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Abstract

Propensity score methodology has become increasingly popular in recent years as a tool for 

estimating causal effects in observational studies. Much of the related research has been directed 

at settings with binary or discrete exposure variables with more recent work involving continuous 

exposure variables. In environmental epidemiology, a substantial proportion of individuals is 

often completely unexposed while others may experience heavy exposure leading to an exposure 

distribution with a point mass at zero and a heavy right tail. We suggest a new approach to handle 

this type of exposure data by constructing a propensity score based on a two-part model and show 

how this model can be used to more reliably adjust for covariates of a semi-continuous exposure 

variable. We also consider the case when a misspecified propensity score is used in a regression 

adjustment and derive an explicit form of the bias. We show that the potential bias gets smaller 

as the estimated propensity score gets closer to the true expectation of the exposure variable given 

a set of observed covariates. While this result pertains to a more general setting, we use it to 

evaluate the potential bias in settings in which the true exposure has a semi-continuous structure. 

We also evaluate and compare the performance of our proposed method through simulation studies 

relative to a simpler linear regression-based propensity score for a continuous exposure variable 

as well as through direct covariate adjustment. Overall, we find that using a propensity score 

constructed via a two-part model significantly improves the regression estimate when the exposure 

variable is semi-continuous in nature. Specifically when the proportion of non-exposed subjects 

is high and the effects of covariates on exposure and outcome are strong, the proposed two-part 

propensity score method outperforms the more standard competing methods. We illustrate our 

method using data from the Detroit Longitudinal Cohort Study in which the exposure variable 

reflects gestational alcohol exposure featuring zero values and a long tail.
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1 | INTRODUCTION

1.1 | Background and literature review

Environmental epidemiologists often seek to assess the impact of a potentially toxic 

exposure on a health outcome, while adjusting statistically for possible confounders. Failure 

to account for the effect of the confounders can result in biased effect estimates that either 

overstate or obscure the true causal effect of the exposure. In practice, regression models 

that include potential confounders are most commonly used to adjust for the effects of 

confounding variables. However, particularly when the number of potential confounders is 

large, it can be difficult to determine whether the regression model relating the exposure 

variable and confounding variables to the outcome has been correctly specified (Austin, 

2011). Use of a propensity score has become a popular alternative strategy to reduce or 

eliminate the effects of confounding in observational settings (Austin, 2011; Rosenbaum & 

Rubin, 1983).

A propensity score is typically obtained via a regression analysis in which the exposure is 

modelled as a function of potential confounding variables. Propensity score methodology 

was originally developed to estimate the causal effect of a binary exposure variable 

(Rosenbaum & Rubin, 1984, 1985) and consequently propensity scores have typically been 

based on binary regression models. Imbens (1999), Imai and van Dyk (2004) and Hirano and 

Imbens (2004) broadened this framework to accommodate continuous exposure variables 

and coined the term the generalized propensity score for such settings. (Hirano & Imbens, 

2004; Imai & van Dyk, 2004; Imbens, 1999). With a continuous exposure variable, Hirano 

and Imbens (2004) define the generalized propensity score for a particular individual as 

the conditional density function of the exposure model given covariates, including potential 

confounders, evaluated at the observed exposure and covariate values. In contrast, Imai 

and van Dyk (2004) define the generalized propensity score to be the entire conditional 

density function of the treatment. Such propensity score-based methods allow practitioners 

to estimate a full dose–response function rather than simply the average treatment effect 

(Fichera et al., 2016; Moodie & Stephens, 2012). Zhao et al. (2020) evaluated these two 

methods for estimation of the full dose–response function and explored the performance of 

two extensions they proposed to improve the robustness of analyses based on the generalized 

propensity score (Zhao et al., 2020).

Generalized propensity scores have been used in settings involving continuous exposure 

variables related to labour earnings (Bia & Mattei, 2008; Imai & van Dyk, 2004), medical 

expenditure (Imai & van Dyk, 2004; Zhao et al., 2020), and birth weight (Zhang et al., 

2016), among others.

In environmental and behavioural epidemiology, exposure may refer to chemical exposures, 

pollution or personal use of substances, such as alcohol, tobacco or illicit drugs. A number 
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of challenging problems can arise in such settings. Often, the exposure variable is semi-

continuous in that the data may feature a large proportion of individuals who have not been 

exposed at all. The exposure distribution may also have a long right tail due to a small 

number of individuals with very high exposure. Examples are ubiquitous and include counts 

of cigarettes smoked per day in a population made up of smokers and non-smokers (Wang & 

Heitjan, 2008), concentrations of toxins in environmental epidemiology where levels below 

the detection limit are recorded as zero (Choi & Hwang, 2018), and alcohol intake per 

day in a population made up of drinkers and non-drinkers (Choi & Hwang, 2018). Other 

settings include health services research (Neelon et al., 2015), studies of the microbiome 

(Chai et al., 2018), when modelling functional ability in chronic diseases (Su et al., 2015) 

and when modelling occlusion therapy in the treatment of childhood amblyopia (Moodie 

& Stephens, 2012). One strategy for modelling the effects of such exposure variables is to 

discretize them. In the present setting, for example, we could classify subjects as having 

zero, low, moderate or high exposure. While this can address confounding, this strategy 

is not appropriate when scientific interest lies in a parsimonious characterization of the 

dose–response effect. In environmental risk assessment, for instance, the goal is often to 

identify the specific exposure level associated with a specified risk above a background 

level (Crump, 1984). In the project funded by the National Institutes of Health in the 

United States that motivates our work, investigators seek to understand whether there are 

levels of gestational alcohol exposure that are not associated with clinically significant risks 

of adverse developmental effects for the children. Study findings could have important 

implications for the diagnosis and treatment of affected children.

Semi-continuous variables can be viewed as arising from two distinct processes: (i) a binary 

process, reflecting whether or not the subject was exposed, and (ii) a continuous process, 

determining the level of exposure given that some exposure occurred. Two-part models have 

been developed to handle such data. Often the binary component is modelled via logistic 

regression, and a log transformation is applied to model the continuous part using standard 

linear regression (Smith et al., 2017). As an alternative to two-part models, analysts often 

fit a standard generalized linear model with a log link to ensure that the predicted values 

are not negative (Smith et al., 2017). Several researchers have compared the performance of 

two-part models with various classical approaches in settings that involve semi-continuous 

response variables. While findings are context dependent, two-part models often exhibit 

better performance (Duan et al., 1983; Madden et al., 2000; Smith et al., 2017). Smith et al. 

(2017) found that the standard generalized linear models are not appropriate when data are 

zero-heavy. Specifically, they reported that inferences based on standard generalized linear 

models incurred increased bias, lower than nominal coverage, and increased type I error 

rates in settings with non-negligible proportions of individuals with zero values (Smith et al., 

2017).

Despite the recent interest in generalized propensity scores, there has been relatively little 

work examining modelling issues with zero-inflated exposure variables. Imai and van Dyk 

(2004) argued that generalized propensity scores can be used to establish causal effects in 

observational studies when the exposure has a mixture of zeros and continuously distributed 

positive values, but did not explore this issue further. Naimi et al. (2014) explored a 

variety of approaches for modelling the propensity score for normal and contaminated 
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Poisson exposure variables and investigated the sensitivity of misspecification of propensity 

score models within the framework of inverse probability weighted estimating functions. 

