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BACKGROUND: Pesticide exposures are suspected of being a risk factor for several childhood cancers, particularly acute leukemia (AL). Most of the
evidence is based on self-reported parental domestic use of pesticides, but some studies have also addressed associations with agricultural use of pesti-
cides near the place of residence.
OBJECTIVES: The objective of the study was to evaluate the risk of AL in children living close to vines, a crop subject to intensive pesticide use.
METHODS: Data were drawn from the national registry-based GEOCAP study. We included all of the AL cases under the age of 15 years diagnosed
in 2006–2013 (n=3,711) and 40,196 contemporary controls representative of the childhood population in France. The proximity of the vines (proba-
bility of presence within 200, 500, and 1,000 m) and the viticulture density (area devoted to vines within 1,000 m) were evaluated around the geo-
coded addresses in a geographic information system combining three national land use maps. Logistic regression models were used to estimate odds
ratios (ORs) for all AL and for the lymphoblastic (ALL) and myeloid (AML) subtypes. Heterogeneity between regions was studied by stratified analy-
ses. Sensitivity analyses were carried out to take into account, in particular, geocoding uncertainty, density of other crops and potential demographic
and environmental confounders.
RESULTS: In all, about 10% of the controls lived within 1 km of vines. While no evidence of association between proximity to vines and AL was
found, viticulture density was positively associated with ALL [OR=1:05 (1.00–1.09) for a 10% increase in density], with a statistically significant
heterogeneity across regions. No association with AML was observed. The results remained stable in all the sensitivity analyses.
CONCLUSION:We evidenced a slight increase in the risk of ALL in children living in areas with high viticulture density. This finding supports the hy-
pothesis that environmental exposure to pesticides may be associated with childhood ALL. https://doi.org/10.1289/EHP12634

Introduction
Occupational exposure to pesticides is strongly suspected of
increasing the risk of lymphoid malignancies in adults, although only
a few compounds have been classified as certain carcinogens.1–3 In
children, pesticide exposures have long been suspected of being risk
factors for various cancers, mainly acute leukemia (AL), withmost of
the evidence based on reported data on parental residential use4,5 and
maternal occupational exposure during pregnancy.6 As is the case in
all high-income countries, AL is the most common type of childhood
cancer in France, with about 500 new cases per year (30% of child-
hood cancers), 80% of which consist of lymphoblastic leukemia
(ALL) and 15%ofmyeloid leukemia (AML).

Children mainly come into contact with pesticides by ingestion
of contaminated products (food, drink, and dust for young chil-
dren) and by inhalation. Children may also be exposed in utero via
maternal occupational and domestic exposures. The presence of
pesticide particles indoors and outdoors may be the consequence
of domestic use, agricultural use in nearby fields (agricultural drift,
volatilization, wind erosion), and transport of pesticides into the
home by occupationally exposed family members (e.g., on clothes
and shoes). Several studies reported higher air and dust pesticide

concentrations in households close to treated fields, particularly
during and soon after application. The contribution of agricultural
uses to pesticides concentrations in homes is, however, difficult to
quantify.7–9

Assessing residential exposure to agricultural pesticides remains
a great challenge.Most of the studies on childhood cancer evaluated
croplands in the vicinity of residences using agricultural census and
photographic and satellite data.10–18 A few studies were able to esti-
mate pesticides spread on crops, using the Pesticide Use Reporting
(PUR) system in California and using pesticide sales data in
Denmark.19–23 To date, the heterogeneity in published studies
regarding agricultural landscapes and practices has precluded draw-
ing conclusions as to the role of crop proximity and agricultural pes-
ticide exposure in childhoodAL.

The objective of this studywas to evaluate the risk of childhood
AL in children living close to viticultural areas. Vines are a peren-
nial crop that undergoes intensive pesticide treatment. Previously,
we conducted a nationwide ecological study that showed that AL
risk was higher in the municipalities with the greatest viticultural
areas.14 The present case-control study, also nationwide, addressed
the issue using precise individual data.

Materials and Methods

Population
GEOCAP is a nationwide case-control study based on a geographic
information system (GIS) that has been conducted since 2002 to
investigate the role of environmental factors in pediatric cancers.

