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ABSTRACT
This paper presents a three-step conceptual framework that can be used to structure the care- 
related capacity planning process in a nursing home context. The proposed framework 
provides a sound practical vehicle to organise client-centred care without overstretching 
available capacity. Within this framework, an MILP for shift scheduling and a Genetic 
Algorithm (GA) for task-scheduling are proposed. To investigate the performance of the 
proposed framework, it is benchmarked against the current situation. The results show that 
considerable improvements can be achieved in terms of efficiency and waiting time. More 
specifically, it is shown that very modest waiting times can be achieved without exceeding 
available capacity, despite the fluctuations in care demand across the day.
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1. Introduction

The Dutch population is ageing and according to the 
forecasts this trend is likely to continue for the fore
seeable future. It is expected that the percentage of 
people aged 65 years and over will rise from 19% in 
2018 to 29% in 2040. In addition, the total Dutch 
population aged 80 years and over is expected to 
reach 10% by 2040, compared with 5% in 2018 
(PopulationPyramid, 2020; Statistica, 2018). The age
ing of the Dutch population puts pressure on the 
financial sustainability of the Dutch long-term care 
(LTC) system for two main reasons. Firstly, research 
demonstrates that the risk of poor health and related 
physical or mental disability increases with age 
(Meerding et al., 1998). On average, elderly people 
over the age of 85 consume four times as much 
healthcare per person as those aged between 65 and 
75 (NZA, 2018). The second reason is that the relative 
increase in the number of elderly will lead to 
a substantial increase of the old-age dependency 
ratio, which measures the number of elderly people 
at an age when they are generally economically inac
tive, as share of those of working age.

On top of an increase in demand, the Dutch long- 
term care labour market is in shortage, and it is 
expected that the current shortage will increase from 
over 30,000 in 2015 to more than 90,000 employees in 
2030 (Actiz, 2021). Consequently, in order to ensure 
the long-term financial sustainability of the Dutch 
healthcare system, providers of long-term care are 
challenged to develop (innovative) strategies and 
approaches that enable them to meet the (future) 

needs of their clients in a more efficient manner. In 
the Netherlands, nursing homes play an important 
role in the long-term care continuum. A nursing 
home can be described as a facility with a domestic 
styled environment that provides 24-hour functional 
support and care for persons who require assistance 
with activities of daily living and who often have 
complex health needs and increased vulnerability 
(Sanford et al., 2015, p. 183). Most nursing home 
clients are in need of assistance with basic activities 
of daily living due to physical or psychological disabil
ities. In everyday practice this means that, in order to 
live their lives according to their own daily routines, 
nursing home clients greatly depend on timely deliv
ery of care and support. As such, the coordination and 
timing of service delivery has a significant impact on 
their perceived quality of life (Moeke, 2016).

Capacity planning plays a vital role in the pur
suit of balancing the timely delivery of the 
required care with the cost of providing that 
care. When it comes to capacity planning in 
a nursing home context, the effective and efficient 
utilisation of the available care workers plays 
a dominant role. This is due to the fact that 
care workers are responsible for the daily care 
and supervision of the residents and their labour 
costs account for a significant proportion of the 
total healthcare expenditure (Di Giorgio et al., 
2014). Hence, the main focus of capacity planning 
in a nursing home setting is on getting the right 
number of care workers with the right set of skills 
on the right job at the right time.
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In addition, Dutch nursing homes are, slowly 
but surely, becoming information-intensive enter
prises. Due to the increasing use of electronic 
health records and other forms of health informa
tion technology, nursing homes have access to 
large amounts of clinical and operational data. 
This development enhances data-driven decision- 
making and process improvement. Also, when it 
comes to capacity planning, nursing homes are 
starting to recognise data-driven decision-making 
as essential to improve their (future) operations 
(Moeke & Bekker, 2020). Still, in the current nur
sing home practice, decisions regarding the alloca
tion of care workers are often addressed without 
a sound quantitative basis (Bekker et al., 2019; 
Moeke et al., 2016).

1.1. Contribution and outline

The main contribution of this paper is that we 
apply and substantiate a conceptual framework 
that can be used to structure the care-related 
capacity planning process in a nursing home con
text. We do this with the help of empirical data 
from a real-life case. Using benchmarks that are 
based on the current situation, we illustrate that 
substantial improvement can be achieved in terms 
of efficiency and waiting time. Within the concep
tual framework, we envisage the modifications 
required to existing methods as a secondary, 
though smaller, contribution. In particular, we 
present an MILP for shift scheduling, which can 
be used in a setting with hierarchical qualifica
tions. Furthermore, we develop a Genetic 
Algorithm (GA) for task scheduling based on the 
time preferences of the clients and the availability 
of care workers. The combination of these features 
is uncommon in the scheduling literature. Also, in 
our GA, the starting times of tasks (and thus the 
fitness) are determined using an LP. This differs 
from traditional GAs.

We note that our focus is on care by appointment. 
These are care tasks for which, based on the needs and 
preferences of the client, it is possible to make a fairly 
detailed planning in advance (Moeke, 2016). Examples 
are giving medicine and help with getting out of bed in 
the morning.

The remainder of this paper is structured as 
follows. Section 2 presents related literature. In 
Section 3, the context related to the real-life case 
under study is being described. Next, in Section 4, 
our three-step framework is presented, where 
Sections 4.1, 4.2 and 4.3 elaborate on the modelling 
aspects in the different steps of the three-step fra
mework. More specifically, an MILP for shift sche
duling and a GA for task-scheduling are proposed 
in Sections 4.2 and 4.3, respectively. Section 5 

presents the numerical results using the real-life 
case data. In the last section, conclusions are 
drawn, and implications for practice and future 
research directions are discussed.

2. Related literature

There are numerous Operations Research (OR) stu
dies on capacity planning in healthcare. However, to 
date, the area of nursing home care has received hardly 
any attention. As such, the findings of Hulshof et al. 
(2012) still hold. They state that “The body of OR/MS 
literature directed to residential care services is 
limited”.

2.1. Shift scheduling

In most service systems, demand fluctuates during 
the course of the day. In order to develop an 
appropriate shift schedule, first the expected work
load needs to be predicted and translated into the 
required number of employees during the course 
of a day such that the desired service level is met. 
Shift scheduling is concerned with apportioning 
the required staffing levels into shifts that are 
specified by their start times, lengths, the number, 
and type of employees, and timing of (lunch) 
breaks. A shift schedule should adhere to capacity 
restrictions, service-level requirements, and (work
ing hours) regulations.

Shift scheduling methods have been applied to 
transportation systems (De Bruecker et al., 2018; 
Ciancio et al., 2018; Solos et al., 2016), emergency 
services (Becker et al., 2019; Butler & Maydell, 
1979; Rajagopalan et al., 2011), call centres 
(Bhulai et al., 2008; Koole & Van Der Sluis, 
2003), healthcare systems (Brunner et al., 2009; 
Omar et al., 2015; Siferd & Benton, 1994) and 
many other types of service organisations. See 
also, Erhard et al. (2018) for a rather recent review 
on physician scheduling. However, the work of 
(Bekker et al., 2019) is the only study we found 
that examined shift scheduling in a nursing home 
setting. In their study, they developed a Mixed- 
Integer Linear Programming (MILP) model using 
a Lindley-type equation and techniques from sto
chastic optimisation. The results of their numerical 
experiments show substantial improvements both 
in terms of average waiting time as well as in 
service level. In addition, the proposed shift sche
dules resulted in a more evenly spread workload for 
the care workers.

