proximity using epi.tl.find_genes() with 
parameters upstream = 1000 and downstream = 100. We used this annotation to select 

https://remap2022.univ-amu.fr/
https://remap2022.univ-amu.fr/
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only the TFBS falling within 1000 bp upstream and 100 bp downstream of the TSS of any 
of the top 500 DEGs per subgroup. This resulted in a final matrix of 3582 cells × 16,488 
TFBS.

To confirm the presence of characteristic chromatin landscapes for our identified sub-
groups, we investigated the co-accessibility of the TFBS in the promoter regions of 5 
genes per subgroup (subgroup I: IQGAP2, LARP1, CTSB, DIAPH1, SPTBN1; subgroup 
II: RAC1, UGP2, RPL5, RPS12, ZNF706; subgroup III: OGT, ALB, CCNL1, NRBP2, 
PPP1R12B). Briefly, the accessibility of each binding site across all cells was correlated to 
all others. Then, per TFBS, we calculated its average correlation to all the binding sites 
in the promoter of every selected gene. Clustering the TFBS based on these average cor-
relations showed that TFBS at the promoters of subgroup-specific genes were clustering 
together. This indicates their co-accessibility in the cells (Additional file 1: Fig. S5A).

Additionally, Louvain clustering was applied using the above count matrix, to group 
cells showing similar openness profiles at the TFBS regions in front of subgroup-relevant 
genes. Cells that could not be assigned to one of the subgroups were disregarded. Finally, 
for the 1176 annotated cells, we visualized chromatin openness per subgroup at the 
binding sites of the ChEA3-predicted transcription factors in proximity to subgroup-
defining genes (Additional file 1: Fig. S5B-D) [http://​andre​wjohn​hill.​com/​blog/​2019/​04/​
12/​strea​mlini​ng-​scatac-​seq-​visua​lizat​ion-​and-​analy​sis/)].

Differential expression analysis between conditions in the subgroups

After defining metabolically functional subgroups in our in vitro data, we first calculated 
the top 500 DEGs per subgroup under DMSO in comparison to each other. To assess 
what drives the basal functional specialization of the subgroups, these top 500 genes per 
subgroup were taken as input for the online tool ChEA3 [53] which predict transcription 
factors regulating the gene expression per subgroup. For the purpose of visualization, 
five transcription factors among the top 25 per subgroup were depicted as a stacked vio-
lin plot (Additional file 1: Fig. S2E). To explore the implications of the functional spe-
cialization on the metabolic capacity of hepatocytes, we then performed differential 
expression analysis between Cocktail- and DMSO-treated cells in each of the functional 
subgroups. Genes were defined significantly up-regulated if they had a log2-fold change 
of greater than 1 and a Bonferroni-adjusted p-value below 0.05. We used the venn pack-
age to visualize the overlap of significantly up-regulated genes between the subgroups. 
Furthermore, ShinyGO [135] was used to investigate the enrichment of the subgroup-
specific up-regulated genes in pathways known to be relevant for drug metabolism 
(Additional file 5: Table S4).

When comparing FFA- with DMSO-treated cells, we observed that there were on 
average 3.5 times fewer genes with a positive log2-fold change than when we com-
pared Cocktail and DMSO. Therefore, to capture the subtler effects of fat accu-
mulation on the cells, a gene was identified as significantly up-regulated if it had a 
Bonferroni-adjusted p-value below 0.05 and a log2-fold change greater than 0.75. We 
used the same marker genes as described above (Additional file 3: Table S2) to count 
overlaps between groups of marker genes and significantly up-regulated genes in the 
subgroups. To investigate in which pathways related to biological processed the genes 

http://andrewjohnhill.com/blog/2019/04/12/streamlining-scatac-seq-visualization-and-analysis/
http://andrewjohnhill.com/blog/2019/04/12/streamlining-scatac-seq-visualization-and-analysis/
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up-regulated upon FFA-treatment were enriched in every subgroup, gprofiler was 
used (https://​pypi.​org/​proje​ct/​gprof​iler-​offic​ial/).

Assessing transcriptional variability through the coefficient of variation

It is generally assumed that lowly expressed genes have an inflated transcriptional 
variability. Therefore, genes with a mean normalized log-transformed expression 
smaller than 0.25 were removed, and the coefficient of variation per condition in each 
of the subgroups was calculated on 3434 genes. To obtain the coefficient of variation 
on normalized, log-transformed counts, we used the formula described in Canchola 
et al. [136].

where σ2 is the variation of gene j in the group of interest.
In every subgroup, a Mann–Whitney U test was performed to check if the coefficient 

of variation differed significantly between treatment condition.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​023-​03075-9.

Additional file 1: Fig. S1. Quality controls. Fig. S2. Clustering and cell annotation. Fig. S3. Comparison between 
cell cycle analysis using FACS and Cyclone. Fig. S4. ChEA3 and scATAC-seq analysis. Fig. S5. In vitro and in vivo com‑
parisons of hepatocyte subgroups. Fig. S6. Transcriptional signatures in response to the phenotyping cocktail. Fig. 
S7. Transcriptional profiles upon intracellular lipid accumulation. Fig. S8. Transcriptional dysregulation of multiple 
metabolic pathways upon fat accumulation. Fig. S9. Transcriptomic changes on phase III transporter genes.

Additional file 2: Table S1. Metadata donors.

Additional file 3: Table S2. Marker genes.

Additional file 4: Table S3. ChEA3 results per subgroup.

Additional file 5: Table S4. Unique DEGs per subgroup upon Cocktail.

Additional file 6: Table S5. Differential expression Cocktail vs. DMSO.

Additional file 7: Table S6. Significance levels coefficient of variation

Additional file 8: Table S7. Differential expression FFA vs. DMSO.

Additional file 9: Table S8. Differential expression FFA+Cocktail vs. DMSO.