The cases were all residents of mainland France diagnosed
with primary AL between 1 January 2006 and 31 December 2013
and were <15 years of age at the end of the year of diagnosis.
They were identified and documented by the French national
registry of childhood cancers (RNCE) (https://rnce.inserm.fr),
which provides an exhaustive coverage of the French pediatric
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population thanks to the number and quality of its information
sources and is regularly certified by the health authorities.24 A
total of 3,711 cases were included, comprising 3,088 cases of
ALL, 552 of AML, and 71 of undifferentiated or mixed pheno-
type leukemia. The RNCE provided diagnoses coded as per the
International Classification of Diseases for Oncology (ICD-O-3)
based on cytology, cytogenetics, and molecular biology. The
ALL cases were further classified in terms of the presence of
markers of early initiating genetic event in leukemia cells, i.e.,
KMT2A (MLL) transcript, ETV6/RUNX1 (TEL/AML1) tran-
script, or hyperdiploidy >50 chromosomes, except for 9% of the
cases for whom the information was missing.

The controls were randomly selected annually by the French
National Institute for Statistics and Economic Studies (INSEE)
from the anonymous income and council tax databases. The con-
trol set, of about 5,000 controls per year, was representative of
the French population under 15 years (age at the end of the year)
in terms of age, household income, and the sociodemographic
characteristics of the municipality of residence (municipalities
are the smallest administrative units, and France accounts more
than 36,000 municipalities). Eight children who had the same
age, the same year of inclusion and the same geocode (see below)
as a case were excluded to limit the risk of including cases in the
control group. A total of 40,196 controls were included in the
study for the period of 2006 to 2013.

The study protocol complied with the French regulations relating
to databases and ethics (Commission Nationale de l’Informatique et
des Libertés receipt 2077682 v0), and the research undertaken with
the RNCE data is covered by agreements on the ethical use of data
and the protection of personal data, and has been approved by French
national authorities.

Geocoding
The addresses of the residences at diagnosis for the cases and at
inclusion for the controls were geocoded by an external partner
blind to case or control status. Geocodes were obtained with an
imprecision estimated to be <100 m for 83% of the addresses, of
which a) 62% geocoded at the entrance of the residential plot, b)
9% by projection toward the road, and c) 12% by interpolation
between neighboring addresses. The remaining addresses were
located d) in the middle of the street (5%), e) in the middle of an
urban residential neighborhood (1%), f) in the middle of a rural
hamlet (10%), or g) in the absence of an address, h) at the town hall
of the municipality (1%). Category f is characteristic of rural areas
(Table S1), with imprecision estimated to be of 300 m on average.

Exposure Assessment
Individual proximity to vines was estimated using buffers of radius
200, 500, and 1,000 m centered on the geocoded address. Three
sources were combined in a GIS: a) the Graphic Parcel Register
(RPG) recording the farmers’ annual statements for European
Common Agricultural Policy subsidies (scale: 1:5,000), available
annually since 2007with information on 28 crop types (wine mono-
cultures cannot receive subsidies and are therefore absent from this
source); b) CorineLandCover (CLC), based on visual interpretation
of high-resolution satellite imagery (scale: 1:100,000) available for
the years 2006 and 2012, with information on perennial crops
(including vines), pastures, and arable land; and c) the vegetation
layer of the BD Topo database (VV), specific to viticulture and
arboriculture (scale: 1:5,000), developed by the National Institute of
Geographic and Forest Information (IGN), available nationwide for
the period of 2012–2015. It is not possible to use the VV source over
our entire study period (2006–2013) because vine uprooting cam-
paigns took place between 2000 and 2010.

We created two maps using RPG and CLC sources, the only
sources available on the whole period: the “2007 map,”which was
based on the 2007 RPG and 2006 CLC sources, and the “2012
map,” which was based on the 2012 RPG and CLC sources. The
2007 and 2012maps were used to evaluate residential proximity to
crops for cases and controls included during the periods 2006–
2009 and 2010–2013, respectively. As viticulture is a perennial
crop, we assumed that the viticulture areas remained stable during
each of the two periods. For the period 2010–2013, we also created
the “2012-VV map” using the VV source in addition to the 2012
RPG and 2012 CLC sources. The maps were developed by Santé
publique-France in close cooperation with the Inserm team. The
methods have been described elsewhere.25,26 Briefly, combining
the previously cited sources in a GIS taking into account adminis-
trative boundaries enabled partition of mainland France into mil-
lions of polygons. Allocation of a crop type to the polygons relied
on an algorithm selecting the most reliable source and its associ-
ated crop. For viticulture in particular, RPG was considered the
most reliable source for the 2007 and 2012 maps, and VV for the
2012-VVmap.

