Skip to main content
. Author manuscript; available in PMC: 2023 Oct 18.
Published in final edited form as: Proc Mach Learn Res. 2023 Aug;218:98–115.

Table 3:

Estimate of the conditional treatment effect of changing antibiotics during any timepoint on to mortality, using the causal survival forest method.

CATE Model (1) - Using only DAG variables
Average Treatment Effect: −0.07619 (SE = 0.02953)
Individual Treatment Effect: Min: −0.1584, Mean: −0.0755, Median: −0.0739, Max: −0.0217
Variables Estimate Std. Error t value Pr(> |t|)
Sex 0.0407 0.0604 0.5004
Race −0.0565 0.0580 0.3305
Age −0.0008 0.0018 0.6429
Charlson’s Comorbidity Index −0.0031 0.0073 0.6725
ICU stay −0.0656 0.0569 0.2492
Multi-drug resistance 0.0627 0.0575 0.2760
CATE Model (2) - Using DAG + individual comorbidities
Average Treatment Effect: −0.0810 (SE = 0.0281)
Individual Treatment Effect: Min: −0.1083, Mean: −0.0782, Median: −0.0783, Max: −0.0462
Variables Estimate Std. Error t value Pr(> |t|)
Sex 0.0404 0.2723 0.8824
Race −0.1513 0.3784 0.6903
Age −0.0117 0.0110 0.2928
Myocardial infarction −0.1721 0.4967 0.7299
Congestive heart failure 0.2024 0.3747 0.5906
Cerebrovascular disease 0.2644 0.4104 0.5212
Dementia 0.4225 0.6213 0.4985
Chronic pulmonary disease 0.3245 0.3663 0.3783
Rheumatoid disease −0.2275 0.6859 0.7410
Peptic ulcer disease 0.372 0.4869 0.4471
Mild liver disease −0.1906 0.2974 0.5234
Diabetes without complications 0.2187 0.6174 0.7241
Diabetes with complications 0.8421 0.7525 0.2664
Hemiplegia or paraplegia 0.1629 0.4264 0.7034
Renal disease −0.0713 0.3952 0.8572
Cancer (any malignancy) 0.2896 0.4059 0.4776
Moderate or severe liver disease −0.2539 0.6188 0.6827
Metastatic solid tumor 0.2895 0.5006 0.5647