Additional file 10: Table S9. Genes up-regulated upon Cocktail with and without FFA.

Additional file 11: Table S10. Drug Cocktail preparation

Additional file 12. Review history.

Acknowledgements
We thank the Core Facility Genomics at HMGU for sequencing (I. de la Rosa) and bioinformatics (T. Walzthoeni) support, 
in particular Xavier Pastor for initial data analysis. We thank all members of the Martinez-Jimenez laboratory for helpful 
discussions and all staff at the Helmholtz Pioneer Campus.

Review history
The review history is available as Additional file 12.

Peer review information
Veronique van den Berghe and Stephanie McClelland were the primary editors of this article and managed its editorial 
process and peer review in collaboration with the rest of the editorial team.

Authors’ contributions
E.S-Q. and C.P.M-J. designed the experiments; E.S-Q. performed experimental analyses; M.L.R. performed computational 
analyses. E.S-Q., M.L.R., M.C-T., and C.P.M-J. interpreted the data. E.S-Q., M.L.R., M.C-T., and C.P.M-J wrote the manuscript. 
E.S-Q. and C.P.M-J. provided figure editing and design. C.P.M-J. conceptualized the idea, obtained the funding, and 
supervised the work. C.P.M-J. and M.C-T. supervised the data analysis and interpretation. All authors commented on and 
approved the manuscript.

CV = eσ
2
− 1,

https://pypi.org/project/gprofiler-official/
https://doi.org/10.1186/s13059-023-03075-9


Page 24 of 29Sanchez‑Quant et al. Genome Biology          (2023) 24:234 

Funding
Open Access funding enabled and organized by Projekt DEAL. This research was supported by C.P.M-J. core funding at 
the Helmholtz Pioneer Campus (E.S-Q., M.L.R., C.P.M-J.), as well as all experimental costs. Impuls-und Vernetzungsfonds of 
the Helmholtz-Gemeinschaft (VH108 NG-1219 to M.C-T).

Availability of data and materials
All raw single-cell RNA sequencing data is deposited in ArrayExpress under accession numbers E-MTAB-11530 [137] and 
scATAC-seq under S-BSST1024 [138]. Additional publicly available data sets used for subgroup identification in vivo were 
obtained from GEO (Accession numbers GSE124395 [1, 139] and GSE115469 [5, 140]).
The jupyter notebooks containing the code to reproduce the analysis results are publicly available via Github [141] and 
via Zenodo [142] and licensed under the GNU General Public License v3.0. Python libraries used for the analysis include 
scanpy (v1.7.2), anndata (v0.7.6), matplotlib (v3.4.1), pandas (v1.2.4), numpy (v1.19.2), seaborn (v0.11.1), and scipy (v1.6.2).

Declarations

Ethics approval and consent to participate
Not applicable. Commercially plateable and interaction-qualified cryopreserved human hepatocytes (Lonza, Walkersville, 
MD, USA) were purchased from Lonza from four different donors. Lonza only receives liver tissue from approved and US 
government-regulated sources under the strictest ethical guidelines.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 8 June 2022   Accepted: 26 September 2023

References
	 1.	 Aizarani N, Saviano A, Sagar, Mailly L, Durand S, Herman JS, Pessaux P, Baumert TF, Grün D. A human liver cell atlas 

reveals heterogeneity and epithelial progenitors. Nature. 2019;572:199–204.
	 2.	 Liao J, Yu Z, Chen Y, Bao M, Zou C, Zhang H, Liu D, Li T, Zhang Q, Li J, et al. Single-cell RNA sequencing of human 

kidney. Scientific Data. 2020;7:4.
	 3.	 Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, 

et al. Cells of the adult human heart. Nature. 2020;588:466–72.
	 4.	 Halpern KB, Shenhav R, Matcovitch-Natan O, Tóth B, Lemze D, Golan M, Massasa EE, Baydatch S, Landen S, Moor 

AE, et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature. 
2017;542:352–6.

	 5.	 MacParland SA, Liu JC, Ma X-Z, Innes BT, Bartczak AM, Gage BK, Manuel J, Khuu N, Echeverri J, Linares I, et al. 
Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. 
2018;9:4383.

	 6.	 Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R, Akbarpour M, Chen C-I, 
Ren Z, et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmo‑
nary fibrosis. Am J Respir Crit Care Med. 2019;199:1517–36.

	 7.	 Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, Luu NT, Portman JR, Matchett KP, Brice M, 
Marwick JA, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512–8.

	 8.	 Muraro MJ, Dharmadhikari G, Grün D, Groen N, Dielen T, Jansen E, van Gurp L, Engelse MA, Carlotti F, de Koning EJ, 
van Oudenaarden A. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 2016;3:385–394.e383.

	 9.	 Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, Tsitsiridis G, Ansari M, Graf E, Strom T-M, et al. 
An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun. 
2019;10:963.

	 10.	 Ben-Moshe S, Shapira Y, Moor AE, Manco R, Veg T, Bahar Halpern K, Itzkovitz S. Spatial sorting enables comprehen‑
sive characterization of liver zonation. Nat Metab. 2019;1:899–911.

	 11.	 Xiong X, Kuang H, Ansari S, Liu T, Gong J, Wang S, Zhao X-Y, Ji Y, Li C, Guo L, et al. Landscape of intercellular cross‑
talk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell. 2019;75:644–660.e645.

	 12.	 Nault R, Fader KA, Bhattacharya S, Zacharewski TR. Single-nuclei RNA sequencing assessment of the hepatic 
effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Cell Mol Gastroenterol Hepatol. 2021;11:147–59.

	 13.	 Castell JV, Jover R, Martinez-Jimenez CP, Gomez-Lechon MJ. Hepatocyte cell lines: their use, scope and limitations 
in drug metabolism studies. Expert Opin Drug Metab Toxicol. 2006;2:183–212.