According to the 2010 national agricultural census, the gold
standard on the national scale, 788,633 hectares ðhaÞ were allo-
cated to viticulture in mainland France. The total area was under-
estimated by 35% when the areas were allocated to viticulture
using the 2012 RPG, and overestimated by 23% using the 2012
CLC. The VV source yielded the most accurate total (−1% with
781,152 ha). Exposure assessment accounted for the uncertainties
(see below).

In the main analysis, which addressed all of the 2006–2013
inclusions, the proximity of vines was estimated from the 2007
and 2012 maps, which were based on the RPG and CLC sources,
since the VV source was not available for the whole period. A
complementary analysis was conducted on the 2010–2013 inclu-
sions, which included the VV source in addition to the 2012 RPG
and CLC sources.

The presence of vines within 1,000 m of the geocoded address
of residence was described by a six-category variable as follows:
a) no vines and no other crops within 1,000 m and geocoded
address located in an urban unit with a population≥100,000; b) no
vines and no other crops within 1,000 m and geocoded address
located in an urban unit with a population of <100,000; c) no vines
but presence of another crop within 1,000 m but not within 500 m;
d) no vines but presence of another crop within 500 m; e) possible
presence of viticulture within 1,000 m; and f) probable presence of
viticulture within 1,000 m.

In the main analysis, the presence of viticulture in a buffer was
considered “possible” when the buffer included viticulture plots
identified only by CLC, the least precise source (scale: 1:100,000
and large crop groups) and “probable” when the buffer included at
least one viticulture plot identified by RPG (scale: 1:5,000). For
any other crop, the crop was considered present in a buffer if it
included at least one polygon with the crop, irrespective of source.
In the 2010–2013 analysis, the presence of viticulture in a buffer
was considered “probable” if the buffer included at least one poly-
gonwith viticulture according to the RPG orVV sources.

A 10-category variable was also used when the numbers were
sufficient, with the same first 5 categories and the sixth divided into
five subcategories as follows: f) probable presence of viticulture
within 1,000 m but not within 500 m; g) probable presence of viti-
culture within 1,000 m and possibly within 500 m; h) probable
presence of viticulture within 500 m but not within 200 m; i) prob-
able presence of viticulture within 500 m and possibly within
200 m; and j) probable presence of viticulture within 200 m.

The viticulture density within 1,000 m of the geocoded address
of residence is a quantitative variable obtained by dividing the area
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allocated to viticulture in the 1,000-m buffer by the total area of the
buffer (∼ 314 ha).

We also considered the weighted viticulture density, an indi-
cator defined as the sum of the areas allocated to viticulture in the
200-m buffer and in the 200- to 500-m and 500- to 1,000-m rings,
weighted by the inverse of the average distance between the
buffer/ring and the residence (100, 350, and 750 m, respectively).
This indicator made it possible to distinguish situations where the
vines were close to the residence and those where they were on
the periphery of the buffer.

In the main analysis, the quantitative variables were defined
based on the RPG and CLC polygons (sensible indicator) and
with the RPG polygons only (specific indicator).

Confounding Factors
Several factors associated with childhood AL risk in previous
studies conducted by our group were considered as potential con-
founding factors as follows: the degree of urbanization, defined
as the size of the urban unit where the child lived (population:
<5,000, population: 5,000–19,999, population: 20,000–99,999,
and population: ≥100,000)27; the French deprivation index
FDep, defined as a linear combination of four census variables
(the median income and the proportions of high school gradu-
ates, blue-collar workers, and unemployed persons in the munici-
pality)27,28; the average daily ultraviolet (UV) radiation level
in the municipality29,30 (data from the European EUROSUN
project); and the length of major roads within 150 m of the
geocoded address31 (annual HERE road maps; https://www.
here.com).

