
RESEARCH ARTICLE

Catalyst: Fast and flexible modeling of

reaction networks

Torkel E. LomanID
1,2☯*, Yingbo Ma3, Vasily Ilin4, Shashi Gowda5, Niklas Korsbo6,

Nikhil Yewale7, Chris Rackauckas2,3,6☯*, Samuel A. IsaacsonID
8☯*

1 Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom, 2 Computer Science and AI

Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of

America, 3 JuliaHub, Cambridge, Massachusetts, United States of America, 4 Department of Mathematics,

University of Washington, Seattle, Washington, United States of America, 5 Department of Mathematics,

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 6 Pumas-AI,

Baltimore, Maryland, United States of America, 7 Department of Applied Mechanics, Indian Institute of

Technology Madras, Chennai, India, 8 Department of Mathematics and Statistics, Boston University, Boston,

Massachusetts, United States of America

☯ These authors contributed equally to this work.

* torkell@mit.edu (TEL); crackauc@mit.edu (CR); isaacson@math.bu.edu (SAI)

Abstract

We introduce Catalyst.jl, a flexible and feature-filled Julia library for modeling and high-per-

formance simulation of chemical reaction networks (CRNs). Catalyst supports simulating

stochastic chemical kinetics (jump process), chemical Langevin equation (stochastic differ-

ential equation), and reaction rate equation (ordinary differential equation) representations

for CRNs. Through comprehensive benchmarks, we demonstrate that Catalyst simulation

runtimes are often one to two orders of magnitude faster than other popular tools. More

broadly, Catalyst acts as both a domain-specific language and an intermediate representa-

tion for symbolically encoding CRN models as Julia-native objects. This enables a pipeline

of symbolically specifying, analyzing, and modifying CRNs; converting Catalyst models to

symbolic representations of concrete mathematical models; and generating compiled code

for numerical solvers. Leveraging ModelingToolkit.jl and Symbolics.jl, Catalyst models can

be analyzed, simplified, and compiled into optimized representations for use in numerical

solvers. Finally, we demonstrate Catalyst’s broad extensibility and composability by

highlighting how it can compose with a variety of Julia libraries, and how existing open-

source biological modeling projects have extended its intermediate representation.

Author summary

Chemical reaction networks (CRNs) are a type of model commonly used in biology and

chemistry. Their applications include the investigation of cellular system functions (sys-

tems biology), designing drugs (pharmacology), and forecasting epidemic progression

(epidemiology). In this article, we present the Catalyst.jl software for the modelling, simu-

lation, and analysis of CRNs across several physical scales. Catalyst simulations of CRN

models are often one to two orders of magnitude faster than other popular CRN modeling

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Loman TE, Ma Y, Ilin V, Gowda S, Korsbo

N, Yewale N, et al. (2023) Catalyst: Fast and flexible

modeling of reaction networks. PLoS Comput Biol

19(10): e1011530. https://doi.org/10.1371/journal.

pcbi.1011530

Editor: Christos A. Ouzounis, CPERI, GREECE

Received: June 3, 2023

Accepted: September 19, 2023

Published: October 18, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011530

Copyright: © 2023 Loman et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Scripts for generating

all figures presented here, as well as for carrying

out the benchmarks, can be found at https://github.

com/SciML/Catalyst_PLOS_COMPBIO_2023, with

an archived version available at https://doi.org/10.

5281/zenodo.8364792. Catalyst is available for free

https://orcid.org/0000-0002-4453-0682
https://orcid.org/0000-0002-7543-8619
https://doi.org/10.1371/journal.pcbi.1011530
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011530&domain=pdf&date_stamp=2023-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011530&domain=pdf&date_stamp=2023-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011530&domain=pdf&date_stamp=2023-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011530&domain=pdf&date_stamp=2023-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011530&domain=pdf&date_stamp=2023-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011530&domain=pdf&date_stamp=2023-10-18
https://doi.org/10.1371/journal.pcbi.1011530
https://doi.org/10.1371/journal.pcbi.1011530
https://doi.org/10.1371/journal.pcbi.1011530
http://creativecommons.org/licenses/by/4.0/
https://github.com/SciML/Catalyst_PLOS_COMPBIO_2023
https://github.com/SciML/Catalyst_PLOS_COMPBIO_2023
https://doi.org/10.5281/zenodo.8364792
https://doi.org/10.5281/zenodo.8364792


tools. Such speed increases in turn aid in facilitating a variety of CRN analyses, for exam-

ple simulating a model across a large number of conditions to check which ones best fit

real-world observations. Catalyst also includes a domain-specific modeling language,

which allows users to easily input their CRN models using standard chemical reaction

syntax, thereby simplifying model creation. Finally, Catalyst is built on top of a widely

used symbolic computer algebra system and mathematical modeling framework. This

allows significant flexibility in the types of components that can be used within Catalyst

CRN models, has enabled the development of tools to analyze and transform Catalyst

models, and has helped Catalyst to become a broadly extensible package that can be com-

posed with a variety of independent software libraries.