	 14.	 Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A critical perspective on 3D liver models 
for drug metabolism and toxicology studies. Front Cell Dev Biol. 2021;9:626805.

	 15.	 Garnier D, Li R, Delbos F, Fourrier A, Collet C, Guguen-Guillouzo C, Chesné C, Nguyen TH. Expansion of human 
primary hepatocytes in vitro through their amplification as liver progenitors in a 3D organoid system. Sci Rep. 
2018;8:8222.



Page 25 of 29Sanchez‑Quant et al. Genome Biology          (2023) 24:234 	

	 16.	 Martínez-Jiménez CP, Gómez-Lechón MJ, Castell JV, Jover R. Underexpressed coactivators PGC1alpha and SRC1 
impair hepatocyte nuclear factor 4 alpha function and promote dedifferentiation in human hepatoma cells. J Biol 
Chem. 2006;281:29840–9.

	 17.	 Martinez-Jimenez, Ramiro J, Donato MT, Jose VC, Gomez-Lechon MJ. Transcriptional regulation and expression of 
CYP3A4 in hepatocytes. Curr Drug Metab. 2007;8:185–94.

	 18.	 Rodríguez-Antona C, Donato MT, Boobis A, Edwards RJ, Watts PS, Castell JV, Gómez-Lechón MJ. Cytochrome P450 
expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expres‑
sion in cultured cells. Xenobiotica. 2002;32:505–20.

	 19.	 Spatzenegger M, Jaeger W. Clinical importance of hepatic cytochrome P450 in drug metabolism. Drug Metab Rev. 
1995;27:397–417.

	 20.	 Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme 
activities, and impact of genetic variation. Pharmacol Ther. 2013;138:103–41.

	 21.	 Rodriguez-Antona C, Donato MT, Pareja E, Gomez-Lechon MJ, Castell JV. Cytochrome P-450 mRNA expression in 
human liver and its relationship with enzyme activity. Arch Biochem Biophys. 2001;393:308–15.

	 22.	 Berger B, Bachmann F, Duthaler U, Krähenbühl S, Haschke M. Cytochrome P450 enzymes involved in metoprolol 
metabolism and use of metoprolol as a CYP2D6 phenotyping probe drug. Front Pharmacol. 2018;9:774.

	 23.	 Fuhr U, Jetter A, Kirchheiner J. Appropriate phenotyping procedures for drug metabolizing enzymes and trans‑
porters in humans and their simultaneous use in the “cocktail” approach. Clin Pharmacol Ther. 2007;81:270–83.

	 24.	 Ryu JY, Song IS, Sunwoo YE, Shon JH, Liu KH, Cha IJ, Shin JG. Development of the “Inje cocktail” for high-through‑
put evaluation of five human cytochrome P450 isoforms in vivo. Clin Pharmacol Ther. 2007;82:531–40.

	 25.	 Turpault S, Brian W, Van Horn R, Santoni A, Poitiers F, Donazzolo Y, Boulenc X. Pharmacokinetic assessment of a 
five-probe cocktail for CYPs 1A2, 2C9, 2C19, 2D6 and 3A. Br J Clin Pharmacol. 2009;68:928–35.

	 26.	 Bosilkovska M, Samer CF, Deglon J, Rebsamen M, Staub C, Dayer P, Walder B, Desmeules JA, Daali Y. Geneva cock‑
tail for cytochrome p450 and P-glycoprotein activity assessment using dried blood spots. Clin Pharmacol Ther. 
2014;96:349–59.

	 27.	 Chainuvati S, Nafziger AN, Leeder JS, Gaedigk A, Kearns GL, Sellers E, Zhang Y, Kashuba AD, Rowland E, Bertino JS 
Jr. Combined phenotypic assessment of cytochrome p450 1A2, 2C9, 2C19, 2D6, and 3A, N-acetyltransferase-2, and 
xanthine oxidase activities with the “Cooperstown 5+1 cocktail.” Clin Pharmacol Ther. 2003;74:437–47.

	 28.	 Christensen M, Andersson K, Dalén P, Mirghani RA, Muirhead GJ, Nordmark A, Tybring G, Wahlberg A, Yaşar U, 
Bertilsson L. The Karolinska cocktail for phenotyping of five human cytochrome P450 enzymes. Clin Pharmacol 
Ther. 2003;73:517–28.

	 29.	 Jancova P, Anzenbacher P, Anzenbacherova E. Phase II drug metabolizing enzymes. Biomedical papers. 
2010;154:103–16.

	 30.	 Omiecinski CJ, Vanden Heuvel JP, Perdew GH, Peters JM. Xenobiotic metabolism, disposition, and regulation by 
receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci. 2011;120:S49–75.

	 31.	 Park SR, Cho C-S, Xi J, Kang HM, Lee JH. Holistic characterization of single-hepatocyte transcriptome responses to 
high-fat diet. Am J Physiol Endocrinol Metab. 2020;320:E244–58.

	 32.	 Su Q, Kim SY, Adewale F, Zhou Y, Aldler C, Ni M, Wei Y, Burczynski ME, Atwal GS, Sleeman MW, et al. Single-cell RNA 
transcriptome landscape of hepatocytes and non-parenchymal cells in healthy and NAFLD mouse liver. iScience. 
2021;24:103233.

	 33.	 Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and 
NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11–20.

	 34.	 Dulai PS, Singh S, Patel J, Soni M, Prokop LJ, Younossi Z, Sebastiani G, Ekstedt M, Hagstrom H, Nasr P, et al. Increased 
risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatol‑
ogy. 2017;65:1557–65.

	 35.	 Gómez-Lechón MJ, Donato MT, Martínez-Romero A, Jiménez N, Castell JV, O’Connor JE. A human hepatocellular 
in vitro model to investigate steatosis. Chem Biol Interact. 2007;165:106–16.