Viticulture is less frequent in urban areas and most deprived
areas where incidence of ALL was found to be decreased27 and
in areas most exposed to major roads where AML risk was found
to be increased31 (Figures S1 and S2, Table S2). Viticulture is
also more frequent in the South of France where the levels of UV
radiation are higher.29 We did not test the relationships between
these factors and viticulture, since the statistical power was lim-
ited for this criteria, but rather evaluated if their inclusion in the
models induced at least 5% change in the estimates.

Statistical Analysis
Main analyses. Odds ratio (OR) and Wald-based 95% confidence
interval (CI) were estimated by logistic regression models
adjusted for age (<1 y old, 1–4 years old, 5–9 years old, and 10–
14 years old), separately for all AL, ALL, and AML. Additional
analyses stratified by region were conducted for all AL and ALL.

For the proximity to vines, OR and Wald-based 95% CI were
estimated for each category taking as reference the second category
(i.e., no vines and no other crop within 1,000 m and geocoded
address located in an urban unit of population <100,000) in order
to avoid taking an exclusively urban group as a reference.

For viticulture density and weighted viticulture density within
1,000 m of the geocoded address of residence, ORs were esti-
mated for a 10% increase in density. One-sided p-values were
calculated. Locally weighted polynomial regression (LOESS)
models were also implemented to investigate nonlinear variations
in ORs on the log scale. For the analysis by region, heterogeneity
was tested in the regression model using likelihood-ratio tests on
interaction terms.

Sensitivity and complementary analyses. Supplementary anal-
yses were conducted for ALL and addressed the main cytogenetic
abnormalities considered initiating events in childhood ALL, i.e.,
KMT2A (MLL), ETV6/RUNX1 (TEL/AML1), and hyperdiploidy
>50 chromosomes. The numbers were not sufficient to enable
AML analyses by subtype.

We tested the stability of the results by stratifying by age group
(0–6 y old, 7–14 y old); adjusting for the density of crops other than
vines within 1,000 m; restricting the analyses to children with the
best geocoded addresses [3,015 cases (81%) and 33,235 controls
(83%)]; restricting the analyses to the 8 most intensive wine-
growing regions [2,231 cases (60%) and 23,643 controls (59%)];
excluding the cases and controls with no agricultural area within
1,000 m [2,814 cases (76%) and 30,532 controls (76%)]; and
adjusting for the potential confounding factors (each separately
and all together).

We tested the interactions between variables in logistic regres-
sion models with likelihood ratio tests, except for ALL subtypes
where heterogeneitywas tested in polytomous regressionmodels.

Complementary analyses were performed on the 2010–2013
inclusions (1,909 AL cases and 20,198 controls), using the 2012-
VV map, with the VV source in addition to RPG and CLC.

All of the analyses were conducted with R version 4.0.5 soft-
ware (R Development Core Team).

Results
The proportion of the 40,196 controls living within 1,000 m of
vines was estimated at 10% based on the RPG and CLC sources
and at 8.9% based on the RPG source alone, respectively, 9.4%
and 8.1% for cases (Table 1). The median area allocated to viti-
culture in the 1,000-m buffer centered on the geocoded addresses
was 21:8 ha [interquartile range (IQR): 2:8–79:6 ha] according to
the RPG and CLC sources and 6:8 ha (IQR: 1:3–21:8 ha) accord-
ing to the RPG source alone.

The proportion of controls living close to vines varied greatly
depending on the region, ranging from <1% in the Bretagne,
Normandie, Île-de-France, and Hauts-de-France to about 20% in
Nouvelle-Aquitaine and Provence-Alpes-Côte d’Azur-Corse and
almost 40% in Occitanie (Table 1; Figure S3). Viticultural areas
within 1,000 m also showed large variations between and within
regions (right-skewed distributions) and were estimated to be
much higher when CLC was taken into account (median area
tripled in most of the regions).

Overall, there was no evidence of association between the in-
dicator of proximity to vines and ALL or AML (Table 2). ORs
were close to one in all the categories without statistically signifi-
cant heterogeneity.

Viticulture density, however, was associated with ALL
[OR=1:05 (1.00–1.09) for a 10% increase in density] but not with
AML [OR=0:95 (0.84–1.08)]. Using the RPG source alone to
estimate viticulture density generated similar results [OR for
ALL=1:12 (0.99–1.26) and OR for AML=0:73 (0.47–1.13)].
Similar results were observed with the weighted viticulture density
(Table 2). An additional analysis actually showed a strong correla-
tion between the viticulture densities in the buffers of 1,000 m,
500 m, and 200 m (Pearson correlation coefficient of 0.86 between
the viticulture densities in the buffers of 200 m and 500 m and of
0.89 between the buffers of 500 m and 1,000 m).