For the purpose of this study, we extend the 
approach of Bekker et al. (2019) by including differen
tiated practice. Moreover, we incorporate the assign
ment of care tasks to shifts (i.e., task assignment).
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2.2. Task assignment

Task assignment can be regarded as a subproblem of 
workforce planning, dealing with “combining indivi
dual tasks into task sequences that could usefully be 
carried out by one person” (Ernst et al., 2004, p. 5). In 
this study, the focus of task assignment lies with 
assigning care tasks to specific shifts (and thus care 
workers).

The assignment of tasks to shifts shows similarities 
with the Unrelated Parallel Machine Scheduling 
Problem (UPMSP), for which there is a considerable 
amount of the literature available, see, e.g., Allahverdi 
et al. (2008). Most studies on machine scheduling 
focus on minimising the makespan, whereas in this 
contribution we focus on delivering care as close as 
possible to the time preference of the nursing home 
resident (i.e., minimising earliness and lateness). This 
may be interpreted as parallel machine scheduling 
with different due dates. We refer to Ark et al. (2022) 
for a recent study in the case of common due dates; 
their literature review hardly shows references to stu
dies in which tardiness costs are minimised in the case 
of different due dates. Another complicating factor in 
the setting under study is that care workers only work 
part of the day, leading to the phenomenon of unavail
ability of “machines”. Finally, we note that the list of 
solution methods in (Allahverdi et al., 2008, Table 2) 
shows that metaheuristics are often used, including 
genetic algorithms.

Some prominent task assignment studies involving 
time windows are Gertsbakh & Stern (1978), 
Mankowska et al. (2014), and Gertsbakh & Stern 
(1978) discuss task scheduling with time windows for 
a homogeneous workforce. The difference is that they 
do not incorporate penalties for delay. Their objective 
is to find the minimum required staffing requirements 
to obtain a feasible schedule. Mankowska et al. (2014) 
consider a home care setting where care workers visit 
clients at home and time windows reflect the time 
preferences of their clients. The objective is to mini
mise the weighted sum of total travel times, total 
tardiness, and maximum tardiness. Their solution is 
based on an ILP for small instances and a heuristic for 
larger ones.

An elementary difference with home care is that 
travel times are much less important in a nursing 
home setting. Consequently, travel times are not part 
of our objective function, whereas they are crucial in 
home care. Moreover, compared to home care, the 
workload across the day can be predetermined, 
which allows us to decompose the capacity planning 
process into multiple steps, that is, our three-step 
framework. Such an approach is not (directly) applic
able in a home care setting, as the workload depends 
on the route. We refer to Fikar & Hirsch (2017) for 
a rather recent overview on home healthcare to Di 

Mascolo et al. (2021) for a bibliometric analysis, con
taining many references. Also, in this domain, meta
heuristics is the common solution method, see e.g. 
Fikar & Hirsch, 2017, Table 1.

Another distinguishing feature of task scheduling in 
nursing homes is that qualification levels should be taken 
into consideration (Bellenguez-Morineau & Néron, 
2007; Krishnamoorthy et al., 2012; Schimmelpfeng 
et al., 2012). However, Bellenguez-Morineau & Néron 
(2007) focus on the makespan as objective, whereas 
Krishnamoorthy et al. (2012) consider the minimum 
workforce for a feasible schedule in case of hard con
straints for start times. Finally, Schimmelpfeng et al. 
(2012) present a task scheduling approach for rehabilita
tion hospitals with different qualifications and prece
dence constraints between tasks, but they do not 
consider time preferences for individual tasks.

The problem studied in Lieder et al. (2015) is most 
closely related to the problem at hand. They also focus 
on the assignment of tasks, with different levels of 
qualification, in a nursing home setting. To optimally 
solve this scheduling problem, they propose a Mixed 
Integer Program (MIP) and a Dynamic Programming 
(DP) approach. However, the state space of the pre
sented DP approach suffers from the curse of dimen
sionality. As such, the computation time of this 
approach may become prohibitively long.

2.3. Genetic algorithms

Task assignment, as discussed in Subsection 2.2, typi
cally involves NP-hard problems. As a result, there is 
a vast amount of the literature considering metaheur
istics for solving realistic-sized instances. Genetic 
algorithms are randomised optimisation algorithms, 
belonging to the class of metaheuristics. One of their 
primary properties is that they have the ability to 
maintain a diverse set of solutions to escape from 
local optima (Eiben & Smith, 2015, Section 3.7). Due 
to their versatility and adaptability, they can be applied 
to solve problems in different fields, such as health 
care (De Carvalho Filho et al., 2014), manufacturing 
(Gen & Lin, 2014), design (Hornby et al., 2011) and 
finance (Mahfoud & Mani, 2000).

GAs are highly suitable to solve scheduling and task 
assignment problems, which is supported by a rich 
literature. For example, Sakawa & Mori (1999) use 
an GA to solve job-shop scheduling problems in 
which processing times and due dates are fuzzy. In 
Wang et al. (2017), an GA is used to solve dynamic 
scheduling problems in which two types of costs have 
to be optimised, which thus results in a multi-objective 
problem.

GAs have also been used to create nurse schedules. 
For example, Jan et al. (2000) use a genetic algorithm 
to create monthly nurse schedules. They consider 
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a range of different (hard and soft) constraints, such as 
nurses’ preferences and the right of having days off. 
However, they do not consider qualification levels. 
The constraint closest to this is that the professional 
level of the nurse is taken into account, but this is only 
a soft constraint. In Aickelin & Dowsland (2004) 
a weekly schedule is created for hospital wards up to 
30 nurses. They use an GA that solves the uncon
strained version of the problem, and then a decoder 
that creates the feasible schedules. This is different 
from our approach in which feasible schedules are 
obtained by the GA and the LP fitness calculation. 
The combination of GA and mathematical program
ming is sometimes also referred to as matheuristic. In 
Amindoust et al. (2021) a genetic algorithm is created 
that also incorporates a fatigue factor due to the 
Covid-19 pandemic. They assume that all nurses 
have identical skills and develop weekly and monthly 
schedules.

It should be noted that these papers focus on nurses 
working in hospitals, which is different from nurses 
working in a nursing home (in terms of activities, 
duration of activities, spread of activities over 
the day, etc.). Moreover, most papers focus on weekly 
and monthly schedules of the nurses, instead of the 
daily activity schedules that we consider.

2.4. Framework and conclusions

As there are many planning and control decisions in 
complex (health care) organisations, various frame
works for operations management decisions have 
been proposed, see, e.g., Hans et al. (2012), Matta 
et al. (2014), and Vissers et al. (2001). Such frame
works reveal the need to decompose the complex 
planning process into manageable proportions. The 
focus of this study is on establishing a blueprint for 
the shift schedule(s), as well as an operational plan
ning concerning routes for care workers. With the 
framework of Moeke & Bekker (2020) as starting 
point, we provide specific methods for each step and 
verify its value using real-life data.

To summarise this literature section, it can be sta
ted that the literature on planning of nursing home 
capacity is scarce. Moreover, decisions related to nur
sing home capacity are involved, as shift and task 
scheduling are intertwined. Both shift and task sche
duling have been addressed in the literature, but the 
nursing home setting has specific features leading to 
different problems. For instance, for shift scheduling, 
there are no papers that address hierarchical shift 
scheduling in a nursing home context. Moreover, 
although metaheuristics are common for task assign
ment problems, the application of an GA in which 
residents have time preferences and care workers are 
partly available is not. Finally, incorporating an ILP 
within the GA differs from traditional GAs.