	 36.	 Kozyra M, Johansson I, Nordling Å, Ullah S, Lauschke VM, Ingelman-Sundberg M. Human hepatic 3D spheroids as 
a model for steatosis and insulin resistance. Sci Rep. 2018;8:14297.

	 37.	 Seebacher F, Zeigerer A, Kory N, Krahmer N. Hepatic lipid droplet homeostasis and fatty liver disease. Semin Cell 
Dev Biol. 2020;108:72–81.

	 38.	 Mehta RS, Kochar BD, Kennelty K, Ernst ME, Chan AT. Emerging approaches to polypharmacy among older adults. 
Nature Aging. 2021;1:347–56.

	 39.	 Lavan AH, Gallagher P. Predicting risk of adverse drug reactions in older adults. Ther Adv Drug Saf. 2016;7:11–22.
	 40.	 Davies EA, O’Mahony MS. Adverse drug reactions in special populations – the elderly. Br J Clin Pharmacol. 

2015;80:796–807.
	 41.	 Aubert J, Begriche K, Knockaert L, Robin MA, Fromenty B. Increased expression of cytochrome P450 2E1 in 

nonalcoholic fatty liver disease: mechanisms and pathophysiological role. Clin Res Hepatol Gastroenterol. 
2011;35:630–7.

	 42.	 Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B. Drug-induced toxicity on mitochondria and lipid 
metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol. 2011;54:773–94.

	 43.	 Tarantino G, Conca P, Basile V, Gentile A, Capone D, Polichetti G, Leo E. A prospective study of acute drug-induced 
liver injury in patients suffering from non-alcoholic fatty liver disease. Hepatol Res. 2007;37:410–5.

	 44.	 Xanthopoulos KG, Prezioso VR, Chen WS, Sladek FM, Cortese R, Darnell JE Jr. The different tissue transcription 
patterns of genes for HNF-1, C/EBP, HNF-3, and HNF-4, protein factors that govern liver-specific transcription. Proc 
Natl Acad Sci U S A. 1991;88:3807–11.

	 45.	 Stanulović VS, Kyrmizi I, Kruithof-de Julio M, Hoogenkamp M, Vermeulen JL, Ruijter JM, Talianidis I, Hakvoort TB, 
Lamers WH. Hepatic HNF4alpha deficiency induces periportal expression of glutamine synthetase and other 
pericentral enzymes. Hepatology. 2007;45:433–44.

	 46.	 Gómez-Lechón MJ, Tolosa L, Conde I, Donato MT. Competency of different cell models to predict human hepato‑
toxic drugs. Expert Opin Drug Metab Toxicol. 2014;10:1553–68.



Page 26 of 29Sanchez‑Quant et al. Genome Biology          (2023) 24:234 

	 47.	 Sahi J, Grepper S, Smith C. Hepatocytes as a tool in drug metabolism, transport and safety evaluations in drug 
discovery. Curr Drug Discov Technol. 2010;7:188–98.

	 48.	 Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh PR, Raychaudhuri S. Fast, 
sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16:1289–96.

	 49.	 Gómez-Lechón MJ, Castell JV, Donato MT. The use of hepatocytes to investigate drug toxicity. Methods Mol Biol. 
2010;640:389–415.

	 50.	 Heslop JA, Rowe C, Walsh J, Sison-Young R, Jenkins R, Kamalian L, Kia R, Hay D, Jones RP, Malik HZ, et al. Mecha‑
nistic evaluation of primary human hepatocyte culture using global proteomic analysis reveals a selective dedif‑
ferentiation profile. Arch Toxicol. 2017;91:439–52.

	 51.	 Pelkonen O, Hakkola J, Hukkanen J, Turpeinen M. CYP-associated drug–drug interactions: a mission accom‑
plished? Arch Toxicol. 2020;94:3931–4.

	 52.	 Scialdone A, Natarajan KN, Saraiva LR, Proserpio V, Teichmann SA, Stegle O, Marioni JC, Buettner F. Computational 
assignment of cell-cycle stage from single-cell transcriptome data. Methods. 2015;85:54–61.

	 53.	 Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, Jagodnik KM, Kropiwnicki E, Wang Z, 
Ma’ayan A. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 
2019;47:W212–24.

	 54.	 Kyrmizi I, Hatzis P, Katrakili N, Tronche F, Gonzalez FJ, Talianidis I. Plasticity and expanding complexity of the hepatic 
transcription factor network during liver development. Genes Dev. 2006;20:2293–305.

	 55.	 Odom Duncan T, Zizlsperger N, Gordon DB, Bell George W, Rinaldi Nicola J, Murray Heather L, Volkert Tom L, 
Schreiber J, Rolfe PA, Gifford David K, et al. Control of pancreas and liver gene expression by HNF transcription 
factors. Science. 2004;303:1378–81.

	 56.	 Eissing L, Scherer T, Tödter K, Knippschild U, Greve JW, Buurman WA, Pinnschmidt HO, Rensen SS, Wolf AM, 
Bartelt A. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nat Commun. 
2013;4:1–11.

	 57.	 Dobie R, Wilson-Kanamori JR, Henderson BEP, Smith JR, Matchett KP, Portman JR, Wallenborg K, Picelli S, Zagorska 
A, Pendem SV, et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver 
fibrosis. Cell Rep. 2019;29:1832–1847.e1838.

	 58.	 Richter ML, Deligiannis IK, Yin K, Danese A, Lleshi E, Coupland P, Vallejos CA, Matchett KP, Henderson NC, Colome-
Tatche M, Martinez-Jimenez CP. Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and 
ploidy. Nat Commun. 2021;12:4264.

	 59.	 Ben-Moshe S, Itzkovitz S. Spatial heterogeneity in the mammalian liver. Nat Rev Gastroenterol Hepatol. 
2019;16:395–410.