The ORs for proximity of vines were similar for ALL with
KMT2A rearrangement (121 cases) and ALL with ETV6/RUNX1
transcript or hyperdiploidy >50 chromosomes (1,290 cases) and
were not significantly different from that for ALL with none of
these cytogenetic abnormalities (1,397 cases). Of note, the esti-
mate for the association with density was higher for ALL with
KMT2A rearrangement, although still not significantly greater
than the unit (Table 3).

The associations with viticulture density remained unchanged,
particularly for ALL, in the sensitivity analyses adjusted for
the density of other crops [OR=1:05 (1.00–1.10)], restricted to the
best geocoded addresses [OR=1:06 (1.01–1.12)], restricted to the
8 most intensive vine-growing regions [OR=1:04 (0.99–1.09)],
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excluding children with no agricultural area within 1,000 m
[OR=1:04 (1.00–1.09)], or adjusted for the available potential
confounding factors [OR=1:04 (0.99–1.09)] (Table 4). Stratifying
the analyses onALL by age in 2 classes did not reveal any heteroge-
neity (Table S3).

The association between viticulture density and the risk of
ALL was significantly heterogeneous across regions (Table 5).
The association was statistically significant (one-sided test) in the
Pays de la Loire, Grand-Est, Occitanie, and Provence-Alpes-Côte
d’Azur-Corse regions and similar although not significant in the
Centre-Val-de-Loire. An OR less than one was observed for
Auvergne-Rhône-Alpes. The associations did not deviate from
log-linearity in any of the analyses except for Occitanie with the
indicator combining CLC and RPG. The LOESS model sug-
gested that the deviation was only for the lowest densities of viti-
culture and for the most extreme density. This deviation is not
found with the indicator using RPG only (Figure S4, Table S4).

In the sensitivity analysis restricted to the period of 2010 to
2013, using the 2012 map, which included the VV source, 16.1%
of the control addresses were classed as probably close to vines
and only 0.1% as possibly close to vines (Table 6). As in the
main analysis, vine proximity was not associated with ALL or
AML, whereas the viticulture density was associated with ALL
[OR=1:07 (1.01–1.13) per 10% increase in density] but not
AML [OR=0:88 (0.72–1.08)].

Discussion
In this nationwide GIS-based case-control study, we observed a
small increase in ALL risk for children living within 1,000 m of
vines. Over the whole study period, the increase was 5% for a
10% increase in viticulture density with the RPG and CLC sour-
ces and 12% with the RPG source alone. The association
remained stable in the various sensitivity analyses, in particular
using the more accurate and exhaustive source VV over the pe-
riod of 2010 to 2013 (7% for a 10% increase in viticulture den-
sity). The results were heterogeneous between the regions. No
association with the qualitative indicator of proximity to the vines
was evidenced. No association with AML was found.

A few studies have investigated the role of environmental
exposure to agricultural pesticides in the risk of childhood
leukemia10–23,32; even fewer have addressed viticulture. The ma-
jority of the studies evaluated the association between childhood
AL and total crop or specific crop densities, and most of themwere
conducted in the United States using different exposure assessment
methods. Two American ecological studies found an increased
incidence rate of childhood AL in counties with the highest den-
sities of specific crops [dry beans (AL), sugar beet (ALL), and oats
(AML)11; cotton, oats, and soybeans (AML)12]. Two Texan eco-
logical studies based on the residence at birth,16,18 in which viticul-
ture was again not studied, found no association with childhood
AL. A Spanish GIS-based case-control study found associations
with specific crop densities within 1,000 m estimated using CLC
but not for viticulture.15 In that study, the exposure periods were
around the time of diagnosis for the cases and around birth for the
controls, which may have introduced biases. An Italian case-
control study found no association with viticulture density within
100 m of the geocoded addresses of children, but the authors
remained prudent in their conclusion because of the imprecise esti-
mates due to small numbers (111 AL and 444 controls).17 Several
ecological and case-control studies conducted in California used
information from the pesticide use reporting database to estimate
the quantities of pesticide used in the vicinity of children’s
homes.19–23,32 Some pesticides and chemical classes, not specifi-
cally used in viticulture, were associated with an elevated risk of
childhoodAL, but the results need to be confirmed.T
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The present study addressed, for the first time, the question of
AL risk among children living close to viticultural areas in France.
According to the most recent French agricultural censuses (2010
and 2020), there were ∼ 27million hectares of utilized agricultural
area (UAA), i.e., about 50% of mainland France. It has been esti-
mated that about 65,000 to 75,000 metric tons of agricultural pesti-
cides, most of them fungicides, were sold annually during our