Specifically, they constructed inverse probability weights using: a normal distribution, a 

normal distribution with heteroscedastic variance, a gamma distribution, a t-distribution and 

using a quantile binning approach. These authors found that when the exposure variable is 

zero-inflated, all of these methods yielded slightly biased estimators with the gamma and 

quantile binning approach giving the best estimators (Naimi et al., 2014).

In this paper, we propose use of a two-part model for the construction of a generalized 

propensity score for a semi-continuous exposure variable. Unlike the existing methods, 

our method allows covariates to act differently on the exposure indicator (exposed vs. 

unexposed) and the extent of exposure among those who are exposed. Given the known 

problems of inferences based on standard generalized linear models when the response 

variable is semi-continuous, application of a two-part modelling approach to propensity 

score construction would seem to be a more appealing approach for propensity score 

construction in this setting. We evaluate and compare the performance of the proposed 

method with the established generalized propensity score approach (Imai & van Dyk, 2004).

The seminal work by Rosenbaum and Rubin (1983) showed that once the propensity score 

is estimated, effects of confounding can be eliminated through propensity score matching, 

stratification or covariance adjustment in regression. We focus on covariate adjustment using 

the propensity score estimated by the two-part model. We derive an explicit functional form 

of the bias that arises when a misspecified propensity score is used in covariate adjustment. 

In our simulation studies, we calculate this bias for settings where the exposure variable is 

governed by a two-part model but the propensity score is estimated by ordinary least square 

regression as it is suggested in generalized propensity score approach.

The remainder of this article is organized as follows. In the following sub-section we 

introduce the motivating study which explores the relationship between prenatal alcohol 

exposure and cognitive function in children from the Detroit Longitudinal Cohort study. In 

Section 2, we introduce notation and describe how to estimate the two-part generalized 

propensity score. We then provide the explicit form of bias associated with use of a 

misspecified propensity score as a covariate in regression adjustment. Section 3 describes 

and reports on a simulation study designed to evaluate the performance of the proposed 

method relative to methods based on a naive unadjusted analysis, conventional linear 

regression and the generalized propensity score approach. In Section 4, we apply these 

methods to the Detroit Longitudinal Cohort Study. In Section 5 we discuss the strengths and 

limitations of the proposed methods, and outline areas warranting further research.

1.2 | The Detroit study of foetal alcohol exposure

While evidence from animal models and epidemiological studies has linked prenatal alcohol 

exposure (PAE) to a broad range of cognitive and behavioural deficits (Jacobson et al., 2011; 

Lewis et al., 2016; Mattson et al., 1997) the exact nature of the dose–response effect is not 

well understood. In particular, there is virtually no information in the scientific literature 

regarding the levels of PAE associated with an increased risk of clinically significant adverse 

effects. It is widely know that women should stop drinking during pregnancy, but there 
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remain important scientific questions regarding whether or not low-level exposures will 

result in adverse developmental effects, and more generally about the dose–response effects. 

Insights into these questions could have important clinical implications for the diagnosis 

and treatment of affected children. Moreover this critical public health question cannot be 

addressed by studies that have used samples of children identified in clinics and referred to 

specialists for assessment since in such cases the level of maternal alcohol use, and hence 

gestational alcohol exposure has not been quantified.

The Detroit Longitudinal Cohort study is a large prospective study of children with a broad 

range of prenatal alcohol exposure levels, who were followed from birth through age 19 

years (Jacobson et al., 2004). Four hundred and eighty pregnant, African-American, inner-

city women were interviewed about their alcohol use during pregnancy using a timeline 

follow-back interview (Jacobson et al., 2002). Data from each visit regarding maternal 

alcohol consumption were summarized in terms of daily alcohol intake (standard drinks or 

ounces of absolute alcohol (AA)/day) averaged across pregnancy.

For this paper, we analysed data for a single outcome measure, the Wechsler Intelligence 

Scales for Children (3rd edition) (WISC-III) Freedom from Distractibility Index, for the 

337 children who participated in the 7-year follow-up assessment of this cohort in the 

presence of a broad set of potential confounding variables covariates (see Tables 1 and 2). 

Figure 1 displays the relation between the outcome variable and the log of prenatal alcohol 

exposure. The figure shows a long-tailed exposure distribution, even after transformation to 

the log scale. Given that 23.8% of the women reported no alcohol use during pregnancy, 

characterizing this variable as two distinct processes (i.e. one determining whether the 

mother consumed alcohol, the other determining the actual level if alcohol was consumed), 

is theoretically appealing and provides a richer description than a model with a single 

function. It is also reasonable to suspect that covariates might operate differently in terms of 

predicting whether or not a mother consumes alcohol, as compared to the amount of alcohol 

used by those who consumed it. Indeed, initial exploratory analysis revealed that prenatal 

marijuana exposure and gravidity were strong predictors of whether or not a woman drank 

alcohol during pregnancy but were not predictors of the amount consumed by those who 

reported drinking at least some alcohol.

2 | PROPENSITY SCORE ADJUSTMENT WITH SEMI-CONTINUOUS 

EXPOSURE

We consider the case in which the goal is to model the causal effect of a semi-continuous 

exposure variables X on an outcome Y  in the presence of a set of confounding variables 

Z = Z1, …, Zp ′. The effect of confounding can be addressed by regressing the quantitative 

exposure on the set of observed covariates as it is suggested by Imai and van Dyk (2004). 

Specifically, the propensity score can be estimated using ordinary least squares (OLS) 

regression. Then the predicted mean of X obtained from a model predicting X given all 

confounding variables Z can be used as the estimated propensity score in the outcome 

model:
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Y i = η0 + η1Xi + η2Si
* + ϵi (1)

where Si
* is the estimated propensity score for subject i. In the next subsection, we introduce 

a two-part generalized propensity score for the settings where the exposure variable has 

a substantial proportion of zero values. In this approach, the semi-continuous exposure 

variable is considered as arising from two distinct processes: a binary part (exposed vs. not 

exposed) and a continuous part (characterizing the extent of exposure among those exposed).

2.1. A two-part generalized propensity score model

Consider a non-negative semi-continuous variable X with a point mass at zero and a 

density characterizing the probability distribution of non-zero values on the positive real 

line. Let Z = Z1, …, Zp ′ denote a p × 1 set of covariates and consider a two-part model 

for characterizing the association between Z and X. Specifically, if X+ = I X > 0  indicates 

a positive value for X, we let π Z = E X+ ∣ Z  and consider a binary regression model 

defined by the link function g ⋅  mapping the interval [0, 1] onto the real line and setting 

g π Z; α1 = Z‾ ′α1 where Z‾ = 1, Z′ ′ and α1 = α10, α11, …, α1p ′. In what follows we use the 

canonical logistic link function in which case α1j, j = 0, 1, …, p, are log odds ratios.