3. Case description

In this study, the emphasis lies on the capacity 
planning of a Dutch nursing home department 
during daytime (7:00–23:00). The concerned 
department provides 24/7 care and support to 18 
clients who are all aged 70 years and over. 
Although all residents need some assistance with 
activities of daily living, due to somatic and/or 
psycho-geriatric illnesses, most of them are still 
largely self-sufficient. The available amount of 
capacity, in terms of care hours, largely depends 
on the so-called Care Intensity Package score (in 
Dutch “het zorgprofiel”) of the clients. For the 
clients of this department, there is a budget for 2 
hours of care and support per resident during 
daytime, yielding a total available budget of 36 
care hours during daytime per day.

The available care workers are hierarchically 
divided into distinct qualification levels (QLs). 
This so-called differentiated practice is based on 
a distinction in education, responsibility, and 
complexity of care (Jansen et al., 1997). Table 1 
shows the QLs that are relevant for this study and 
the corresponding tasks. The preferred lengths of 
shifts during which care workers carry out activ
ities are 4, 6, and 8 hours. In order to make it 
possible for the clients to live their lives according 
to their preferences, the aim is to deliver the 
necessary care as close as possible to their time 
preferences, i.e., minimising delay. The required 
care (activities) and corresponding time prefer
ences are inventoried on a regular basis, using 
a standardised, systematic method. During day
time, there are slightly over 100 care activities 
per day. For more details about the current situa
tion, we refer to Section 5.

4. Conceptual framework: a three-step 
approach

Based on the recent work of Moeke & Bekker 
(2020), we apply a three-step framework for capa
city planning in a nursing home context (see, 
Figure 1). More specifically, we identify the follow
ing steps: (1) workload evaluation, (2a) staffing, 
(2b) shift scheduling, and (3) rostering & tasks 
assignment.

Table 1. Qualification levels.
Qualification Tasks to be carried out

level

QL1 Bringing food and drinks, cleaning, transferring, bed 
cleaning

QL2 Getting in/out of bed, eating, toileting, making the beds, 
washing

QL3 Giving medication, simple medical check ups
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In the first stage (i.e., workload evaluation) the aim 
is, with the help of historical demand data, to deter
mine the workload over time. This may seem obvious, 
but practice shows that insight into health care 
demand is often lacking in long-term care settings. 
During daytime, the majority of the demand is related 
to activities of daily living (ADLs). Although there 
may be strong fluctuations in ADL-related demand, 
it is possible to collect the time preferences of each 
client regarding ADLs and estimate the corresponding 
care durations. Combining the time preference of an 
activity with the duration provides an estimate of the 
workload, i.e., the number of care workers required to 
meet the care demand.

The workload evaluations form the basis for 
steps 2a and 2b (i.e., staffing and shift scheduling). 
When it comes to staffing (step 2a) the focus lies 
on determining the corresponding staffing levels 
over time in order to meet the demand. The aim 
of shift scheduling (step 2b) is to determine work
ing shifts (start and end times, breaks, etc.), 
together with the assignment of the number and 
type of care workers to each shift, without over- 
stretching the available staffing hours. In the nur
sing home setting, we combine staffing and shift 
scheduling, as the workload can be estimated 
pretty well during the day time. In other applica
tion domains, for example, in call centres, deter
mining staffing levels (step 2a) is done separately 
due to complexity as a result of uncertainty in 
demand.

Finally, in step three, the focus lies on assigning 
care workers to specific shifts and tasks. More 
specifically, it deals with the following two ques
tions: Which of the available care workers should 

be assigned to which shift(s)? And, which care 
tasks should be assigned to which shift(s) in 
order to meet the demand of the nursing home 
clients as closely as possible? Assigning care work
ers to shifts, i.e., rostering, is a classical compo
nent in workforce management, see, e.g., Burke 
et al. (2004); therefore, we focus on the assign
ment of tasks to shifts (and thus to care workers) 
in this paper. In the sequel, we elaborate on steps 
1, 2, and 3 in Sections 4.1, 4.2, and 4.3, 
respectively.

4.1. Step 1: workload evaluation

This section concerns step 1 of the conceptual frame
work visualised in Figure 1. The key initial step in 
capacity planning is to obtain insight into the demand 
(or workload). The dataset that is used to analyse the 
workload in the current situation consists of the fol
lowing variables:

• Resident ID – the ID of a specific resident.
• Preferred Activity Time (PAT) – the preferred 

starting time of the healthcare activity.
• Task description – a brief description of the activ

ity (i.e. healthcare task) entered as free text.
• Qualification Level (QL) – the QL required to 

perform the task.
• Expected service time – expected duration of the 

activity in minutes.
Let N denote the number of activities. We now 

define notation of the information that needs to be 
collected from all clients: (i) Tn the PAT of activity n, 
(ii) QLn the required QL of activity n, and (iii) Bn the 
duration of activity n, for n ¼ 1; . . . ;N. Based on the 

Figure 1. Stages of the care-related capacity planning process.
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input, the first step is to determine the workload Lit , 
where Lit is the number of activities of QL i at time t if 
each activity would start at their PAT. In particular, 

with 1ð�Þ the indicator function. That is, the workload 
at time t is the number of residents who need care at 
time t ignoring capacity constraints. As such, it pre
scribes the required number of care workers at any 
time if demand would have been met directly (no 
waiting is allowed). In the current situation, there are 
105 tasks, of which 53 are QL2-tasks and 52 are QL3- 
tasks.

When it comes to the duration of care tasks, in the 
current situation, the total average (expected) duration 
for QL2 and QL3-tasks are 16.42 and 12.31 minutes, 
respectively, with a standard deviation of 6.83 minutes, 
which are almost the same for both QLs (see also 
Table 2). As can be observed in Figure 2 most care 

tasks take between 10 and 15 minutes. Nevertheless, 
there is some variation in the duration with tasks that 
may take well over half an hour.

The workload (i.e., the number of residents in need 
of care) for the current situation is visualised in 
Figure 3. It can be observed that the workload is 
relatively high between 7:30 and 12:30, 18:30 and 
23:00. Due to the (predictable) fluctuations in work
load across the day, capacity planning is non-trivial 
and requires a solid quantitative foundation.

4.2. Step 2: shift scheduling with hierarchical 
qualifications

In this section, we present the shift scheduling model 
formulation in case of hierarchical qualification levels; 
that is, we consider step 2 of the framework presented 
in Figure 1. The model is applied to a specific nursing 
home department, but the model can be easily custo
mised by modifying and adding constraints. The 
model is largely inspired by the MILP formulation in 
Bekker et al. (2019), but the formulation is extended to 
allow for different (hierarchical) qualification levels. 
More specifically, in the shift scheduling phase, we 
focus on the workload dynamics at an aggregate 
level. That is, we do not yet distinguish unique care 
workers or residents, but only consider the total 
demand and capacity during a time interval. We dis
cretise time and evaluate the aggregate dynamics 

Table 2. Duration of care tasks.
Care durations (in minutes)

Average St dev.

Total 14.38 7.16
QL2 16.42 6.83
QL3 12.31 6.83

Figure 2. Durations of activities; QL2 and QL3 separate (left) and combined (right).

Figure 3. Workload evaluation QL2 and QL3 for the current situation (step 1).
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between epochs t � 1 and t, for t ¼ 1; 2; . . . ;T. In our 
case study, we choose to consider intervals with 
a length of 5 minutes.