study period (https://agreste.agriculture.gouv.fr/). Vines are sub-
jected to particularly intensive pesticide treatment: about 19
times33 per year, on average, nationwide. Viticulture covers nearly
800,000 ha, i.e., about 3% of the total UAAof France.

Our major challenge was to properly assess the presence of
viticulture plots and estimate the viticulture area near homes. In
our ecological study,14 viticulture density in the municipality of

Table 2. Association between childhood acute leukemia and indicators of proximity to vines (GEOCAP inclusions 2006–2013, GIS-based assessment of expo-
sure based on RPG and CLC sources).

Controls
(n540,196)

All acute leukemia
(n=3,711)

Acute lymphoblastic leukemia
(n=3,088)

Acute myeloid leukemia
(n=552)

[n (%)] n (%) ORa (95% CI) pb n (%) ORa (95% CI) pb n (%) ORa (95% CI) pb

Presence of vines within 1,000 m
No vines, no other crops, UU
≥100,000 inhabitants

8,614 (21.4) 794 (21.4) 0.91 (0.73, 1.13) — 623 (20.2) 0.86 (0.68, 1.09) — 157 (28.4) 1.17 (0.70, 1.97) —

No vines, no other crops, UU
<100,000 inhabitants

1,050 (2.6) 103 (2.8) 1 (Ref) — 85 (2.8) 1 (Ref) — 16 (2.9) 1 (Ref) —

No vines, other cropsc ≤1,000 m
but none ≤500 m

4,973 (12.4) 451 (12.2) 0.90 (0.72, 1.13) — 380 (12.3) 0.92 (0.72, 1.18) — 61 (11.1) 0.80 (0.46, 1.39) —

No vines, other cropsc ≤500 m 21,544 (53.6) 2,016 (54.3) 0.95 (0.77, 1.17) — 1,696 (54.9) 0.96 (0.76, 1.21) — 281 (50.9) 0.86 (0.52, 1.43) —
Possible presence of vines
≤1; 000md

455 (1.1) 49 (1.3) 1.09 (0.76, 1.56) — 44 (1.4) 1.19 (0.81, 1.74) — 5 (0.9) 0.72 (0.26, 1.98) —

Probable presence of vines
≤1; 000me

3,560 (8.9) 298 (8.0) 0.86 (0.68, 1.08) — 260 (8.4) 0.90 (0.70, 1.17) — 32 (5.8) 0.60 (0.33, 1.09) —

Probable >500 m, not ≤500m 1,162 (2.9) 97 (2.6) 0.87 (0.65, 1.16) — 81 (2.6) 0.88 (0.64, 1.20) — — — —
Probable >500 m, possible
≤500m

320 (0.8) 35 (0.9) 1.13 (0.75, 1.70) — 33 (1.1) 1.30 (0.85, 1.98) — — — —

Probable ≤500m but not ≤200m 853 (2.1) 56 (1.5) 0.65 (0.47, 0.92) — 52 (1.7) 0.73 (0.51, 1.04) — — — —
Probable ≤500m, possible
≤200m

355 (0.9) 31 (0.8) 0.88 (0.58, 1.35) — 24 (0.8) 0.82 (0.51, 1.32) — — — —

Probable ≤200m 870 (2.2) 79 (2.1) 0.93 (0.69, 1.27) — 70 (2.3) 1.00 (0.72, 1.40) — — — —
Density of vines within 1,000 mf

RPG and CLC (sensible indicator) — — 1.04 (0.99, 1.08) 0.05 — 1.05 (1.00, 1.09) 0.03 — 0.95 (0.84, 1.08) 0.77
RPG only (specific indicator) — — 1.07 (0.95, 1.20) 0.15 — 1.12 (0.99, 1.26) 0.04 — 0.73 (0.47, 1.13) 0.92
Weighted density of vines within