We also let P X ≤ x ∣ X+ = 1, Z; α2 = F+ x ∣ Z; α2  denote the cumulative distribution 

function for the positive part of X, X ∣ X > 0, given Z, which we take to be indexed by 

a p + 1 × 1 parameter α2. The full distribution for X is therefore indexed by α = α1
′ , α2

′ ′. A 

key requirement of the model for X ∣ X+ = 1 given Z is that it involve a simple way to 

compute E X ∣ X+ = 1, Z; α2 = μ Z; α2 . One approach would be to adopt a generalized linear 

model, but any non-negative distribution can be used. Ultimately we may compute

E X ∣ Z; α = π Z; α1 μ Z; α2 (2)

as the marginal mean for X ∣ Z based on the two-part model formulation. For example, we 

consider a logistic model for X+ ∣ Z and let

log π Z; α1 / 1 − π Z; α1 = Z‾ ′α1, (3)

while any location-scale regression model can be adopted for X ∣ X > 0, Z. These models are 

specified by setting

log X = η + σR (4)

where η = Z‾ ′γ is the linear predictor, σ is a dispersion parameter, and R is an error term 

which has any standard distribution on the real line; we write α2 = γ′, σ ′. We assume R are 

independently distributed with R ⊥ Z. If R ∼ N 0, 1  for example this implies a log-normal 

regression model for which μ Z; α2 = exp(Z‾ ′γ + σ2/2). Together the two models based on (3) 

and (4) give an expression for (2) as
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E(X ∣ Z; α) = expit(Z‾ ′α1) ⋅ exp(Z‾ ′γ + σ2/2) (5)

where expit u = exp u / 1 + exp u .

With a sample of observations on n independent individuals, we introduce a subscript i
to label individuals and write the data for fitting the semi-continuous propensity score as 

Xi, Zi , i = 1, …, n . The full likelihood for α based on this sample is,

L α ∝ ∏
i = 1

n
P Xi

+ = 0 ∣ Zi; α1
1 − Xi

+
[P Xi

+ = 1 ∣ Zi; α1

dF+ Xi ∣ Xi
+ = 1, Zi; α2]Xi

+
(6)

where dF+ x ∣ Xi
+ = 1, Zi; α2 = f x ∣ Xi

+ = 1, Zi; α2 dx. Note that (6) can be factored as 

L α = L1 α1 L2 α2  where

L1 α1 ∝ ∏
i = 1

n
1 − π Zi; α1

1 − Xi
+
[π Zi; α1]Xi

+
(7)

and

L2 α2 ∝ ∏
i = 1

n
dF+ Xi ∣ Zi; α2

Xi
+

(8)

which can be maximized separately as they are functionally independent. Then substitution 

of α into (2.2) yields the estimated propensity score Si = E Xi ∣ Zi; α  for individuals 

i, i = 1…, n. We make the stable unit treatment value assumption, which posits that Y i, the 

response by the ith subject under exposure X = x, is not affected by what exposures are 

received by other subjects (Hernán & Robins, 2006; Winship & Morgan, 1999). We also 

assumed weak unconfoundedness (Hirano & Imbens, 2004).

Instead of including an extensive list of potential confounders in the primary regression 

analysis, we address the confounding effect of the covariates via covariate adjustment using 

the propensity score Si. We fit a linear regression model of the response over the exposure 

variable and the propensity score. We then fit the response model by controlling for Si in

Y i = β0 + β1Xi + β2Si + τRi (9)

Ri are assumed to be independent and identically distributed with mean zero and variance 

one, i = 1, …, …, n and we also assume Ri ⊥ Xi, Si , i = 1, …, n. Note also that the purpose of 

adjusting for the propensity score is to render Xi ⊥ Zi ∣ Si.

2.2 | Bias associated with using a misspecified propensity score as a regression 
covariate

In this sub-section, we derive a formula of the limiting bias of an estimator of an exposure 

effect when a propensity score is used via regression adjustment but is estimated based on 
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a misspecified propensity score model. While our general result facilitates the calculation 

of the asymptotic bias for any type of misspecified propensity score model, we use our 

result to explore the consequences of using a standard generalized propensity score based 

on a linear regression model when the confounder–exposure relationship is governed by a 

two-part model.

As before, X denotes the exposure variable and Z represents the p × 1 vector of 

confounding variables. We denote W Z  to be a q × 1 function of the confounders. If we 

let V = 1, X, W′ Z ′ be a q + 2 × 1 vector of covariates and θ = θ0, θ1, θ2
′ ′ be a q + 2 × 1

vector of parameters, we can consider a linear model of the form:

Y = θ0 + θ1X + θ2′W Z + E (10)

where we assume X, Z ⊥ ⊥ E and E ∼ N 0, σ2 . We assume that a possibly misspecified 

propensity score has been computed from a model for X given all of the covariates Z and We 

denote this propensity score by

μ = μ Z; α .

Then we regress the continuous outcome Y  on the semi-continuous exposure variable X and 

the estimated assumed propensity score obtained from the assumed model:

Y = β0 + β1X + β2μ Z; α + ϵ, (11)

under the assumption X, μ Z ; α ⫫ ϵ with ϵ ∼ N 0, τ2 ; We let β = β0, β1, β2 ′ and assume 

that estimates are obtained as follows. Let V− = (1, X, μ(Z))′. The contribution to the score 

equation for β from a single individual based on (2.11) is

U(Y , X, μ(Z); β) = V−(Y − V−′β)

and β is consistent for the solution to E U(Y , X, Z; μ(Z), β) = 0 where the expectation is 

taken with respect to true distribution involving Y , X, Z (Rotnitzky & Wypij, 1994; White, 

1982). We show in the Appendix that the explicit form of the asymptotic bias of the 

estimator β1 for θ1 can be expressed as

β1 = θ1 + θ2
′[η(Z) − ϕ(Z)corr(E(X ∣ Z)μ(Z)) V (E(X ∣ Z))/V (μ(Z))]

var(X) − var(E(X ∣ Z))corr2(E(X ∣ Z), (μ(Z)))
, (12)

where, η(Z) = η1(Z), η1(Z), …, ηq(Z) ′ where ηj(Z) = cov E(X ∣ Z), W j(Z) , j = 1, …, q, and 

ϕ(Z) = ϕ1(Z), ϕ2(Z), …, ϕq(Z)′ where ϕj(Z) = cov(μ(Z)), W j(Z) , j = 1, …, q.

From (2.12), we see that the correct solution is θ1, so the propensity score-based estimation 

will be consistent when the second term in (2.12) is zero. The bias will be smaller as 

the assumed propensity score model gets closer to characterizing the true conditional 

expectation of X ∣ Z. Through (2.12) the bias can be seen to depend on the effect of 

Hocagil et al. Page 8

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2023 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



covariates on the continuous outcome Y  as well as the covariance between W(Z), E(X ∣ Z)
and E(μ(Z)) and related variances.

3 | EMPIRICAL STUDIES OF FINITE SAMPLE PROPERTIES

In Section 2, we derived an expression for the limiting bias of an estimator of an exposure 

effect when a propensity score is used via regression adjustment but it is estimated based 

on a misspecified propensity score model. The purpose of this derivation is to examine the 

sensitivity of causal inference to the validity of the propensity score model, and in particular 

to lay the foundation for the empirical studies that follow relating to the two-part model and 

its importance with semi-continuous exposure data.