Note that the total demand follows directly from 
the workload evaluation Lit in step 1. Therefore, let us 
now first focus on the capacity for a given combination 
of shifts. For each QL, there are a limited number of 
shift types. Here, a shift type refers to the combination 
of starting time of a shift and the length of the corre
sponding shift (and may also include breaks). Let Ki be 
the total number of shift types for QL i, and let xik be 
the number of care workers with QL i that are sched
uled for shift type k. We denote by aitk ¼ 1 that shift 
type k for QL i works during interval t, and let aitk ¼ 0 
otherwise. Hence, via aitk the user specifies how shift 
type k for QL i looks like. Then, the available capacity 
of QL i during interval t is cit ¼

PKi
k¼1 xikaitk, 

for t ¼ 1; 2; . . . ;T.
At an aggregate level, the difference between the 

demand and capacity provides the backlog in the amount 
of work. Let qit denote the backlog of activities requiring 
QL i at the start of interval t. A complication is that care 
workers of QL i may perform activities requiring QL 
1; . . . ; i. As such, let c�it denote the total number of care 
workers that perform activities of QL i during interval t. 
Observe that c�it and cit are not necessarily equal. Now, 
the aggregate backlog for QL i satisfies the recursive 
relation qi;tþ1 ¼ maxf0; qit þ Lit � c�itg. Observe that 
the relation between qi;tþ1, and qit , Lit , and c�it is linear 
up to the maxf0; �g operator. Incorporating such a 
maxf0; �g operator in an MILP is quite standard.

We now specify the MILP for determining a shift 
scheduling (step 2); the notation is given in Table 3. 

The objective is to minimise the total backlog (1). 
Equation (2) gives the available capacity of QL i at 
time t in terms of the shifts. Equation (3) guarantees 
that the available hours are not exceeded. Equations 
(4) and (5) model the hierarchical qualification levels. 
The first equation (4) dictates that the actual number 
of care workers performing a level i activity should not 
exceed the total number of care workers that are 
qualified to perform that activity. The second equation 
(5) makes sure that the care workers are not simulta
neously used for more than one QL. When there are 
only two QLs (say i and iþ 1), the two constraints can 
be simplified to 

The recursive relation for the backlog of level i activ
ities is given in Equation (6), whereas Equation (7) 
provides that there is no backlog at the end of the day. 
Observe that the problem becomes infeasible if the 
number of available hours is not sufficient. The back
log at the end of the day may also be transformed into 
a soft constraint by including it in the objective func
tion, but we find that such a situation indicates that 
there is a structural problem and prefer a hard con
straint. Equation (8) ensures that the minimum num
ber of required care workers are present. Equation (9) 
provides that backlogs are non-negative, whereas 
Equation (10) and Equation (11) make sure that staff
ing levels and number of shifts scheduled are integer 
values.

Table 3. Notation for shift scheduling problem.
Notation for shift scheduling problem

Sets
T Number of time epochs
I Number of qualification levels
Ki Total number of shift types of care workers with QL i

Parameters
aitk 1 if shift type k with QL i works interval t, 0 otherwise
Cmin

i Minimum number of care workers with QL i or higher
�Ci Maximum number of care worker hours of QL i available
Lit Number of resident requiring activity of QL i at time t

Decision variables
xik Number of care workers with QL i for shift type k
cit Staffing level of care workers with QL i during time interval t
c�it Number of care workers working at QL i during time interval t
qit Backlog of work requiring QL i at the start of time interval t
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4.3. Step 3: task assignment

We now turn to step 3 of the conceptual framework of 
Figure 1. This step is at the operational level rather 
than at the tactical level, but it is required to determine 
the performance of a capacity plan in terms of waiting 
time and overtime.

In the current practice, usually no sophisticated 
algorithms are applied to assign tasks to workers. 
Hence, tasks are often assigned in an ad hoc manner, 
which is very similar to a First Come First Served 
approach (FCFS). In this paper, a genetic algorithm 
(GA) is developed that solves the task assignment in 
a more sophisticated way (see, Subsection 4.3.2). 
A greedy heuristic, which resembles the current 
FCFS assignment approach, is also developed in 
order to compare the performance of the current 
practice to the performance of the GA (see, 
Subsection 4.3.1).

To describe the two task assignment algorithms, we 
need to define some notation first. The shifts are 
determined from the shift scheduling algorithm pre
sented in the previous section (step 2 of Figure 1). 
Denote by J the total number of shifts during the 
time horizon. Let Sj and Ej > Sj be the start and end 
times of shift j 2 f1; . . . ; Jg, respectively, as deter
mined by the shift scheduling algorithm in step 2. 
For convenience, we number the shifts in decreasing 
QL. Let si be the number of shifts that can handle 
activities of the i th largest QL. Then, an activity with 
QL i can be handled by shifts 1; . . . ; si.

4.3.1. Greedy heuristic
In the greedy heuristic, we assign activities directly to 
the shift that becomes available first. We present 
a recursive scheme that can be used to determine 
waiting times and assignment of tasks. The recursion 
is essentially based on the Kiefer-Wolfowitz recursion 
for the G/G/s queue. The difference with the G/G/s 
queue is that we need a multi-class system and that the 
number of servers vary over time (but we are primarily 
interested in the deterministic version).

It is convenient to order the activities according to 
their preferred starting time (in increasing order). 
Below, when we refer to activity n, we understand 
this activity to be ordered according to the PAT. 
Denote by An ¼ Tnþ1 � Tn the interarrival time 
between activities n and nþ 1 (possibly being equal 
to 0).

Let Vj
t be the remaining time until shift j 2

f1; . . . ; Jg becomes available at time t. We extend Vj
t 

to the negative half line and let Vj
t < 0 denote that shift 

j is already idle for jVj
t j time units. Note that Vj

t 
decreases linearly in t and makes a jump when an 
activity is assigned to shift j. We are particularly 

interested in Vt just before PAT instants, i.e., the n 
th activity observes Wn ¼ ðW1

n; � � � ;WJ
nÞ ¼ VTn

� , 
where Vt� ¼ lims"t Vs. Also, let Ŵn denote the avail
ability of shifts just after activity n has been assigned.

Now, we start the recursion at time 0 with Ŵj
0 ¼ Sj, 

for j ¼ 1; . . . ; J, as shift j will be available at its starting 
time. Next, use the recursive relation 

Observe that shift j may be working in overtime after 
the n th activity in case Tn þ ðW

j
nÞ
þ >Ei, where 

xþ ¼ maxðx; 0Þ. In particular, the overtime is given 

by Tn þ ðW
j
nÞ
þ
� Ej

� �þ
. Now, an activity will be 

assigned to a compatible shift resulting in the smallest 
waiting time for this activity. If all shifts have finished, 
e.g., at the end of the day, then the activity will be 
assigned to a compatible shift resulting in the smallest 
overtime. Specifically, activity n will be assigned to 
shift 

with M a sufficiently large number. Consequently, just 
after the assignment, we have 

The waiting time of activity n is now ðWs�n
n Þ
þ.

4.3.2. Genetic algorithm
We now present a more advanced algorithm to allo
cate care workers to activities and to determine the 
moment at which activities should be carried out. The 
objective is to create a feasible task schedule that 
minimises a weighted combination of the total ear
liness and waiting time for nursing home residents.