	 60.	 Chen W, Suruga K, Nishimura N, Gouda T, Lam VN, Yokogoshi H. Comparative regulation of major enzymes in the 
bile acid biosynthesis pathway by cholesterol, cholate and taurine in mice and rats. Life Sci. 2005;77:746–57.

	 61.	 Vögeli I, Jung HH, Dick B, Erickson SK, Escher R, Funder JW, Frey FY, Escher G. Evidence for a role of sterol 
27-hydroxylase in glucocorticoid metabolism in vivo. J Endocrinol. 2013;219:119–29.

	 62.	 Beck KR, Inderbinen SG, Kanagaratnam S, Kratschmar DV, Jetten AM, Yamaguchi H, Odermatt A. 
11β-Hydroxysteroid dehydrogenases control access of 7β,27-dihydroxycholesterol to retinoid-related orphan 
receptor γ. J Lipid Res. 2019;60:1535–46.

	 63.	 de Vries EM, Lammers LA, Achterbergh R, Klümpen HJ, Mathot RAA, Boelen A, Romijn JA. Fasting-induced changes 
in hepatic P450 mediated drug metabolism are largely independent of the constitutive androstane receptor CAR. 
PLoS One. 2016;11:e0159552.

	 64.	 Drug Development and Drug Interactions | Table of Substrates, Inhibitors and Inducers. https://​www.​fda.​gov/​
drugs/​drug-​inter​actio​ns-​label​ing/​drug-​devel​opment-​and-​drug-​inter​actio​ns-​table-​subst​rates-​inhib​itors-​and-​induc​
ers.

	 65.	 Liu J, Lu YF, Corton JC, Klaassen CD. Expression of cytochrome P450 isozyme transcripts and activities in human 
livers. Xenobiotica. 2021;51:279–86.

	 66.	 Davis AP, Grondin CJ, Johnson RJ, Sciaky D, Wiegers J, Wiegers TC, Mattingly CJ. Comparative Toxicogenomics 
Database (CTD): update 2021. Nucleic Acids Res. 2021;49:D1138–d1143.

	 67.	 Fisher CD, Lickteig AJ, Augustine LM, Ranger-Moore J, Jackson JP, Ferguson SS, Cherrington NJ. Hepatic 
cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug 
Metab Dispos. 2009;37:2087–94.

	 68.	 Donato MT, Lahoz A, Jiménez N, Pérez G, Serralta A, Mir J, Castell JV, Gómez-Lechón MJ. Potential impact of 
steatosis on cytochrome P450 enzymes of human hepatocytes isolated from fatty liver grafts. Drug Metab Dispos. 
2006;34:1556–62.

	 69.	 Greco D, Kotronen A, Westerbacka J, Puig O, Arkkila P, Kiviluoto T, Laitinen S, Kolak M, Fisher RM, Hamsten A, et al. 
Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol. 2008;294:G1281–1287.

	 70.	 Xiong X, Kuang H, Liu T, Lin JD. A single-cell perspective of the mammalian liver in health and disease. Hepatology. 
2020;71:1467–73.

	 71.	 Ægidius HM, Veidal SS, Feigh M, Hallenborg P, Puglia M, Pers TH, Vrang N, Jelsing J, Kornum BR, Blagoev B, Rigbolt 
KTG. Multi-omics characterization of a diet-induced obese model of non-alcoholic steatohepatitis. Sci Rep. 
2020;10:1148.

	 72.	 Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science. 
2011;332:1519–23.

	 73.	 Pan X, Chiwanda Kaminga A, Liu A, Wen SW, Chen J, Luo J. Chemokines in non-alcoholic fatty liver disease: a 
systematic review and network meta-analysis. Front Immunol. 2020;11:1802–1802.

	 74.	 Hegardt FG. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis. Biochem 
J. 1999;338(Pt 3):569–82.

	 75.	 Li J, Viswanadha S, Loor JJ. Hepatic metabolic, inflammatory, and stress-related gene expression in growing mice 
consuming a low dose of trans-10, cis-12-conjugated linoleic acid. J Lipids. 2012;2012:571281–571281.

https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers
https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers
https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers


Page 27 of 29Sanchez‑Quant et al. Genome Biology          (2023) 24:234 	

	 76.	 Imai Y, Varela GM, Jackson MB, Graham MJ, Crooke RM, Ahima RS. Reduction of hepatosteatosis and lipid levels by 
an adipose differentiation-related protein antisense oligonucleotide. Gastroenterology. 2007;132:1947–54.

	 77.	 Imai Y, Boyle S, Varela GM, Caron E, Yin X, Dhir R, Dhir R, Graham MJ, Ahima RS. Effects of perilipin 2 antisense 
oligonucleotide treatment on hepatic lipid metabolism and gene expression. Physiol Genomics. 2012;44:1125–31.

	 78.	 Liu D, Zhang P, Zhou J, Liao R, Che Y, Gao M-M, Sun J, Cai J, Cheng X, Huang Y, et al. TNFAIP3 interacting protein 3 
overexpression suppresses nonalcoholic steatohepatitis by blocking TAK1 activation. Cell Metab. 2020;31:726–740.
e728.

	 79.	 Zhang P, Wang P-X, Zhao L-P, Zhang X, Ji Y-X, Zhang X-J, Fang C, Lu Y-X, Yang X, Gao M-M, et al. The deubiquitinat‑
ing enzyme TNFAIP3 mediates inactivation of hepatic ASK1 and ameliorates nonalcoholic steatohepatitis. Nat 
Med. 2018;24:84–94.

	 80.	 Breher-Esch S, Sahini N, Trincone A, Wallstab C, Borlak J. Genomics of lipid-laden human hepatocyte cultures ena‑
bles drug target screening for the treatment of non-alcoholic fatty liver disease. BMC Med Genomics. 2018;11:111.