Here we conduct simulation studies to investigate the finite sample performance of the 

propensity score adjustment based on the two-part model for the exposure variable. We 

consider Z = Z1, Z2 ′ where we let Z1 and Z2 be standard normal with E Zk = 0 and 

var Zk = 1, k = 1,2.

We specify the distribution for the semi-continuous exposure variable using the framework 

of Section 2.1. We let (logit)(π(Z)) = α10 + α11Z1 + α12Z2 where α11 = log 2 and α12 = 0 and solve 

for α10 in order to set the marginal probability P X+ = 1 = p∘ is at a desired level. We then 

consider a log-normal regression model as in Equation (4) where we set Z‾ = 1, Z1, Z2 ′ in 

Equation (4) to γ1 = 0.5, γ2 = 0.5, γ0 = 1.8; we set σ = 0.5. Here, we specified the regression 

coefficients to ensure that covariates operate differently in terms of predicting whether or not 

a subject is exposed, versus the amount of exposure for subjects who are exposed.

We also explore the performance of procedure based on fitting a log-normal model when the 

true distribution for exposed individuals follows a Weibull regression model. Specifically we 

generate positive exposure levels according to logX = η* + ϕR* where η* = Z‾ ′γ* is the linear 

predictor, ϕ is a dispersion parameter, and R* is an error term. We assume R* has extreme 

value distribution which implies a Weibull regression model.

We generated the outcome variable using various known functions of the covariates and 

exposure variable. In particular, we follow the simulation studies described by Imai and van 

Dyk (2004). First we constructed an additive model of the form:

Y 1 = θ0 + θ1X + θ2 ∑
k = 1

K
λk

κkZk
(13)

and a multiplicative model of the from:

Y 2 = θ0
* + θ1

*X + θ2
*

k = 1

K
λkZk . (14)
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In both models the coefficient vector for covariates is represented by λ = λ1, …, λp , the 

constants θ2 and θ2
* determine the relative influence of the exposure and the covariates on the 

continuous outcome, and each component of κ = κ1, …, κp  is 1.

We considered scenarios in which 25% or 50% of subjects are unexposed. For each scenario, 

we carried out a naive unadjusted analysis, a conventional covariate adjustment, an analysis 

in which we adjusted for the generalized propensity score function via Gaussian linear 

regression (Imai & van Dyk, 2004) and finally our proposed propensity function based on 

a two-part model. We evaluate the performance of our method in two settings, one where 

the exposure levels for exposed individuals follow a log-normal regression model and one 

where it follows a Weibull regression model. For each parameter setting we simulated 1000 

datasets of size n = 500, a number comparable to the sample size of 480 in our motivating 

cohort study. We recorded the average estimate across the 1000 datasets, the empirical 

bias, the empirical standard error, the average model-based standard error and the empirical 

coverage probability. Tables 3 and 4 display the results to facilitate a comparison of the 

estimators based on the two-part generalized propensity score with the methods above for 

the additive and multiplicative outcome models. We find that use of the two-part propensity 

score model significantly improves the regression estimate when the exposure variable is 

semi-continuous in nature. Even in cases when the assumptions of the direct regression 

model are appropriate (i.e. additive models with a constant treatment effect), using a 

conventional generalized propensity score with regression adjustment produced estimators 

with substantial bias compared to estimators based on the two-part model propensity score. 

Moreover, our simulation results demonstrate that use of the two-part propensity score 

model is increasingly important as the per cent of unexposed individuals increases. When 

the continuous exposure data are generated from an alternative error distribution within 

the location-scale family of models the model describe in Equation (4) is misspecified. 

Figure 2 shows the bias resulting from each method of regression adjustment for the 

scenario in which 50% of the subjects are unexposed and the positive exposure values are 

generated from log-normal distribution. Similarly, Figure 3 shows the bias for the scenario 

where 50% of the subjects are unexposed and the positive exposure values arise from a 

Weibull regression model. It is clear that the two-part propensity score model leads to better 

performance than the alternative approaches when the true propensity score model involves 

an extreme value error distribution.

We also considered scenarios where we varied the percentage of unexposed subjects, the 

effect of Z1 on the exposure status, the effect of Z2 on the extent of exposure among exposed 

individuals and the effect of covariates on the continuous outcome Y 1 and Y 2. We thus 

constructed 8 different scenarios for the two outcome models. Table S1–S2 provided in the 

supplementary material compares the performance of the two-part generalized propensity 

score with the methods above for the additive and multiplicative outcome models for the 

scenarios considered above. These results also showed that improvement offered by our 

method as the per cent of subjects who are not exposed increases in the sample and the 

effects of covariates Z1 and Z2 on the exposure variable and the outcome variables become 

stronger.
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4 | APPLICATION

We evaluated the performance of our method using data from the Detroit Longitudinal 

Cohort study. We focus on the subset of 232 subjects with complete data since our purpose 

is to illustrate the use of propensity score estimation for long-tailed, semi-continuous 

prenatal alcohol exposure variables. In practice, it would be important to incorporate 

appropriate strategies for handling missing data. However, further discussion on this issue is 

beyond the scope of this paper. The effect of observed covariates on the association between 

prenatal alcohol exposure and the continuous outcome variable, the WISC Freedom from 

Distractibility measure at age 7 years was examined using four methods: (1) conventional 

regression adjustment, (2) covariate adjustment using the generalized propensity score, (3) 

covariate adjustment using a two-part generalized propensity score and (4) adjustment using 

a two-part generalized propensity score via stratification (5 and 10 strata).

For the two-part propensity score method, we first modelled the probability of drinking 

any alcohol during pregnancy on all covariates using logistic regression. We then modelled 

the conditional distribution of the log of alcohol consumption given all covariates using 

Gaussian linear regression. The covariates, which are listed in Table 1 and 2, were selected 

because they are expected to affect child outcomes and also to be likely to correlate with 

prenatal alcohol exposure. If these variables are left uncontrolled, they could confound the 

estimated exposure effect on the outcome in question. We included covariates that may 

be unrelated to the exposure but related to the outcome in the propensity score model. It 

has been reported that inclusion of these variables increases the precision of the estimated 

exposure effect without increasing bias (Brookhart et al., 2006). To evaluate the relation 

of these covariates to the quantity of alcohol consumed by the mother during pregnancy, 

we computed the absolute values of the Pearson correlations between each covariate and 

the exposure variable for those cases in which the mother used alcohol during pregnancy 

(Fong et al., 2018). We found that the correlation between the exposure and each covariate 

was reduced substantially after conditioning on the propensity score, indicating that the 

covariate balance is significantly improved. We further evaluated the balance of covariates 

by employing the graphical method suggested by Imai and van Dyk (2004). Figure 4(a) 

shows the standard normal quantile plot of the t-statistics obtained by regressing each 

covariate on the exposure variable using linear or logistic regression for continuous and 

indicator covariates respectively. The magnitude of the t-statistics shows an obvious lack of 

balance. Figure 4(b) shows the magnitude of t-statistics after we control for the estimated 

propensity score. The figure shows the substantial reduction in the t-statistics obtained by 

conditioning on the estimated propensity score. These figures are constructed including 

the square of the prenatal visit and gestational age variables. Inclusion of the square of 

these variables in the estimation of the propensity score improves the balance. The WISC 

Freedom from Distractibility Index was then regressed on the prenatal alcohol exposure 

variable and the estimated propensity score to estimate the average effect of prenatal 

alcohol exposure on the response. We conducted regression diagnostics for the outcome 

model to assess whether there is evidence that we need to expand the main effects model. 