In order to solve the task scheduling problem at- 
hand, we iteratively carry out a two-step procedure. In 
each generation of the GA, we first determine which 
care worker should perform which task in which order. 
Next, we determine the optimal starting times for the 
care tasks. For this second step, we use an efficient LP 
approach, which is not straightforward to incorporate 
in an GA. To the best of the authors’ knowledge, this 
the first study in which such an approach is applied. 
These two steps together yield the fitness of a candidate 
solution and are used in the GA to find better solutions.

Schedule representation A task schedule is 
described by a vector representation ða1; . . . ; aNÞ, 
where an 2 f1; . . . ; Jg is the care worker that carries 
out activity n. For instance, with N ¼ 6 and J ¼ 3, the 
solution ð2; 3; 1; 2; 2; 1Þ denotes that activities 3 and 6 
are carried out by care worker 1, activities 1, 4, and 5 
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are done by care worker 2 and care worker 3 only takes 
care of activity 2. During a single shift, activities are 
carried out in the order of the individual PATs.

Outline GA procedure The outline of the GA is 
based on Eiben & Smith (2015), Chapter 3, and is 
presented in Algorithm 1. A population is 
a collection of schedules. In each iteration of the GA, 
a collection of children is created by using “crossover” 
and “mutation” operations on parent solutions. 
Subsequently, the new generations should consist of 
better schedules than the old generations. We discuss 
steps 2–5 of the algorithm in more detail below. 

Algorithm 1 Outline GA procedure

initialize population with random candidate solutions
repeat

1. Select parents
2. Crossover pairs of parents
3. Mutate resulting offspring
4. Evaluate new candidates ▷ incl. start time of activities
5. Select individuals for next generation  

until time limit exceeds or no improvements for x generations

Initialise First, we create a (random) population of 
initial solutions. This is done by randomly assigning 
the activities to care workers who work during the 
preferred time of the activities. We also allow that 
activities are carried out by care workers that do not 
work at the preferred time of the activity. An activity is 
assigned to a care worker who does not necessarily 
work during the preferred time with a probability 
of 0.1.

Crossover For a combination of parents, 
a crossover point P is generated at random. A child 
is created by selecting elements 1 to P from the mother 
and elements P þ 1 to N from the father. The second 
child inherits elements 1 to P from the father and 
elements P þ 1 to N from the mother. The crossover 
operation is performed on two parts of the population. 
First of all, the crossover operation is performed on 
the best GC% of the population. The best solution of 
the population is combined with the second-best solu
tion; the third-best solution with the fourth-best solu
tion, etcetera. In addition, the crossover operation is 
performed on combinations of randomly chosen solu
tions. Each solution can only be chosen once.

Mutate Each solution is mutated. With this muta
tion operator, each activity is assigned to another 
randomly selected care worker with probability pm. 
Thus, the value of pm determines to which extent 
solutions are mutated; larger values of pm imply 
more mutations. Then, with probability ps, the activity 
is allocated to a care worker that works during the 
preferred time and has a compatible QL. Here, 
a compatible QL means that it is equal or larger than 
the QL required for the activity. Otherwise, a care 
worker is selected that does not necessarily work dur
ing the preferred time while still having 
a compatible QL.

The mutation operation described above may 
lead to quite disruptive changes. This is highly valu
able for maintaining diversity in the generation, but 
makes it more difficult to create similar solutions. In 
the final phase of the search process, smaller adap
tations are useful for fine-tuning of the good indi
viduals. Therefore, a second type of mutation is 
performed on GFM% of the population in each gen
eration. This type of mutation is specifically 
designed to mutate the first activity in the schedule 
for which waiting occurs, say activity i, and the 
neighbouring activities. We take a number AFM 
randomly between 1 and 4. The AFM activities 
directly before i and the AFM activities directly 
after i are mutated in a similar way as described 
above. That is, each of these activities are assigned 
to another randomly selected care worked with 
probability pFM. With probability ps, the activity is 
allocated to a care worker that works during the 
preferred time and has a compatible QL. 
Otherwise, a care worker is selected that does not 
necessarily work during the preferred time while 
still having a compatible QL.

Evaluate In the evaluation step, the fitness is calcu
lated of all newly created solutions. The fitness consists 
of two elements: (i) total waiting time and earliness 
corresponding to PATs, and (ii) total overtime of care 
workers. Note that the schedule representation deter
mines which activity is carried out by which care 
worker and in which order, but not the time at 
which the activity should be performed. The time at 
which activities are performed are, however, required 
to determine the quality of the schedule. We employ 
an LP model to determine these activity times.

In the following, we introduce the LP model that is 
applied to determine the starting time of all activities. 
Let Nj be the number of activities that is carried out by 
care worker j 2 f1; . . . ; Jg, and we drop the shift num
ber from the notation for now. During the shift, the 
objective is to minimise the weighted sum of earliness 
and tardiness. Let CW and CE denote the correspond
ing weights. Define the decision variables xn as the 
starting time of the n-th activity, n ¼ 1; . . . ;Nj. 
Observe that the waiting time of the n-th activity is 
maxfxn � Tn; 0g. We use the auxiliary variables yn, 
n ¼ 1; . . . ;Nj, to linearise the model. Similarly, the 
earliness of the n-th activity is maxfTn � xn; 0g, for 
which we use the auxiliary variables yn for 
n ¼ Nj þ 1; . . . ; 2Nj. This gives rise to the following 
simple LP: 
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Note that the LP has to be solved quite often, i.e., for 
each shift and each individual. However, solving this 
LP is very fast. Moreover, once the LP has been solved, 
its solution is saved, so that it can be re-used in a later 
generation if the same LP has to be solved again.

Select A new generation is selected by roulette 
wheel selection from the previous generation and the 
newly generated offspring population. Solutions are 
selected based on their fitness. A higher fitness corre
sponds to a higher probability of being part of the next 
generation.

Parameter tuning An important element of an GA 
is the tuning of its parameters. In the developed algo
rithm, five parameters should be set: GC, GFM , pFM , pm 
and ps. Tuning the parameters of an GA is 
a cumbersome process, as the combination of para
meters influences the performance of the GA. As it is 
computationally impossible to consider all parameter 
combinations (for each parameter combination the 
GA would have to be run multiple times), we use 
a search algorithm, namely Hyperopt (Bergstra et al., 
2013). This algorithm, specifically developed for 
hyperparameter tuning, searches the total parameter 
space in a sophisticated way. We use the TPE algo
rithm, as the fitness evaluations are computationally 
costly and thus a small evaluation budget is available. 
We refer the interested reader to Bergstra et al. (2011) 
for details about the TPE algorithm.

5. Numerical experiments

The aim of this section is to provide insight in the 
potential benefits of using the capacity planning pro
cess as described in Section 4. To do so, we compare 
the performance of three different planning strategies 
under different scenarios. The main characteristics of 
the applied strategies are presented in Table 4. 
Strategies A and B make use of the shift scheduling 
approach as presented in Section 4.2. Strategy C, on 
the other hand, resembles current practice. In order to 
create shift schedules that resemble current practice as 
closely as possible, we used worker-to-resident ratios 
that are based on a study of the Dutch Institute for 

Health Services Research (NIVEL), see, Hingstman 
et al. (2012) or Bekker et al. (2019). Specifically, we 
used an ILP in the spirit of Section 4.2 to choose shifts 
such that the worker-to-resident ratios across the day, 
as published by NIVEL, are matched as closely as 
possible. For the assignment of tasks, strategy 
A makes use of the GA that is presented in 
Section 4.3.2, whereas strategies B and C use the 
greedy heuristic (see, Section 4.3.1). The greedy heur
istic closely resembles the way in which tasks are 
assigned in the current practice.