	 81.	 Gao H, Cao Y, Xia H, Zhu X, Jin Y. CYP4A11 is involved in the development of nonalcoholic fatty liver disease via 
ROS-induced lipid peroxidation and inflammation. Int J Mol Med. 2020;45:1121–9.

	 82.	 Powell PK, Wolf I, Lasker JM. Identification of CYP4A11 as the major lauric acid ω-hydroxylase in human liver micro‑
somes. Arch Biochem Biophys. 1996;335:219–26.

	 83.	 Langhi C, Baldán Á. CIDEC/FSP27 is regulated by peroxisome proliferator-activated receptor alpha and plays a criti‑
cal role in fasting- and diet-induced hepatosteatosis. Hepatology (Baltimore, MD). 2015;61:1227–38.

	 84.	 Matsusue K, Kusakabe T, Noguchi T, Takiguchi S, Suzuki T, Yamano S, Gonzalez FJ. Hepatic steatosis in leptin-defi‑
cient mice is promoted by the PPARγ target gene Fsp27. Cell Metab. 2008;7:302–11.

	 85.	 Baek J-H, Kim D-H, Lee J, Kim S-J, Chun K-H. Galectin-1 accelerates high-fat diet-induced obesity by activation of 
peroxisome proliferator-activated receptor gamma (PPARγ) in mice. Cell Death Dis. 2021;12:66.

	 86.	 Liu F-T, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer. 2005;5:29–41.
	 87.	 Matsumoto T, Urushido M, Ide H, Ishihara M, Hamada-Ode K, Shimamura Y, Ogata K, Inoue K, Taniguchi Y, Taguchi 

T, et al. Small heat shock protein beta-1 (HSPB1) is upregulated and regulates autophagy and apoptosis of renal 
tubular cells in acute kidney injury. PLoS One. 2015;10:e0126229.

	 88.	 Long S, Peng F, Song B, Wang L, Chen J, Shang B. Heat shock protein beta 1 is a prognostic biomarker and cor‑
related with immune infiltrates in hepatocellular carcinoma. Int J Gen Med. 2021;14:5483–92.

	 89.	 Bode JG, Albrecht U, Häussinger D, Heinrich PC, Schaper F. Hepatic acute phase proteins – regulation by 
IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling. Eur J Cell Biol. 
2012;91:496–505.

	 90.	 Feng J, Wei T, Cui X, Wei R, Hong T. Identification of key genes and pathways in mild and severe nonalcoholic fatty 
liver disease by integrative analysis. Chronic Dis Transl Med. 2021;7:276–86.

	 91.	 Zhang X, Shen J, Man K, Chu ESH, Yau TO, Sung JCY, Go MYY, Deng J, Lu L, Wong VWS, et al. CXCL10 plays a key 
role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis. J Hepatol. 
2014;61:1365–75.

	 92.	 Schulze RJ, Drižytė K, Casey CA, McNiven MA. Hepatic lipophagy: new insights into autophagic catabolism of lipid 
droplets in the liver. Hepatol Commun. 2017;1:359–69.

	 93.	 Barbosa AD, Siniossoglou S. Function of lipid droplet-organelle interactions in lipid homeostasis. Biochim Biophys 
Acta Mol Cell Res. 2017;1864:1459–68.

	 94.	 Martinez-Jimenez CP, Eling N, Chen HC, Vallejos CA, Kolodziejczyk AA, Connor F, Stojic L, Rayner TF, Stubbington 
MJT, Teichmann SA, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 
2017;355:1433–6.

	 95.	 Kolodziejczyk AA, Kim JK, Tsang JC, Ilicic T, Henriksson J, Natarajan KN, Tuck AC, Gao X, Bühler M, Liu P, et al. 
Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell. 
2015;17:471–85.

	 96.	 Enge M, Arda HE, Mignardi M, Beausang J, Bottino R, Kim SK, Quake SR. Single-cell analysis of human pancreas 
reveals transcriptional signatures of aging and somatic mutation patterns. Cell. 2017;171:321–330.e314.

	 97.	 Benesic A, Jalal K, Gerbes AL. Drug-drug combinations can enhance toxicity as shown by monocyte-derived 
hepatocyte-like cells from patients with idiosyncratic drug-induced liver injury. Toxicol Sci. 2019;171:296–302.

	 98.	 Juurlink DN, Mamdani M, Kopp A, Laupacis A, Redelmeier DA. Drug-drug interactions among elderly patients 
hospitalized for drug toxicity. JAMA. 2003;289:1652–8.

	 99.	 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, 
Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide 
expression profiles. Proc Natl Acad Sci. 2005;102:15545.

	100.	 Payen VL, Lavergne A, Alevra Sarika N, Colonval M, Karim L, Deckers M, Najimi M, Coppieters W, Charloteaux B, 
Sokal EM, El Taghdouini A. Single-cell RNA sequencing of human liver reveals hepatic stellate cell heterogeneity. 
JHEP Rep. 2021;3:100278.

	101.	 Massalha H, Bahar Halpern K, Abu-Gazala S, Jana T, Massasa EE, Moor AE, Buchauer L, Rozenberg M, Pikarsky E, 
Amit I, et al. A single cell atlas of the human liver tumor microenvironment. Mol Syst Biol. 2020;16:e9682.

	102.	 Andrews TS, Atif J, Liu JC, Perciani CT, Ma XZ, Thoeni C, et al. Single-cell, single-nucleus, and spatial RNA 
sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatol Commun. 
2022;6(4):821–40. https://​doi.​org/​10.​1002/​hep4.​1854.

	103.	 Vinci B, Duret C, Klieber S, Gerbal-Chaloin S, Sa-Cunha A, Laporte S, Suc B, Maurel P, Ahluwalia A, Daujat-Chavanieu 
M. Modular bioreactor for primary human hepatocyte culture: medium flow stimulates expression and activity of 
detoxification genes. Biotechnol J. 2011;6:554–64.

