Skip to main content
. 2023 Oct 18;18(10):e0288867. doi: 10.1371/journal.pone.0288867

Table 2. Model accuracy of the included machine learning algorithms Based on confusion matrix parameters.

Confusion matrix Parameters (%) The included machine-learning algorithms
PART Naïve Bayes Random forest Logit Boost J48 AdaBoost Multilayer perceptron LR
True positive rate (%) 89.90 64.00 88.50 72.10 88.40 69.80 83.60 70.90
False positive rate (%) 18.20 30.80 1.50 38.90 32.40 35.21 12.10 36.30
Precision (%) 93.80 73.90 87.80 70.60 76.00 72.00 81.00 71.70
F-measure (%) 94.30 68.20 88.60 71.30 77.71 70.90 82.30 71.30
Relative absolute error (%) 51.78 75.33 34.05 83.68 75.05 85.10 23.19 84.21
AUC (%) 91.89 72.30 82.70 73.20 86.01 72.90 83.29 65.60
Kappa statistics (%) 86.57 32.66 78.68 33.26 79.27 36.50 72.02 35.00
Accuracy (%) 95.53 66.29 82.37 77.28 89.24 68.60 87.20 65.80
Note that LR, stands for Logistic Regression