Regarding the numerical experiments, it should be 
noted that the GA involves randomness, that is, the 
solutions will differ each time the algorithm is run. 
Therefore, for each experiment, the algorithm is run 
100 times to obtain insight in the variability of the 
fitness.

5.1. Scenarios & base case

For the purpose of this numerical experiment, the 
performance of the three planning strategies has 
been compared under different scenarios. Regarding 
the scenarios, a change in the following aspects have 
been taken into account: (1) the number of clients (i.e., 
the effect of less or more clients), (2) qualification 
levels (i.e., the effect of working with or without 
QLs), and (3) utilisation of care workers (i.e., the effect 
of a higher average workload per care worker). Table 5 
provides a detailed overview of how the changes in the 
aforementioned aspects have been operationalised 
into (sub-)scenarios. The current practice situation 
(see, Section 3) is represented by the following sub- 
scenario: Base case QL U. In other words, a situation 
with 18 clients in care (i.e., base case), where QLs are 
used and in which the average utilisation is 70%. Some 
additional characteristics of the current situation are:

• Number of tasks per day: 53 and 52 for QL2 
and QL3.

• Available capacity per day: 18 h for both QL2 
and QL3.

• Available shift lengths: 4, 6, and 8 h.
• Utilisation per QL: 81% and 59% for QL2 

and QL3.

Table 4. Overview of the applied planning strategies.
Planning strategy

A B C
Shift scheduling MILP MILP NIVEL
Task assignment GA Greedy Greedy

Table 5. Overview of aspects examined in the scenario analy
sis, with in grey the characteristics of the current practice 
situation.

Aspect Description Referred to as

Number of clients
18 Base case
14 Scenario 1
22 Scenario 2

Qualification Levels
With QL

Without no QL

Utilisation
70% U
74% U+
84% U++
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An overview of the main characteristics of the 
U QL-version of the base case, scenario 1 and scenario 
2 can be found in Table 6.

5.2. Running time & parameter tuning

In terms of computational time, we note that the 
computation times for planning strategies B and 
C (see, Table 4) are negligible; in some cases, the 
MILP (i.e., the shift scheduling of step 2) takes several 
seconds. Planning strategy A requires more computa
tional budget, due to the (more advanced) GA used for 
assigning the tasks in step 3. One run of the GA takes 
between 1.92 and 14.49 minutes with a population of 
200 schedules and 100 generations, depending on the 
experiment.1

The computation time of the parameter optimisa
tion of the GA is considerable (around 24 h) and 
therefore it is preferred to only perform this optimisa
tion once (i.e., not for each new sub-scenario again). 
Extensive testing indicates that running the parameter 
optimisation on sub-scenario Base case U QL creates 
an algorithm that is sufficiently versatile and yields 
good results on the other sub-scenarios. This is 
shown for three different sub-scenarios in Figure 4. 
To create these figures, the GA was run 100 times on 
a certain sub-scenario with two parameter settings: the 
first parameter setting obtained from a parameter 
optimisation on the Base Case U QL sub-scenario 
and the second parameter setting obtained from 
a parameter optimisation on the specific sub- 
scenario. Clearly, the results obtained by running the 
GA with the Base Case U QL sub-scenario parameters 
results in equal or even better fitness values than the 
results obtained with the parameters for each specific 
sub-scenario. Thus, by using the parameters of the 
Base Case U QL sub-scenario, an algorithm is created 
that can be applied in diverse settings while keeping 
the running time and results acceptable, as only one 
parameter optimisation has to be done in total, instead 
of one per sub-scenario. The output of the parameter 
optimisation for the Base Case U QL scenario can be 
found in Table 7. These parameters have been used to 
generate the results in the following subsections. 

Interestingly, both the values for GS and ps are high, 
which means that a large percentage of the best popu
lation is used in the crossover population and that an 
activity has a large probability to be allocated to a care 
worker that works during the preferred time and has 
a compatible QL.

5.3. Experiments with QLs

Regarding the results of the numerical experiments, 
we distinguish between working with QL (i.e., this 
section) and working without QLs (Section 5.4). 
Furthermore, the base case (see, Section 5.1) will 
serve as our primary example. As previously discussed, 
three experiments with different utilisation levels are 
considered (“U”, “U+”, and “U++”). The performance 
of each of the presented planning strategy is being 
discussed following the three steps as presented in 
Section 4.

5.3.1. Planning strategy A
Step 1: We refer to Figure 3 for the evolution of the 
workload across the day. There is a considerable 
amount of variability in the workload across the day, 
which corresponds to the natural rhythm in daily living. 
Note that step 1 is equal for all three utilisation levels.

Figure 4. The minimum fitness for three scenarios and two parameter settings.

Table 7. The used parameters found by running the parameter 
optimisation on base case U QL.

Parameter Value

GC 0.631
GFM 0.080
ps 0.929
pm 0.050
pFM 0.089

Table 6. Main characteristics of the U QL-version of the base 
case, scenario 1 and scenario 2.

# Tasks Capacity Shifts lengths

QL2 QL3 QL2 QL3
Base case 53 52 18 h 18 h

4,6, and 8 h hrsScenario 1 38 42 14 h 14 h
Scenario 2 68 62 22 h 22 h
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Step 2: The shifts that are obtained using the shift 
scheduling algorithm can be found in Table 8. Observe 
that most of the capacity is used in the morning, which is 
also in line with the workload across the day that follows 
from step 1 (Figure 3). Observe that in case of the “U+” 
and “U++” scenarios, no care workers are scheduled 
during the afternoon (12:30–15:00, 13:30–16:30, respec
tively). This follows from the fact that the amount of 
overcapacity is small (high utilisation) and there are only 
a few healthcare tasks during this time interval. Hence, 
care workers can then be used more efficiently during the 
busier hours. The shifts for scenarios 1 and 2 can be 
found in the appendix (see Table A1 and A3).

Step 3: In this step, we need to assign tasks to care 
workers, from which we may determine the waiting 
time of clients and possible tardiness of care workers. 
We do so by using the developed GA. As previously 
indicated, the population size is set to 200, and the 
number of generations is set to 100. We report the 
fitness of the best individual of the final generation, 

hereafter referred to as the minimum fitness. As a GA 
is a randomised algorithm, we run the GA 100 times. 
Figure 5 presents the mean minimum fitness per gen
eration together with a 95% confidence interval. 
Clearly, the strongest reduction in the minimum fitness 
is obtained in the first few generations. Table 9 reports 
the mean (minimum) fitness together with its standard 
deviation.

An utilisation of 70% (over the two QL’s) leads 
to acceptable waiting times of a few minutes on 
average. For instance, in the base case, the total 
waiting time is 345.5 minutes over 105 activities 
yielding 3.29 minutes on average. Observe that the 
fitness strongly increases with utilisation. For the 
base case and utilisations over 80% (scenario “U+ 
+”), the overtime amounts to 210 minutes in total 
and excessive waiting occurs (approximately 
1810 minutes in total, yielding a fitness of about 
2020). Hence, due to the variability in healthcare 
tasks across the day, it seems difficult to operate at 
high utilisations. This is recognised in practice, 
where nursing homes work with an utilisation of 
about 70%.

Table 8. Shifts for base case experiments with QLs (Step 2).