	104.	 Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, 
et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources 
and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and 
ADME. Arch Toxicol. 2013;87:1315–530.

https://doi.org/10.1002/hep4.1854


Page 28 of 29Sanchez‑Quant et al. Genome Biology          (2023) 24:234 

	105.	 Hewitt NJ, Lechón MJ, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson L, Lohmann C, Skonberg 
C, et al. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter 
proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, 
clearance, and hepatotoxicity studies. Drug Metab Rev. 2007;39:159–234.

	106.	 Odom DT, Dowell RD, Jacobsen ES, Gordon W, Danford TW, MacIsaac KD, Rolfe PA, Conboy CM, Gifford DK, Fraen‑
kel E. Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet. 
2007;39:730–2.

	107.	 Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is 
essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol. 2001;21:1393–403.

	108.	 Aitken AE, Richardson TA, Morgan ET. Regulation of drug-metabolizing enzymes and transporters in inflammation. 
Annu Rev Pharmacol Toxicol. 2006;46:123–49.

	109.	 Renton KW. Regulation of drug metabolism and disposition during inflammation and infection. Expert Opin Drug 
Metab Toxicol. 2005;1:629–40.

	110.	 Scheidecker B, Shinohara M, Sugimoto M, Danoy M, Nishikawa M, Sakai Y. Induction of in vitro metabolic zonation 
in primary hepatocytes requires both near-physiological oxygen concentration and flux. Front Bioeng Biotechnol. 
2020;8:524.

	111.	 Tonon F, Giobbe GG, Zambon A, Luni C, Gagliano O, Floreani A, Grassi G, Elvassore N. In vitro metabolic zonation 
through oxygen gradient on a chip. Sci Rep. 2019;9:13557.

	112.	 Wahlicht T, Vièyres G, Bruns SA, Meumann N, Büning H, Hauser H, Schmitz I, Pietschmann T, Wirth D. Controlled 
functional zonation of hepatocytes in vitro by engineering of wnt signaling. ACS Synth Biol. 2020;9:1638–49.

	113.	 Kang YB, Eo J, Mert S, Yarmush ML, Usta OB. Metabolic patterning on a chip: towards in vitro liver zonation of 
primary rat and human hepatocytes. Sci Rep. 2018;8:8951.

	114.	 Danoy M, Poulain S, Lereau-Bernier M, Kato S, Scheidecker B, Kido T, Miyajima A, Sakai Y, Plessy C, Leclerc E. Char‑
acterization of liver zonation-like transcriptomic patterns in HLCs derived from hiPSCs in a microfluidic biochip 
environment. Biotechnol Prog. 2020;36:e3013.

	115.	 Yamazaki Y, Moore R, Negishi M. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval 
cell proliferation in mouse liver. Lab Invest. 2011;91:1624–33.

	116.	 Shida S, Yamazaki H. Human plasma concentrations of five cytochrome P450 probes extrapolated from 
pharmacokinetics in dogs and minipigs using physiologically based pharmacokinetic modeling. Xenobiotica. 
2016;46:759–64.

	117.	 Koyanagi T, Nakanishi Y, Murayama N, Yamaura Y, Ikeda K, Yano K, Uehara S, Utoh M, Kim S, Uno Y, Yamazaki H. Age-
related changes of hepatic clearances of cytochrome P450 probes, midazolam and R-/S-warfarin in combination 
with caffeine, omeprazole and metoprolol in cynomolgus monkeys using in vitro–in vivo correlation. Xenobiotica. 
2015;45:312–21.

	118.	 Mogi M, Toda A, Iwasaki K, Kusumoto S, Takehara H, Shimizu M, Murayama N, Izumi H, Utoh M, Yamazaki H. Simul‑
taneous pharmacokinetics assessment of caffeine, warfarin, omeprazole, metoprolol, and midazolam intrave‑
nously or orally administered to Microminipigs. J Toxicol Sci. 2012;37:1157–64.

	119.	 Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. 
Arch Toxicol. 2020;94:3671–722.

	120.	 Tolosa L, Gómez-Lechón MJ, Jiménez N, Hervás D, Jover R, Donato MT. Advantageous use of HepaRG cells for the 
screening and mechanistic study of drug-induced steatosis. Toxicol Appl Pharmacol. 2016;302:1–9.

	121.	 Liao Y, Shikapwashya ON, Shteyer E, Dieckgraefe BK, Hruz PW, Rudnick DA. Delayed hepatocellular mitotic progres‑
sion and impaired liver regeneration in early growth response-1-deficient mice*. J Biol Chem. 2004;279:43107–16.

	122.	 Stein TA, Burns GP, Tropp BE, Wise L. Hepatic fat accumulation during liver regeneration. J Surg Res. 
1985;39:338–43.

	123.	 Zou Y, Bao Q, Kumar S, Hu M, Wang GY, Dai G. Four waves of hepatocyte proliferation linked with three waves of 
hepatic fat accumulation during partial hepatectomy-induced liver regeneration. PLoS One. 2012;7:e30675.

	124.	 Caldez MJ, Bjorklund M, Kaldis P. Cell cycle regulation in NAFLD: when imbalanced metabolism limits cell division. 
Hepatol Int. 2020;14:463–74.

	125.	 Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, Day CP, Burt A, Palmer A, Anstee QM, et al. Cellular 
senescence drives age-dependent hepatic steatosis. Nat Commun. 2017;8:15691.

	126.	 Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dolle ME, Calder RB, Chisholm GB, Pollock BH, Klein 
CA, Vijg J. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature. 2006;441:1011–4.

	127.	 Acun A, Oganesyan R, Uygun K, Yeh H, Yarmush ML, Uygun BE. Liver donor age affects hepatocyte function 
through age-dependent changes in decellularized liver matrix. Biomaterials. 2021;270:120689.