1,000 mg

RPG and CLC (sensible indicator) — — 1.04 (0.99, 1.08) 0.05 — 1.04 (1.00, 1.09) 0.03 — 0.96 (0.84, 1.09) 0.75
RPG only (specific indicator) — — 1.04 (0.95, 1.13) 0.19 — 1.07 (0.98, 1.17) 0.06 — 0.80 (0.58, 1.10) 0.92

Note: —, no data; CI, confidence interval; CLC, Corine Land Cover; GIS, geographic information system; n, number of children; OR, odds ratio; Ref, reference; RPG, Graphic Parcel
Register; UU, urban unit.
aOR and 95% confidence interval CI estimated by unconditional logistic regression adjusted for age.
bOne-sided p-values for the slope parameter in the quantitative analyses with the density of vines within 1,000 m.
cAt least one plot identified by RPG or CLC with a crop different from viticulture.
dThe presence of viticulture was considered “possible” if at least one vine plot was identified by CLC but no vine plot was identified with RPG.
eThe presence of viticulture was considered “probable” if at least one vine plot was identified by RPG.
fOR associated with a 10% increase in viticulture density within 1,000 m.
gOR associated with an increase equal to 10% of the maximum weighted density.

Table 3. Association between childhood acute lymphoblastic leukemia and indicators of proximity to vines, depending on the presence of KMT2A transcript
and by the presence of ETV6/RUNX1 transcript or of hyperdiploidy >50 chromosomes and the absence of these cytogenetic events (GEOCAP inclusions
2006–2013, GIS-based assessment of exposure based on RPG and CLC).

Controls
(n=40,196)

ALL with KMT2A
(n=121)

ALL with ETV6/RUNX1
or hyperdiploidy>50

(n=1,290)
ALL with none of the

cytogenetic events (n=1,397)

[n (%)] n (%) ORa (95% CI) pb n (%) ORa (95% CI) pb n (%) ORa (95% CI) pb

Presence of vines within 1,000 m
No vines and no other crops 9,664 (24.0) 31 (25.6) 1 (Ref) — 290 (22.5) 1 (Ref) — 327 (23.4) 1 (Ref) —
No vines but other cropsc 26,517 (66.0) 76 (62.8) 0.96 (0.63, 1.46) — 873 (67.7) 1.14 (0.99, 1.30) — 938 (67.1) 1.04 (0.92, 1.19) —
Presence of vinesd 4,015 (10.0) 14 (11.6) 1.19 (0.63, 2.24) — 127 (9.8) 1.12 (0.91, 1.39) — 132 (9.4) 0.97 (0.79, 1.20) —
Density of vines within 1,000 me

RPG and CLC (sensible indicator) — — 1.13 (0.94, 1.35) 0.09 — 1.04 (0.97, 1.11) 0.16 — 1.03 (0.96, 1.10) 0.23
RPG only (specific indicator) — — 1.39 (0.92, 2.11) 0.06 — 1.13 (0.94, 1.36) 0.10 — 1.10 (0.92, 1.31) 0.14

Note: 280 (9%) cases were excluded because cytogenetic information was missing. —, no data; ALL, acute lymphoblastic leukemia; CI, confidence interval; CLC, Corine Land
Cover; OR, odds ratio; Ref, reference; RPG, Graphic Parcel Register.
aOR and 95% CI estimated by unconditional logistic regression adjusted for age.
bOne-sided p-values for the slope parameter in the quantitative analyses with the density of vines within 1,000 m.
cAt least one plot identified by RPG or CLC with a crop different from viticulture.
dAt least one vine plot identified by RPG or CLC.
eOR associated with a 10% increase in viticulture density.
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residence was associated with a greater risk of childhood ALL.
However, the viticulture density at the municipality scale
explained only part of the variability in viticulture density around
residences (R2 = 0:62).