Scenario
Number 
of shifts

Qualification 
Level START END Utilisation

Base case U QL

2 2 07:00 13:00 QL2 81%
1 3 07:30 11:30 QL3 59%
1 3 08:30 12:30 Total 70%
1 2 11:00 17:00
1 3 16:00 22:00
1 3 19:00 23:00

Base case U+ QL

2 2 07:30 13:30 QL2 81%
1 3 07:30 11:30 QL3 67%
1 3 08:30 12:30 Total 74%
1 3 15:00 23:00
1 2 16:30 22:30

Base case U++QL
2 1 07:30 13:30 QL2 81%
1 3 07:30 13:30 QL3 89%
1 2 16:30 22:30 Total 84%
1 3 17:00 23:00

Figure 5. The mean minimum fitness per generation together with a 95% empirical confidence interval.

Table 9. Results for strategy A, with QLs, based on 100 runs.
Experiment Min fitness

μ� σ

Base case
U QL 345.50 ± 10.43
U+ QL 570.65 ± 25.33
U++ QL 2020.45 ± 25.22

Scenario 1
U QL 415.45 ± 1.43
U+ QL 768.55 ± 6.61
U++ QL 827.00 ± 5.61

Scenario 2
U QL 514.00 ± 19.79
U+ QL 1060.15 ± 24.41
U++ QL 3450.15 ± 78.56
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Furthermore, from the experiments, we see some 
differences between the fitness of the 200 individuals 
of the final generation (not reported here for concise
ness). This shows that there is some diversity within 
the final generation. From the standard deviations σ in 
Table 9, we see a quite stable performance of the best 
individual.

5.3.2. Planning strategies B and C
We now compare the results of planning strategy 
A with strategies B and C. As there is no structural 
monitoring of the workload across the day, step 1 does 
typically not occur in the current situation (i.e., plan
ning strategy C).

Step 2: For the planning strategy B, we use the 
MILP of Subsection 4.2 resulting in the same 
shifts as in Table 8. Regarding strategy C, the 
aim was to determine shifts such that the current 
worker-to-resident ratios across the day are main
tained as closely as possible. We refer to 
Hingstman et al. (2012) and Bekker et al. (2019) 
for these ratios that tend to lead to a rather stable 
capacity across the day, with a small peak during 
the morning. As the workload deviates from this 
pattern, there seems to be much room for 
improvement here.

Step 3: For both strategies B and C, the greedy 
algorithm of Subsection 4.3.1 is used to assign tasks to 
care workers. We determined the total waiting and 
overtime for both strategies, yielding the corresponding 
fitness. Moreover, to compare the performance with 
strategy A, we define the relative difference for strategy 
i ¼ B;C with strategy A as 

where fj denotes the (mean) fitness of strategy 
j ¼ A;B;C. The results can be found in Table 10. 
Clearly, an enormous gain in performance can be 
achieved by determining shifts of care workers 
(step 2). The fitness values of strategy C are multiple 
hundreds of percents off from the fitness of strategy A; 
for instance, for the base case under sub-scenario “U” 
the performance of strategy C is 748% worse than 
strategy A. This reveals the huge efficiency potential 

in nursing home care. Strategy B clearly outperforms 
strategy C, revealing the importance of a good shift 
schedule. However, using the GA (i.e., strategy A) still 
reduces the fitness by tens of percents compared to 
strategy B. Hence, in the base case under sub-scenario 
“U” strategy B still performs 23% worse than strategy 
A. In particular, if the utilisation becomes higher (sce
nario “U++”), the benefits of the GA become larger. 
This may be explained by the fact that the impact of 
scheduling decisions becomes larger due to the tight 
capacity.

5.4. Experiments without QLs

For the experiments presented in this subsection, we 
neglect QLs and assume that every care worker is 
qualified to handle every activity, that is, every care 
worker is assumed to have the highest QL. Again, the 
base case will serve as our primary example, and we 
consider as in 5.3 three levels of utilisation.

5.4.1. Planning strategy A
Step 1: The workload is now just the sum of the work
loads of the two QLs as displayed in Figure 3, and again 
equal for all utilisation levels. Note that the workload 
during the morning and evening becomes more stable 
during these periods by neglecting QLs. But still, there 
is considerable variability across the day.

Step 2: The results of the shift scheduling algorithm 
can be found in Table 11. As expected, most of the 
capacity is assigned to the morning again in all experi
ments, with 3–4 out of 6 care workers between 11:00 and 
13:00 hours. However, compared to the situation with 
QLs, a small part of the capacity is shifted from the 
morning to the afternoon. When combining the work 
of the QLs, it can be seen from Figure 3 that 3 care 
workers during 7:30–11:00 hours are tight, but are just 
enough to handle the aggregated demand. The shifts for 
scenarios 1 and 2 can be found in the appendix (see Table 
A2 and A4).

Step 3: The GA is again used to assign activities to 
care workers in this step. The mean minimum over 
100 evaluations can be found in Table 12, together 

Table 10. Benchmark results, with QL.
Fitness and % improvement

Experiment Strategy B Δmin Strategy C Δmin

Base case
U QL 425.00 23% 2930.00 748%
U+ QL 980.00 72% 5267.00 823%
U++QL 3190.00 1347% 10,395.00 4615%

Scenario 1
U QL 655.00 58% 2415.00 481%
U+ QL 1670.00 117% 3003.00 291%
U++QL 2710.00 228% 8435.00 920%

Scenario 2
U QL 740.00 44% 3515.00 584%
U+ QL 1465.00 38% 4470.00 322%
U++QL 7525.00 118% 7345.00 113%

Table 11. Shifts per scenario (step 2), without QLs.

Scenario
Number of 

shifts
Qualification 

Level START END Utilisation

Base case U no 
QL

3 3 07:00 13:00 70%

1 3 11:00 17:00
1 3 15:00 23:00
1 3 18:30 22:30

Base case U 
+ no QL

3 3 07:00 13:00 74%

1 3 11:00 17:00
1 3 16:00 22:00
1 3 19:00 23:00

Base case U++ 
no QL

3 3 07:30 13:30 84%

1 3 14:30 22:30
1 3 18:30 22:30
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with the standard deviations. Table 12 is similar to 
Table 9, but without the distinction in QLs. 
Comparing the two tables, it evidently holds that dis
carding QLs substantially improves performance. 
Moreover, we see that for higher utilisations, the 
reduction in fitness value is typically larger when dis
carding QLs, for example, for the base case the reduc
tions are about 18%, 42%, and 63% for scenarios “U”, 
“U+”, and “U++”, respectively. This can be explained 
by the fact that discarding QLs provides more flex
ibility in task assignment, which may be more bene
ficial in scenarios with high utilisations. We like to 
note that the precise percentages clearly depend on the 
situation, with the workload pattern as a predominant 
factor. Finally, as we also concluded with QLs, we see 
a quite stable performance of the minimum fitness of 
the GA again, as can be concluded from the relatively 
small standard deviation σ.

5.4.2. Planning strategies B and C
Again, we compare the results of planning strategy A with 
strategies B and C to gain insight into the impact of QLs.

Step 2: We determined the shifts of care workers 
using the same methods as for the case with QLs. That 
is, for strategy B the shifts are based on the MILP after 
incorporating the aggregated workload across the day, 
yielding Table 11. The shifts for planning strategy 
C are based on the same worker-to-resident ratios 
again. As expected, regarding strategy C the shifts do 
not well align with the workload pattern.