1 Introduction

Chemical reaction network (CRN) models are used across a variety of fields, including the bio-

logical sciences, epidemiology, physical chemistry, combustion modeling, and pharmacology

[1–7]. At their core, they combine a set of species (defining a system’s state) with a set of reac-

tion events (rates for reactions occurring combined with rules for altering the system’s state

when a reaction occurs). One advantage of formulating a biological model as a CRN is that

these can be simulated according to several well-defined mathematical representations, repre-

senting different physical scales at which reaction processes can be studied. For example, the

reaction rate equation (RRE) is a macroscopic system of ordinary differential equations

(ODEs), providing a deterministic model of chemical reaction processes. Similarly, the chemi-
cal Langevin equation (CLE) is a system of stochastic differential equations (SDEs), providing

a more microscopic model that can capture certain types of fluctuations in reaction processes

[8]. Finally, stochastic chemical kinetics, typically simulated with the Gillespie algorithm (as

well as modifications to, and improvements of, it), provides an even more microscopic model,

that captures both stochasticity and discreteness of populations in chemical reaction processes

[9, 10]. That a CRN can be unambiguously represented using these models forms the basis of

several CRN modeling tools [11–26]. Here we present a new modeling tool for CRNs, Catalyst.

jl, which we believe offers a unique set of advantages for both inexperienced and experienced

modelers.

Catalyst’s defining trait, which sets it apart from other popular CRN modeling packages, is

that it represents models in an entirely symbolic manner, accessible via standard Julia language

programs. This permits algebraic manipulation and simplification of the models, either by the

user, or by other tools. Once a CRN has been defined, it is stored in a symbolic intermediate
representation (IR). This IR is the target of methods that provide functionality to Catalyst,

including numerical solvers for both continuous ODEs and SDEs, as well as discrete Gillespie-

style stochastic simulation algorithms (SSAs). As Catalyst’s symbolic representations can be

converted to compiled Julia functions, it can be easily used with a variety of Julia libraries.

These include packages for parameter fitting, sensitivity analysis, steady state finding, and

bifurcation analysis. To simplify model implementation, Catalyst provides a domain-specific
language (DSL) that allows users to declare CRN models using classic chemical reaction nota-

tion. Finally, Catalyst also provides a comprehensive API to enable programmatic manipula-

tion and combination of models, combined with functionality for analyzing and simplifying

CRNs (such as detection of conservation laws and elimination of conserved species).

Catalyst is implemented in Julia, a relatively recent (version 1.0 released in August 2018)

open-source programming language for scientific computing. Its combination of high

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 2 / 19

under the permissive MIT License. The source

code can be found at https://github.com/SciML/

Catalyst.jl. It is also a registered package within the

Julia ecosystem and can be installed from within a

Julia environment using the commands using Pkg;

Pkg.add("Catalyst"). Full documentation, including

tutorials and an API, can be found at https://

catalyst.sciml.ai/stable/. Issues and help requests

can be raised either at the Catalyst GitHub page, on

the Julia discourse forum (https://discourse.

julialang.org/), or at the SciML organization’s Julia

language Slack channels (#diffeq-bridged and

#sciml-bridged). The library is open to pull

requests from anyone who wishes to contribute to

its development. Users are encouraged to engage

in the project.

Funding: TL’s contribution to this project has

received funding from the European Union’s

Horizon 2020 research and innovation programme

under the Marie Sklodowska-Curie grant

agreement No.721456. TL received salary support

from the aforementioned funding source. SAI’s and

CR’s work on this project has been made possible

in part by the following two grants to the SciML

organization. This research was funded in whole, or

in part, by the Wellcome Trust [223770/Z/21/Z].