There was insufficient evidence to reject the adequacy of the linearity assumption. (See 

diagnostic plots provided in the supplementary material). We tested our model for a possible 
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interaction between the prenatal alcohol exposure and the propensity score. To fit this 

model, we centred the exposure variable and the propensity score so that the coefficient 

of the exposure variable represents the effect of a one unit increase in the logarithm of 

the volume of alcohol consumed per day during pregnancy. It turns out that there was no 

significant interaction between the exposure variable and the propensity score. To allow 

for the possibility of a more complex relationship between the propensity score and the 

response, we fitted a generalized additive model. In this model we let the exposure effect and 

the effect of propensity score vary smoothly. Figure 5 illustrates the smooth curves for the 

prenatal alcohol exposure and the estimated propensity score. We did not find evidence of a 

non-linear relationship between the estimated propensity score and the response.

As an alternative to regression adjustment, we considered stratification on the estimated 

propensity score. Specifically, we considered the unexposed as one category and the 

quartiles of the continuous value as defining four more categories to create five strata. We 

then create four indicator variables with each one indicating a distinct quartile of the positive 

exposure variable, and regress on these along with the exposure variable itself. To assess the 

sensitivity of stratification schemes, we repeated the same process with 10 strata.

Table 5 presents the results from the methods based on unadjusted regression analysis, 

the covariate-adjusted regression model, the regression model adjusted for the generalized 

propensity score, the regression adjusted for the two-part propensity score and the adjusting 

for the two-part propensity score via stratification (5 and 10 strata). With the exception of 

the unadjusted regression method and the stratification with five strata, all of the methods 

provided very similar estimates, indicating that the WISC Freedom from Distractibility score 

decreases as the amount of alcohol consumption during pregnancy increases. Adjusting 

for the estimated propensity score via stratification using five strata tends to result in a 

smaller effect size than did estimates obtained using other adjustment methods. Indeed the 

estimated effect size obtained via stratification using five strata is closer to the effect size 

obtained from the unadjusted analysis. This finding highlights the importance of creating 

adequate number of strata when adjusting via stratification. Table 6 presents the regression 

estimates and standard errors from the two-part model. Even though some covariates 

operated differently in terms of predicting whether or not a mother consumes alcohol, as 

compared to the amount of alcohol used by those who consumed it, the parameter estimates 

were fairly similar for the logistic model and for the log-normal model. This reflects the fact 

that the percentage of zeros was not large enough, and the correlation between the estimated 

generalized propensity score and the estimated generalized two-part propensity score was 

quite strong (ρ = 0.83); hence, the estimated propensity score was primarily driven by the 

non-zero values.

As suggested by a referee, we extend our analysis and examine the estimation of full 

dose–response function using a more flexible approach suggested by Zhao et al. (2020). 

Specifically, we fit a smooth coefficient model using R package ‘mgcv’ (Wood, 2017) to 

predict the response variable as a smooth function of the prenatal alcohol exposure and a 

smooth function of the estimated propensity score along with their interaction through a 

tensor product smooth. We then estimated the dose–response by averaging predicted values 

over the empirical distribution of the propensity score, for a set of equally spaced values 
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of exposure. A comparison of this model fit compared with the one that omitted the tensor 

product term suggests that adding the interaction did not significantly improve model fit 

(p–value = 0.10). However it is important to note that because only partial ranges of the 

propensity score values were observed for most exposure levels, the power to detect an 

interaction effect was low. Similarly, it means that when we estimated the dose–response 

curve by averaging over the empirical distribution of propensity score values, the results 

were subject to bias because they involved extrapolation outside the range of observed data. 

Indeed, confidence intervals were very wide for the resulting predicted dose–response. Zhao 

et al. (2020) found a similar issue with their application and recommended caution in such 

settings.

5 | DISCUSSION

In this paper, we developed a propensity score methodology for use with a semi-continuous 

exposure/treatment variable. In particular, our strategy allows researchers to estimate causal 

effects after adjustment for potential confounding variables based on an estimated propensity 

score rather than on a large number of potential confounders when the exposure/treatment 

variable includes both a large number of non-drinking mothers and continuously distributed 

levels of alcohol consumption. Our approach also allows covariates to operate differently 

in terms of predicting whether or not the subject is exposed, as compared to the level of 

exposure. We evaluate and compare our method with conventional covariate adjustment and 

the generalized propensity score method.

In our simulations we observed that the use of the propensity score based on a two-part 

model as an additional covariate can successfully reduce bias relative to standard regression 

adjustment and the generalized propensity score method in all scenarios considered here. 

Our simulation results suggested that when the exposure variable is semi-continuous, a 

propensity score based on a two-part model provides a better alternative to both conventional 

regression adjustment and a generalized propensity score. Our work and that of a number 

of other authors suggests that propensity score methodologies can be sensitive to model 

misspecification. In this paper, we derived an explicit expression for the asymptotic bias 

in the estimator of the causal parameter arising from use of a misspecified propensity 

score. Specifically, we calculated the asymptotic bias associated with using the generalized 

propensity score in settings where the exposure variable is semi-continuous in nature and 

a two-part regression model is more appropriate. We found that the asymptotic bias was 

aligned with the empirical bias from the simulation studies as expected (Table S1–S2). 

The expression for the asymptotic bias from the misspecified propensity score model 

generalizes the findings of Hade and Lu (2014), who investigated the impact of using 

estimated propensity score in lieu of the true propensity score, which is, of course, necessary 

in such applications. We emphasize that while our derivations were carried out primarily 

to investigate the importance of two-part models for semi-continuous exposure data, they 

offer general insight into the impact of propensity score model specification. We evaluate the 

performance of our method when there is some form of model misspecification. Specifically, 

we explore the performance of the log-normal model when the true propensity score model 

involves a Weibull regression model. We found that even in this misspecified setting, our 

method performs better than the other approaches considered here.
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We estimated the average effect of prenatal alcohol exposure on the WISC Freedom from 

Distractibility at age 7 using four methods: (1) conventional regression adjustment, (2) 

covariate adjustment using the generalized propensity score, (3) covariate adjustment using 

a two-part generalized propensity score and (4) adjustment using a two-part generalized 

propensity score via stratification (5 and 10 strata). All methods agreed that the WISC 

Freedom from Distractibility score decreases as the amount of alcohol consumption during 

pregnancy increases. Even though stratification is more flexible way to adjust for the 

propensity score, our results underlined that creating smaller number of strata may cause 

bias on the estimated effect size.