Our cartographic method combining information from the
RPG, CLC, and VV sources enabled precise description of viti-
cultural areas on the national scale, overcoming the main limita-
tions of each source considered independently.25 It is noteworthy
that RPG is used to apply for European financial subsidies for
specific crops. Farmers who want to benefit from the subsidies
are required to report all of their crop areas, including those of
crops not covered by the subsidies, such as grape vines. While
there may be some imprecision in those reports, RPG affords
marked overall precision (1:5,000). Using RPG alone underesti-
mates the total viticulture area by 35% in comparison to the 2010
agricultural census, the main reason being that viticulture-only
farmers do not apply for subsidies. CLC satellite images are not
precise enough to detect crops covering <25 ha; the plots are
roughly localized, and confusion of vineyards and orchards is
possible. Using CLC alone overestimates the total viticulture area
by 23% in comparison to the agricultural census. Lastly, the VV
database is as precise as RPG (1:5,000); the total viticultural area
is very well estimated compared to the agricultural census, but
the database does not cover the whole study period. The distribu-
tion of regional viticultural areas was highly heterogeneous.
Combining the RPG and CLC sources in the 2012 map resulted
in a total estimate of viticulture area closer to that of the agricul-
tural census than that with RPG alone in all regions except
Occitanie, for which the viticultural area was the most overesti-
mated by CLC and the least underestimated by RPG. It might
reflect a smaller part of monocultures in the Occitanie region, but
we cannot explain this regional difference with certainty.

The study could not avoid exposure misclassifications induced
by uncertainties in geocoding, impossibility of perfect identifica-
tion of vines on the buffer level throughout the study period, and
absence of indication of children’s space-time budgets regarding
their opportunity to be exposed at other places than at their address.
However, all of the processes were carried out blind to the case or
control status in order to avoid any differentialmisclassification.

The association between viticulture density and the risk of
ALL appeared more marked in 5 of the 12 regions (Centre-Val-
de-Loire, Grand-Est, Pays de la Loire, Occitanie, and Provence-
Alpes-Côte d’Azur-Corse); no association was found for the
other regions, in particular Nouvelle-Aquitaine, where more than
20% of the controls resided in the proximity of viticulture. This
may be due to heterogeneity with respect to our indicators’
description of viticultural areas in buffers or regional heterogene-
ity in pesticide use or practices. These hypotheses call for further
investigation.

Our previous studies have shown associations between the
risk of childhood AL and urbanization, deprivation level in the
area of residence, UV radiation, and traffic-related air pollution.
Taking those factors into account did not change the results, sug-
gesting that there was no large-scale spatial confounding. In our
GIS-based study, it was not possible to take into account the indi-
vidual factors that are highly suspected of being associated posi-
tively (e.g., maternal pesticide use during pregnancy, maternal
occupational exposure to pesticides during pregnancy, paternal
prenatal smoking, increased fetal growth) or negatively (e.g.,
breastfeeding, early common infections, maternal folate intake
preconception) with childhood AL. Even if those individual fac-
tors may be influenced by rural/urban lifestyle, their distribution
should be strongly different in viticultural and other rural areas to
have a significant impact on the association with viticulture den-
sity, which we believe unlikely. The study assessed proximity ofT
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vines to the residence at diagnosis for the cases or at inclusion for
the controls. We did not have the ability to access previous resi-
dences, particularly during the prenatal period or at birth, which
may also have been relevant to childhood cancer risk.

Our study has major strengths. It was registry-based and,
therefore, included all of the AL cases diagnosed during the pe-
riod of 2006 to 2013 with virtually no risk of selection bias, and
it included a large number of controls representative of the
same-aged population during the same period. The large num-
bers enabled several analyses by main AL subgroup (AML,
ALL, ALL molecular subtype, and age). Furthermore, the use
of the 2007 and 2012 crop maps enabled definition of objective
exposure indicators on a fine scale, thereby taking into account
the changes in viticultural areas that may have occurred
between 2007 and 2012. The availability of the gold standard
source VV, although limited to the short period of 2010 to
2013, was also a strength of this study. The results of the sensi-
tivity analysis based on this were fully consistent with those of
the main analysis and suggested that the combination of RPG
and CLC sources was able to provide good estimates of viticul-
ture areas or at least to well describe the contrasts in viticulture
density on a small scale.

In conclusion, we evidenced a slight increase in the risk of
childhood ALL living in areas with higher viticulture density,
with some heterogeneity between regions. This finding reinfor-
ces the hypothesis that pesticides used in viticulture may be
associated with childhood AL, a hypothesis that we will investi-
gate further using available databases of agricultural uses of
pesticides.
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