Step 3: We compare the fitness of the two benchmark 
strategies B and C in Table 13 with strategy A; Δmin again 
shows the relative difference in fitness between the 
benchmark strategies B and C, and strategy A. The dif
ference is enormous again, where clearly huge gains can 
be achieved by choosing shifts in a more appropriate 
manner. Comparing the Δmin of strategy B with that of 
A, we still see significant gains in performance ranging 
from 9% to 45%. However, the added value of the GA is 
not as large as in the case with QL. This can be explained 
from the observation that without QLs, simple heuristic 
rules work better. For instance, there is no need for care 
workers of QL3 to make a trade-off whether they should 
now carry out a type-2 activity or remain idle for a future 
type-3 activity.

6. Conclusions & discussion

We presented a three-step conceptual framework that 
can be used to structure the care-related capacity plan
ning process in a nursing home context. More specifi
cally, we identified the following steps: (1) workload 
evaluation, (2a) staffing, (2b) shift scheduling, and (3) 
rostering & tasks assignment. For step 2b (shift schedul
ing) we presented an MILP, which can be used in 
a setting with hierarchical qualifications. In addition, 
for the task assignment in step 3 we proposed 
a modified genetic algorithm, which determines optimal 
starting times of activities using an LP next to the assign
ment of activities to care workers. By benchmarking the 
proposed framework against the current situation, it is 
shown that enormous improvements can be achieved in 
terms of efficiency and waiting time. Specifically, it can be 
observed that appropriate shift scheduling is crucial to 
match the available capacity with demand. However, 
using a generic algorithm for task assignment also pro
vides considerable improvements. The numerical experi
ments show that applying the proposed framework 
results in an average waiting time of only a few minutes 
for an average occupancy of near 70%, despite the con
siderable variability in demand across the day. For utili
sations of over 80%, the waiting and overtime seem to 
increase rapidly. As such, this study reveals the potential 
of efficiently organising client-centred care using an 
appropriate optimisation framework.

The proposed framework provides a sound practical 
vehicle to organise client-centred care without over
stretching available capacity. From a practical point of 
view, we see that it is difficult for nursing homes to give 
preferences of clients a more prominent place. This 
requires registration of client preferences, which is not 
yet common. Also, we like to stress that the shift schedule 
and activity planning provides a blueprint for practice. 
Events happening during the day may require care work
ers to deviate from the activity plan.

An appealing feature of the three-step framework is 
that the capacity-planning process can be divided into 
separate steps. These separate steps provide more insight 
in the process and will be easier to implement in practice. 
For instance, in view of the autonomy of the care worker, 
we envisage that in practice it will be simpler to modify 

Table 12. Results for strategy A, without QLs, based on 100 
runs.

Experiment Min fitness

μ� σ

Base case
U no QL 283.60 ± 17.41
U+ no QL 329.30 ± 18.28
U++ no QL 753.10 ± 29.51

Scenario 1
U no QL 207.15 ± 9.33
U+ no QL 373.95 ± 13.33
U++ no QL 878.15 ± 35.00

Scenario 2
U no QL 406.45 ± 18.63
U+ no QL 682.20 ± 30.38
U++ no QL 1591.10 ± 51.53

Table 13. Benchmark results, without QL.
Fitness and % improvement

Experiment Strategy B Δmin Strategy C Δmin

Base case
U no QL 335.00 18% 1460.00 415%
U+ no QL 410.00 24% 1975.00 500%
U++ no QL 1040.00 38% 4680.00 521%

Scenario 1
U no QL 225.00 9% 1250.00 503%
U+ no QL 445.00 19% 1985.00 431%
U++ no QL 1270.00 45% 2775.00 216%

Scenario 2
U no QL 455.00 12% 2430.00 498%
U+ no QL 840.00 23% 3205.00 370%
U++ no QL 2195.00 38% 5635.00 254%
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the shifts schedule than the task assignment. Also, the 
decomposition better allows for modifications in the 
separate steps. The take assignment results with 
a genetic algorithm are very promising. An interesting 
topic for further research is to compare the performance 
of the GA algorithm with other optimisation procedures. 
Moreover, the results can be improved by integrating 
steps 2 and 3, but this will make the optimisation model 
more complex and the advantage of decomposing the 
capacity planning process will be lost. Finally, it is of 
interest to apply this framework to situations where 
intra- and extramural care are combined.

Note

1. Experiments have been carried out on an 2.7 GHz 
Quad-Core Intel Core i5 with 16GB of RAM.
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Appendix A. Shifts scenarios 1 and 2

Table A1. Shifts for each experiment for scenario 1, with QLs.
Scenario Number of shifts Qualification Level START END Utilisation

Scenario 1 U QL

1 2 7:30 11:30 QL2 81%
1 2 7:30 13:30 QL3 59%
1 3 7:00 13:00 Total 70%
1 3 15:00 23:00
1 2 18:30 22:30

Scenario 1 U+ QL

1 2 7:30 11:30 QL2 85%
1 2 9:00 13:00 QL3 69%
1 3 7:30 13:30 Total 77%
1 3 17:00 23:00
1 2 18:00 22:00

Scenario 1 U++ QL

1 2 7:30 11:30 QL2 85%
1 3 7:30 13:30 QL3 83%
1 2 9:00 13:00 Total 84%
1 2 18:00 22:00
1 3 19:00 23:00

Table A2. Shifts for each experiment for scenario 1, without QLs.

Scenario Number of shifts Qualification Level START END Utilisation

Scenario 1 U no QL

2 3 7:00 13:00 70%
1 3 8:00 12:00

1 3 16:00 22:00
1 3 17:00 23:00

Scenario 1 U+ no QL

1 3 7:30 11:30 77%

1 3 7:30 13:30
1 3 8:30 12:30

1 3 16:00 22:00
1 3 19:00 23:00

Scenario 1 U++ no QL

1 3 7:30 11:30 84%

1 3 8:00 12:00
1 3 10:00 14:00

1 3 16:00 22:00
1 3 19:00 23:00

Table A3. Shifts for each experiment for scenario 2, with QLs.
Scenario Number of shifts Qualification Level START END Utilisation

Scenario 2 U QL

2 2 7:00 13:00 QL2 78%
2 3 7:00 13:00 QL3 58%
1 2 11:00 17:00 Total 68%
1 3 16:00 22:00
1 2 18:30 22:30
1 3 19:00 23:00

Scenario 2 U+ QL

2 2 7:00 13:00 QL2 78%
1 3 7:30 11:30 QL3 71%
1 3 9:00 13:00 Total 75%
1 2 11:00 17:00
1 3 16:00 22:00
1 2 18:30 22:30
1 3 19:00 23:00

Scenario 2 U++ QL

1 2 7:30 11:30 QL2 86%
1 2 7:30 13:30 QL3 92%
1 3 7:30 13:30 Total 88%
1 2 11:00 17:00
1 3 18:00 22:00
1 2 18:30 22:30
1 3 19:00 23:00
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Table A4. Shifts for each experiment for scenario 2, without QLs.
Scenario Number of shifts Qualification Level START END Utilisation

Scenario 2 U no QL

4 3 7:00 13:00 68%
1 3 11:00 17:00
1 3 16:00 22:00
1 3 18:30 22:30
1 3 19:00 23:00

Scenario 2 U+ no QL

1 3 7:30 11:30 75%
2 3 7:30 13:30
1 3 8:00 12:00
1 3 11:00 17:00
1 3 16:00 22:00
1 3 18:30 22:30
1 3 19:00 23:00

Scenario 2 U++ no QL

2 3 7:30 13:30 88%
1 3 8:00 12:00
1 3 8:30 12:30
1 3 15:30 21:30
2 3 19:00 23:00
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