In our response model we assumed a linear relationship between the estimated propensity 

score and the response. As noted by Schafer and Kang (2008), it is important to check the 

assumption that the propensity score is linearly related to the response. To assess the need 

for a more complex relationship between the propensity score and the response, we tested 

our model for a possible interaction between the propensity score and the exposure variable. 

Furthermore, we fit a smooth coefficient model by including a smooth estimated propensity 

score. We found no evidence of non-linear relationship between the propensity score and the 

outcome.

In this paper, we extended the use of generalized propensity score to settings where the 

exposure variable is semi-continuous in nature. Specifically, we use the mean obtained from 

the two-part model as the estimated propensity score to generalize the propensity score 

method suggested by Imai and van Dyk (2004). However, one can consider to use two 

elements of the two-part propensity score separately in the outcome model and facilitate 

causal inference regarding the effects of any alcohol consumption and the incremental 

change in the volume of alcohol consumed. As a future research, we are exploring 

approaches for propensity scores for multivariate exposure data.

As in many studies involving environmental exposures, a complication for our application 

was the very long tail of the prenatal alcohol exposure distribution. In practice we have 

found that it works well to use a log transformation of alcohol to reduce the effect of outliers 

when predicting the developmental outcomes, but this approach complicates construction 

of the propensity score based on two-part models. To overcome this complication we used 

a smooth function of the propensity score using the R package ‘mgcv’ (Wood, 2017) 

rather than a linear function of the propensity score function. Missing data are another 

complication that needs to be addressed in our data application. For the purpose of this paper 

we have conducted a complete case analysis yielding a sample of 232 subjects. However, in 

practice, it will be important to properly take account of missing data since complete case 

analysis involving the propensity score produces biased causal inference unless the data are 

missing completely at random (D’Agostino & Rubin, 2000).

It is also important to point out that our application involves a cohort of socio-economically 

disadvantaged women, who were asked to provide sensitive information regarding their 

exposure to alcohol and other substances of abuse in pregnancy. For this reason, there can 

be a concern regarding under-reporting. This concern is ameliorated in part by the fact 

that study investigators used a state-of-the-art timeline follow-back interview method, which 
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has been validated in relation to levels of fatty acid ethyl esters in meconium samples 

(Bearer et al., 2003) and successfully predicted a broad range of developmental outcomes 

(Jacobson et al., 2002; Lindinger et al., 2016). There were also other sources of information 

regarding prenatal exposure, including toxicological screens performed during pregnancy 

that can identify women who used cocaine or other substances but denied using them when 

interviewed (Jacobson et al., 2002). Developing analytical strategies to take account of these 

kinds of issues is part of our ongoing work on the project.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A

BIAS FROM A MISSPECIFIED PROPENSITY SCORE IN REGRESSION

Let Z be an r × 1 vector of confounders and W(Z) be a q × 1 function of these. If we let 

V = 1, X, W′(Z) ′ be a (q + 2) × 1 vector of covariates and θ = θ0, θ1, θ2 ′ ′ be a (q + 2) × 1
vector of parameters, we can consider a linear model of the form:

Y = θ0 + θ1X + θ2
′W(Z) + E (A1)

where we assume (X, Z) ⊥ ⊥ E and E ∼ N 0, σ2 . Now consider a propensity score estimated 

based on a linear model for X Z with estimation of the regression coefficients via using 

ordinary least squares (OLS) to give an estimate:

μ = μ(Z; α)

We then regress on Y  on X and the true propensity score, we fit a linear model

Y = β0 + β1X + β2μ(Z; α̂) + ϵ (A2)

under the assumption (X, μ(Z; α)) ⊥ ⊥ ε with ϵ ∼ N 0, τ2 . We aim to derive the limiting 

value of the estimator of β = β0, β1, β2 ′ from fitting (A2), when the linear propensity score 

is misspecified. To do so, we let V− = (1, X, μ(Z))′ and μ(Z) = E(X ∣ Z; α) and write the least 

squares equations for β in vector form with the contribution from single individual given by
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U(Y , X, μ(Z); β) = V−(Y − V−′β) (A3)

Note that β is consistent for β, the solution to E U(Y , X, Z; μ(Z), β) = 0, where the 

expectation is taken with respect to true distribution involving Y , X, Z. We evaluate this 

expectation in stages in the following subsections.

A.1 The expectation with respect to Y ∣ X, Z
We first take the expectation with respect to Y given X, Z so require

EY{U(Y , X, μ(Z; β) ∣ X, Z)} = EY ∣ X, Z{V−(Y − V−′β) ∣ X, Z}

This gives elements,

D(V−)(E Y ∣ X, Z; θ − V−′β), (A4)

where D(V−) = ∂V−′β
∂β

A.2 The expectation with respect to X ∣ Z
The next step requires computation of E{D(V−)[E(Y ∣ X, Z; θ) − V−′β] ∣ Z}. We give the form of 

each entry in this 3 × 1 vector explicitly as follows:

θ0 + θ1E(X ∣ Z) + θ2
′W(Z) − β0 + β1E(X ∣ Z) + β2μ(Z) = 0

θ0E(X ∣ Z) + θ1E X2 ∣ Z + θ2
′E((X ∣ Z)W(Z)) − β0E(X ∣ Z) + β1E X2 ∣ Z + β2E(X ∣ Z)μ(Z) = 0

θ0μ(Z) + θ1E(X ∣ Z)μ(Z) + θ2
′(μ(Z)W(Z)) − (β0μ(Z) + β1E(X ∣ Z)μ(Z) + β2μ(Z)2) = 0

The Expectation with Respect to Z From the first line of (A5) we get

θ0 + θ1E(X) + θ2
′E(W(Z)) − β0 + β1E(X) + β2E(μ(Z)) = 0 (A6)

From the second line we get

θ0E(X) + θ1E X2 + θ2
′ η(Z) + E(X)E(W(Z))

− β0E(X) + β1E X2 + β2 cov(E(X ∣ Z), μ(Z)) + E(X)E(μ(Z)) = 0
(A7)

where η(Z) = η1(Z), η1(Z), …, ηq(Z) ′ where ηj(Z) = cov E(X ∣ Z), W j(Z) , j = 1, …, q.