For the purpose of open access, the author has

applied a CC BY public copyright licence to any

Author Accepted Manuscript version arising from

this submission. This publication and software

have been made possible in part by CZI grant

DAF2021-237457 and grant DOI https://doi.org/10.

37921/149019qvrhgz from the Chan Zuckerberg

Initiative DAF, an advised fund of Silicon Valley

Community Foundation (funder DOI 10.13039/

100014989). SAI was also partially supported by

National Science Foundation DMS-1902854. VI

was partially supported by a 2021 Google Summer

of Code Fellowship and the Boston University

UROP program. SAI and VI each received salary

support from each of their respective

aforementioned funding sources. CR’s contribution

to this material is based upon work supported by

the National Science Foundation under grant no.

OAC-1835443, grant no. SII-2029670, grant no.

ECCS-2029670, grant no. OAC-2103804, and grant

no. PHY-2021825. We also gratefully acknowledge

the U.S. Agency for International Development

through Penn State for grant no. S002283-USAID.

The information, data, or work presented herein

was funded in part by the Advanced Research

Projects Agency-Energy (ARPA-E), U.S.

Department of Energy, under Award Number DE-

AR0001211 and DE-AR0001222. This material is

based upon work supported by the Defense

Advanced Research Projects Agency (DARPA)

under Agreement No HR00112290091. We also

https://doi.org/10.1371/journal.pcbi.1011530
https://github.com/SciML/Catalyst.jl
https://github.com/SciML/Catalyst.jl
https://catalyst.sciml.ai/stable/
https://catalyst.sciml.ai/stable/
https://discourse.julialang.org/
https://discourse.julialang.org/
https://doi.org/10.37921/149019qvrhgz
https://doi.org/10.37921/149019qvrhgz


performance and user-friendliness makes it highly promising [27, 28]. Julia has grown quickly,

with a highly developed ecosystem of packages for scientific simulation. This includes the

many packages provide by the Scientific Machine Learning (SciML) organization, of which

Catalyst is a part. SciML, through its ModelingToolkit.jl package, provides the IR on which

Catalyst is based [29]. This IR is used across the organization’s projects, providing a target

structure both for model-generation tools (such as Catalyst), and tools that provide additional

functionality. ModelingToolkit symbolic models leverage the Symbolics.jl [30] computer alge-
braic system (CAS), enabling them to be represented in a symbolic manner. Simulations of

ModelingToolkit-based models are typically carried out using DifferentialEquations.jl, perhaps

the largest software package of state-of-the-art, high-performance numerical solvers for ODEs,

SDEs, and jump processes [31].

Several existing modeling packages provide overlapping functionality with Catalyst.

COPASI is a well known and popular software that enables both deterministic and stochastic

CRN modeling, as well as many auxiliary features (such as parameter fitting and sensitivity

analysis) [12]. BioNetGen is another such software suite, currently available as a Visual Studio

Code extension, that is built around the popular BioNetGen language for easily specifying

complex reaction network models [21]. It provides options for model creation, network simu-

lation, and network free-modeling. Another popular tool, VCell, provides extensive function-

ality, via an intuitive graphical interface [11]. Finally, Tellurium ties together a range of tools to

be used in a Python environment, allowing CRN models to be created using the Antimony

DSL, and simulated using the libRoadRunner numeric solver suite [15, 23, 24, 32]. Other

modeling softwares include GINsim, CellNOpt, GillesPy2, and Matlab’s SimBiology tool-

box [13, 16, 33].

Several of these packages are primarily designed around a GUI-based workflow (BioNet-

Gen, COPASI, and VCell). In constrast, Catalyst is DSL and API-based, with simulation and

analysis of models carried out via Julia scripts. A typical Catalyst workflow therefore

requires users to write Julia language scripts instead of using a GUI-based interface, but also

enables users to easily integrate Catalyst models with a large variety of other Julia libraries.

Catalyst also has immediate access to a more extensive set of numerical solvers for ODEs,

SDEs, and SSAs. In this paper, we demonstrate that using these solvers, Catalyst’s simulation

speed often outperforms the other tools by more than one order of magnitude. Catalyst has

the ability to include Julia-native functions within rate laws and stoichiometric expressions,

and to include coupled ODE or algebraic constraint equations for reaction rate equation

models (potentially resulting in differential-algebraic equation (DAE) models). For example,

to encode bursty reactions stoichiometric coefficients can be defined using standard Julia

functions that sample from a random variable distribution. Similarly, rate-laws can include

data-driven modeling terms (e.g. neural networks) constructed via Julia libraries such as

Surrogates.jl, SciMLSensitivity.jl, and DiffEqFlux.jl. Moreover, Catalyst generates differen-

tiable models, which can be easily incorporated into higher-level Julia codes that require

automatic differentiation [34] and composed with other Julia libraries. One current limita-

tion of Catalyst is that in contrast to BioNetGen, COPASI, and GillesPy2, Catalyst can not

generate inputs for hybrid and τ-leaping solvers, though adding support for these features is

planned.