	128.	 Abdelmegeed MA, Choi Y, Ha SK, Song BJ. Cytochrome P450–2E1 promotes aging-related hepatic steatosis, apop‑
tosis and fibrosis through increased nitroxidative stress. Free Radic Biol Med. 2016;91:188–202.

	129.	 Li CY, Renaud HJ, Klaassen CD, Cui JY. Age-specific regulation of drug-processing genes in mouse liver by ligands 
of xenobiotic-sensing transcription factors. Drug Metab Dispos. 2016;44:1038–49.

	130.	 Song G, Sun X, Hines RN, McCarver DG, Lake BG, Osimitz TG, Creek MR, Clewell HJ, Yoon M. Determination of 
human hepatic CYP2C8 and CYP1A2 age-dependent expression to support human health risk assessment for 
early ages. Drug Metab Dispos. 2017;45:468.

	131.	 Genomics X. Chromium single cell ATAC reagent kits user guide (v1.1 Chemistry). 2021.
	132.	 Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic 

data. Cell Syst. 2019;8:281–291.e289.
	133.	 Thummel KE, Shen DD, Podoll TD, Kunze KL, Trager WF, Bacchi CE, Marsh CL, McVicar JP, Barr DM, Perkins JD, et al. 

Use of midazolam as a human cytochrome P450 3A probe: II. Characterization of inter- and intraindividual hepatic 
CYP3A variability after liver transplantation. J Pharmacol Exp Ther. 1994;271:557–66.

	134.	 Lotfollahi M, Wolf FA, Theis FJ. scGen predicts single-cell perturbation responses. Nat Methods. 2019;16:715–21.
	135.	 Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 

2019;36:2628–9.



Page 29 of 29Sanchez‑Quant et al. Genome Biology          (2023) 24:234 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	136.	 Canchola J. Correct use of percent coefficient of variation (%CV) formula for log-transformed data. MedCrave 
Online J Proteomics Bioinform. 2017;6:1–3.

	137.	 Sanchez-Quant E, Richter ML, Colomé-Tatché M, Martinez-Jimenez CP. Single-cell metabolic profiling reveals 
subgroups of primary human hepatocytes with heterogeneous responses to drug challenge. BioStudies, 
E-MTAB-11530 2023, https://​www.​ebi.​ac.​uk/​biost​udies/​array​expre​ss/​studi​es/E-​MTAB-​11530.

	138.	 Sanchez-Quant E, Richter ML, Colomé-Tatché M, Martinez-Jimenez CP. Single-cell metabolic profiling reveals sub‑
groups of primary human hepatocytes with heterogeneous responses to drug challenge. BioStudies, S-BSST1024. 
2023, https://​www.​ebi.​ac.​uk/​biost​udies/​studi​es/S-​BSST1​024.

	139.	 Aizarani N, Saviano A, Sagar, Mailly L, Durand S, Herman JS, Pessaux P, Baumert TF, Grün D. A human liver cell atlas 
reveals heterogeneity and epithelial progenitors. Datasets Gene Expression Omnibus. 2019, https://​ident​ifiers.​org/​
geo:​GSE12​4395.

	140.	 MacParland SA, Liu JC, Ma X-Z, Innes BT, Bartczak AM, Gage BK, Manuel J, Khuu N, Echeverri J, Linares I, et al. Single 
cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Datasets Gene Expres‑
sion Omnibus. 2018, https://​ident​ifiers.​org/​geo:​GSE11​5469.

	141.	 Sanchez-Quant E, Richter ML, Colomé-Tatché M, Martinez-Jimenez CP. Single-cell metabolic profiling reveals sub‑
groups of primary human hepatocytes with heterogeneous responses to drug challenge. Github. 2023, https://​
github.​com/​celia​mtnez/​preci​sion_​toxic​ology.​git.

	142.	 Sanchez-Quant E, Richter ML, Colomé-Tatché M, Martinez-Jimenez CP. Single-cell metabolic profiling reveals sub‑
groups of primary human hepatocytes with heterogeneous responses to drug challenge. Zenodo. 2023, https://​
doi.​org/​10.​5281/​zenodo.​82563​55.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11530
https://www.ebi.ac.uk/biostudies/studies/S-BSST1024
https://identifiers.org/geo:GSE124395
https://identifiers.org/geo:GSE124395
https://identifiers.org/geo:GSE115469
https://github.com/celiamtnez/precision_toxicology.git
https://github.com/celiamtnez/precision_toxicology.git
https://doi.org/10.5281/zenodo.8256355
https://doi.org/10.5281/zenodo.8256355

	Single-cell metabolic profiling reveals subgroups of primary human hepatocytes with heterogeneous responses to drug challenge
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Single-cell RNA-seq reveals four major subgroups of hepatocytes showing cellular heterogeneity and functional specialization in primary human hepatocytes
	Primary human hepatocytes retain functional specialization in vitro in the absence of liver zonation
	Phenotyping cocktail used to assess the induction of cytochrome P450 shows differential metabolic profiles among hepatocyte subgroups
	Intracellular lipid accumulation leads to differential transcriptional variability among hepatocyte subgroups
	Intracellular lipid accumulation impairs drug metabolism phases I, II, and III, with concomitant up-regulation of stress-related pathways

	Discussion
	Conclusions
	Methods
	Cell culture
	Drug cocktail preparation and storage
	Single-cell RNA-seq sample preparation and sequencing
	Single-cell ATAC-seq sample preparation and nuclei isolation
	Tagmentation, library preparation, and sequencing
	Read alignment, counting, and filtering of the combined batches
	Normalization and initial clustering
	Subgroup annotation based on individual donor analysis and clustering
	Comparison to publicly available in vivo data
	Analysis of upstream regulators using ChEA3 and single-cell ATAC-seq
	Differential expression analysis between conditions in the subgroups
	Assessing transcriptional variability through the coefficient of variation

	Anchor 28
	Acknowledgements
	References