From the last line of (A5) we get

θ0E(μ(Z)) + θ1 cov(E(X ∣ Z)μ(Z)) + E(X)E(μ(Z)) + θ2
′ ϕ(Z) + E(μ(Z))E(W(Z))

−(β0E(μ(Z)) + β1[cov(E(X ∣ Z)μ(Z)) + E(X)E(μ(Z))] + β2E(μ(Z)2)) = 0
(A8)
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where ϕ(Z) = ϕ1(Z), ϕ2(Z), …, ϕq(Z) where ϕj(Z) = cov μ(Z), W j(Z) , j = 1, …, q. Solve equation 

(A6) to get β0 :

β0 = θ0 + θ1E(X) + θ2
′E(W(Z)) − β1E(X) − β2E(μ(Z))

We next replace β0 in (A7) to get

θ0E(X) + θ1E(X2) + θ2
′ η(Z) + E(X)E(W (Z))

−(E(X)(θ0 + θ1E(X) + θ2
′E(W (Z)) − β1E(X)

−β2E(μ(Z))) + β1E(X2) + β2 cov(E(X ∣ Z), μ(Z)) + E(X)E(μ(Z)) ) = 0

θ0E(X) + θ1E(X2) + θ2
′ η(Z) + E(X)E(W (Z))

−(θ0E(X) + θ1E(X)2 + θ2
′E(W (Z))E(X) − β1E(X)2

−β2E(μ(Z)))E(X) + β1E(X2) + β2 cov(E(X ∣ Z), μ(Z)) + E(X)E(μ(Z)) = 0

θ0E(X) + θ1E(X2) + θ2
′cov(E(X ∣ Z), W (Z)) + θ2

′E(X)E(W (Z))

−θ0E(X) − θ1E(X 2 − θ2
′E(W (Z)E(X) + β1E(X)2

+β2E(μ(Z))E(X) − β1E(X2) − β2cov(E(X ∣ Z), μ(Z)) − β2E(X)E(μ(Z)) = 0

θ1[E(X2) − E(X)2] + θ2
′η(Z) − β1[E(X)2 − E(X)2]

−β2cov(E(X ∣ Z), μ(Z)) = 0
(A9)

Likewise replace β0 in equation (A8) to obtain a simplified expression in β1 and β2

θ0E(μ(Z)) + θ1 cov(E((X ∣ Z)μ(Z)) + E(X)E(μ(Z))) + θ2
′ ϕ(Z) + E(μ(Z))E(W(Z))

− E(μ(Z)) θ0 + θ1E(X) + θ2
′E(W(Z)) − β1E(X) − β2E(μ(Z))

+β1[cov(E(X ∣ Z)μ(Z)) + E(X)E(μ(Z))] + β2E(μ(Z)2)) 0] = 0

θ0E(μ(Z)) + θ1cov E((X ∣ Z)μ(Z)) + θ1E(X)E(μ(Z)) + θ2
′ϕ(Z) + θ2

′E(μ(Z))E(W(Z))

−θ0E(μ(Z)) − θ1E(X)E(μ(Z)) − θ2
′E(W(Z))E(μ(Z)) + β1E(X)E(μ(Z)) + β2E(μ(Z))2

−β1cov(E(X ∣ Z)μ(Z)) − β1E(X)E(μ(Z)) − β2(E(μ(Z)2)) = 0

θ1cov(E((X ∣ Z)μ(Z))) + θ2
′ϕ(Z)

−β1cov(E(X ∣ Z)μ(Z)) − β2[E(μ(Z)2) − E(μ(Z)2)] = 0

Solve for β2 we obtain
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β2 = θ1 − β1 (cov(E((X ∣ Z)μ(Z))) + θ2
′ϕ(Z)

V (μ(Z))

Replacing β2 in (A9) we obtain

θ1V (X) + θ2
′η(Z) − β1V (X)

− θ1 − β1 (cov(E((X ∣ Z)μ(Z)))) + θ2
′ϕ(Z)

V (μ(Z)) cov(E(X ∣ Z), μ(Z)) = 0

Re-organize terms:

θ1V (X) + θ2
′η(Z) − {θ1[cov(E(X ∣ Z), μ(Z))

V (μ(Z)) ] + θ2
′[ ϕ(Z)

V (μ(Z)) ]}cov(E((X ∣ Z)μ(Z)))

= β1[V (X) − (cov(E((X ∣ Z)μ(Z)))cov(E((X ∣ Z)μ(Z))))
V (μ(Z)) ]

The whole expression can be re-written as:

θ1[V (X) − cov(E(X ∣ Z), μ(Z))cov(E(X ∣ Z), μ(Z))
V (μ(Z)) ] (A)

+θ2
′[η(Z) − ϕ(Z)cov(E((X ∣ Z)μ(Z)))

V (μ(Z)) ] (B)

= β1[V (X) − cov(E((X ∣ Z)μ(Z))cov(E((X ∣ Z)μ(Z)))
V (μ(Z)) ] (C)

Term (A) can be re-written as

θ1 V (X) − V (E(X ∣ Z))corr2(E(X ∣ Z), (μ(Z)))

= θ1 V (X) 1 − corr2(E(X ∣ Z), (μ(Z))) + E(V (X ∣ Z))corr2(E(X ∣ Z), (μ(Z)))

And term (C) can be re-written as:

β1 V (X) 1 − corr2(E(X ∣ Z)μ(Z)) + E(V (X ∣ Z))corr2(E(X ∣ Z), μ(Z))

So the whole expression can be written as:

θ1 V (X) − V (E(X ∣ Z))corr2(E(X ∣ Z), (μ(Z)))

+θ2
′[η(Z) − ϕ(Z)cov(E((X ∣ Z)μ(Z)))

V (μ(Z)) ]

= β1 V (X) − V (E(X ∣ Z))corr2(E(X ∣ Z), (μ(Z)))
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We can re-express this as

β1 = θ1 +
θ2

′[η(Z) − ϕ(Z)corr(E(X ∣ Z)μ(Z)) V (E(X ∣ Z))
V (μ(Z)) ]

V (X) − V (E(X ∣ Z))corr2(E(X ∣ Z), (μ(Z)))

To help interpret this expression, it is helpful to define ρ to represent the correlation between 

the propensity score, μ(Z) and the true expected value of X given Z, namely:

ρ = corr E X ∣ Z , μ Z .

In this case, we can rewrite the last expression as follows:

β1 = θ1 +
θ2

′[η(Z) − ϕ(Z)ρ V (E(X ∣ Z))
V (μ(Z)) ]

V (X) − V (E(X ∣ Z))ρ2 .
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FIGURE 1. 
The relation between the Wechsler Intelligence Scale for Children (WISC) Freedom from 

Distractibility Score at age 7 and log of gestational alcohol exposure
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FIGURE 2. 
Bias of regression adjustment methods from the simulation study where the true 

propensity score is generated from log-normal distribution. A, Additive outcome model; B, 

Multiplicative outcome model. Naive, Unadjusted model; DCA, Direct covariate adjustment; 

GPS, Generalized propensity score; TPPS, Two-part propensity score

Hocagil et al. Page 23

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2023 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Bias of regression adjustment methods from the simulation study where the true 

propensity score involves extreme value error distribution. A, Additive outcome model; B, 

Multiplicative outcome model. Naive, Unadjusted model; DCA, Direct covariate adjustment; 

GPS, Generalized propensity score; TPPS, Two-part propensity score
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FIGURE 4. 
Standard normal quantile plots of t-statistics for the coefficient of log of gestational alcohol 

exposure in the models predicting each covariate including the square of the number of 

prenatal visits and the gestational age at screening, (a) Without controlling for the estimated 

propensity score and (b) Controlling for the estimated propensity score
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FIGURE 5. 
Generalized Additive Model (GAM) plots showing the partial effects of log of gestational 

alcohol exposure and the estimated propensity score on the Wechsler Intelligence Scale for 

Children (WISC) Freedom from Distractibility Score at age 7

Hocagil et al. Page 26

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2023 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hocagil et al. Page 27

TABLE 1

Summary statistics of continuous covariates in the Detroit Longitudinal Cohort study (N=232)

Mean SD

Gestational age at recruitment (weeks) 23.8 7.5

Number of prenatal visits 5.8 3.0

Smoking during pregnancy (cigarettes/day) 9.5 11.2

Prenatal marijuana exposure (days/month) 0.9 2.9

Prenatal cocaine exposure (days/month) 1.0 2.9

Prenatal opiate exposure (days/month) 0.2 1.0

Biological mother’s education (years) 11.8 1.6

Biological mother’s verbal IQ (PPVT score) 71.7 11.7

Beck Depression Inventory at 6-month postpartum follow-up 11.2 7.5

Age of a child at 7-year follow-up visit (years) 7.9 0.3

Socioeconomic status at age 7-year follow-upa 26.2 10.4

Primary caregiver’s verbal IQ (PPVT score)at 7-year follow-up 72.9 12.5

HOME score at 7-year follow-up 33.7 6.9

Beck Depression Inventory at 7-year follow-up 8.3 7.4

Number of stressful events at 7-year follow-upb 10.2 5.5

Perceived life stress at 7-year follow-upb 36.7 27.8

a
Hollingshead Four Factor Index of Social Status (Hollingshead, 2011)

b
Life Events Scale (Holmes and Rahe, 1967)
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TABLE 2

Summary statistics of categorical covariates in the Detroit Longitudinal Cohort

N %

Marital status

 Biological mother’s

 Married 19 8.2

 Not married 213 91.8

 Primary care giver’s at 7-year follow-up

 Married 205 88.4

 Not married 27 11.6

Parity

 0 88 37.9

 1 63 27.2

 2 51 22.0

 3 17 7.3

 4 8 3.4

 >=5 5 2.2

Gravidity

 1 39 16.8

 2 53 22.8

 3 47 20.3

 4 33 14.2

 >=5 60 25.8
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TABLE 3

Empirical results for estimators of causal effect of each additional unit exposure on outcome for the scenario 

where P (X = 0) = 0.25

Method

Log-normal Weibull

EBIAS ESE ASE ECP EBIAS ESE ASE ECP

Additive outcome model

 Unadjusted 0.83 0.24 0.16 0.05 0.77 0.22 0.17 0.05

 Regression adjustment 0.3 0.18 0.13 0.34 0.27 0.18 0.14 0.47

 Generalized propensity score 0.3 0.18 0.16 0.53 0.27 0.18 0.17 0.66

 Propensity score based on two-part model 0.0 0.15 0.15 0.96 0.01 0.16 0.15 0.97

Multiplicative outcome model

 Unadjusted −0.98 0.23 0.17 0.03 −0.99 0.23 0.17 0.03

 Regression adjustment −0.43 0.19 0.14 0.1 −0.45 0.2 0.14 0.1

 Generalized propensity score −0.43 0.19 0.14 0.12 −0.45 0.2 0.15 0.11

 Propensity score based on two-part model 0.0 0.09 0.07 0.95 0 0.1 0.08 0.96

a
EBIAS: Empirical bias

b
ESE: Empirical standard error

c
ASE: Asymptotic standard error

d
ECP: Empirical coverage probability

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2023 October 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hocagil et al. Page 30

TABLE 4

Empirical results for estimators of causal effect of each additional unit exposure on outcome for the scenario 

where P (X = 0) = 0.50

Method

Log-normal Weibull

EBIAS ESE ASE ECP EBIAS ESE ASE ECP

Additive outcome model

 Unadjusted 1.18 0.26 0.23 0.01 0.82 0.23 0.16 0.05

 Regression adjustment 0.44 0.23 0.18 0.27 0.30 0.17 0.13 0.32

 Generalized propensity score 0.44 0.23 0.23 0.48 0.30 0.17 0.16 0.53

 Propensity score based on two-part model 0.00 0.22 0.21 0.97 0.00 0.15 0.14 0.96

Multiplicative outcome model

 Unadjusted −1.39 0.23 0.19 0.00 −0.97 0.23 0.17 0.03

 Regression adjustment −0.63 0.24 0.18 0.03 −0.42 0.18 0.14 0.10

 Generalized propensity score −0.63 0.24 0.19 0.04 −0.42 0.18 0.14 0.11

 Propensity score based on two-part model 0.00 0.13 0.10 0.95 0.00 0.08 0.07 0.95

a
EBIAS: Empirical bias

b
ESE: Empirical standard error

c
ASE: Asymptotic standard error

d
ECP: Empirical coverage probability
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TABLE 5

Estimated effects of prenatal alcohol exposure on the WISC Freedom based on six models: (1) an unadjusted 

model, (2) a model using traditional covariate adjustment via linear regression, (3) a model using the 

generalized propensity score, (4) the proposed two-part generalized propensity score, (5) two-part generalized 

propensity score via stratification (5 strata) and (6) two-part generalized propensity score via stratification (10 

strata)

Method Average causal effect SE

Unadjusted model −7.90 3.65

Covariate-adjusted model −11.21 4.43

Generalized propensity score −11.21 4.29

Two-part generalized propensity score −11.89 5.03

Two-part generalized propensity score via stratification (5 strata) −8.50 3.96

Two-part generalized propensity score via stratification (10 strata) −11.04 4.11
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TABLE 6

Estimates for the effects of each of the components of the two-part model

P(Xi > 0) E(ln(Xi) | Xi > 0)

Estimate Standard error Estimate Standard error

Intercept 0.3823 6.100 3.142 2.804

Gestational age at recruitment (week) 0.008 0.035 0.016 0.016

Number of prenatal visits 0.063 0.088 −0.100 0.041

Smoking during pregnancy (cigarettes/day) 0.113 0.039 0.031 0.009

Prenatal marijuana exposure (days/month) 0.336 0.220 −0.014 0.033

Prenatal cocaine exposure (days/month) −0.074 0.094 −0.044 0.038

Prenatal opiate exposure (days/month) −0.050 0.248 0.316 0.101

Biological mother’s education (years) 0.196 0.166 0.106 0.072

Biological mother’s verbal IQ (PPVT score) −0.029 0.056 −0.023 0.027

Beck Depression Inventory at 6-month postpartum follow-up −0.010 0.042 0.000 0.016

Age of a child at 7-year follow-up (years) −0.000 0.002 −0.002 0.000

Socioeconomic status at age 7-year follow-up 0.023 0.027 0.018 0.011

Primary caregiver’s verbal IQ (PPVT score)at 7-year follow-up 0.016 0.057 0.003 0.026

HOME score at 7-year follow-up −0.063 0.041 0.018 0.017

Beck Depression Inventory at 7-year follow-up 0.029 0.050 0.047 0.019

Number of stressful events at 7-year follow-up 0.191 0.115 0.037 0.043

Perceived life stress at 7-year follow-up −0.020 0.024 −0.016 0.009

Biological mother’s marital status −0.401 0.750 0.213 0.408

Primary care giver’s marital status at 7-year follow-up −0.109 0.636 −0.273 0.303

Parity −0.6705 0.338 0.131 0.122

Gravidity 0.3653 0.215 0.016 0.016
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