In the next sections we overview a basic workflow for using Catalyst to define and simulate

CRNs; overview how Catalyst performs relative to several popular CRN modeling packages for

solving ODEs and simulating stochastic chemical kinetics models; discuss Catalyst’s symbolic

representation of CRNs, Catalyst’s network analysis functionality, and how it can compose

with other Julia packages; and introduce some of the higher-level applications in which Cata-

lyst models can be easily embedded.

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 3 / 19

gratefully acknowledge the U.S. Agency for

International Development through Penn State for

grant no. S002283-USAID. The views and opinions

of authors expressed herein do not necessarily

state or reflect those of the United States

Government or any agency thereof. This material

was supported by The Research Council of Norway

and Equinor ASA through Research Council project

"308817 - Digital wells for optimal production and

drainage". Research was sponsored by the United

States Air Force Research Laboratory and the

United States Air Force Artificial Intelligence

Accelerator and was accomplished under

Cooperative Agreement Number FA8750-19-2-

1000. The views and conclusions contained in this

document are those of the authors and should not

be interpreted as representing the official policies,

either expressed or implied, of the United States Air

Force or the U.S. Government. The U.S.

Government is authorized to reproduce and

distribute reprints for Government purposes

notwithstanding any copyright notation herein. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: YM and CR are

employed by JuliaHub, a cloud computing

company specialising in Julia applications. NK and

CR are employed by Pumas-AI, a company

developing Julia-based software platforms for the

pharmaceutical industry.

https://doi.org/10.1371/journal.pcbi.1011530


2 Results

2.1 The Catalyst DSL enables models to be created using chemical reaction

notation

Catalyst offers several ways to define a CRN model, with the most effortless option being the

@reaction_network DSL. This feature extends the natural Julia syntax via a macro, allow-

ing users to declare CRN models using classic chemical reaction notation (as opposed to

declaring models using equations, or by declaring reactions implicitly or through functions).

This alternative notation makes scripts more human-legible, and greatly reduces code length

(simplifying both script writing and debugging). Using the DSL, the CRN’s chemical reactions

are listed, each preceded by its reaction rate (Fig 1). From this, the system’s species and param-

eters are automatically extracted and a ReactionSystem IR structure is created (which can

be used as input to e.g. numerical simulators).

To facilitate a more concise notation, similar reactions (e.g. several degradation events) can

be bundled together. Each reaction rate can either be a constant, a parameter, or a function.

Predefined Michaelis–Menten and Hill functions are provided by Catalyst, but any user-

defined Julia function can be used to define a rate. Both parametric and non-integer stoichio-

metric coefficients are possible. There are also several non-DSL methods for model creation.

They include loading networks from files via SBMLToolkit.jl [36] (for SBML files) and Reac-

tionNetworkImporters.jl [37] (for BioNetGen generated .net files). CRNs can also be created

via defining symbolic variables via the combined Catalyst/ModelingToolkit API, and directly

building ReactionSystems from collections of Reaction structures. This enables pro-

grammatic definition of CRNs, making it possible to create large models by iterating through a

relatively small number of rules within standard Julia scripts.

2.2 Catalyst models can be simulated using a wide range of high-

performance methods

Numerical simulations of Catalyst models are generally carried out using the DifferentialEqua-

tions.jl package [31]. It contains a large number of numerical solvers and a wide range of addi-

tional features (such as event handling, support for GPUs and threading, flexibility in choice of

linear solvers for stiff integrators, and more). The package is highly competitive, often

Fig 1. Catalyst connects an intuitive domain-specific language with a well-supported intermediate representation. The extracellular signal-

regulated kinase (ERK) network is important to the regulation of many cellular functions, and its disruption has been implicated in cancer [35]. (a) A

CRN representation of the ERK network. (b) A model of the ERK CRN can be implemented in Julia through the Catalyst DSL, using code very similar

to the actual CRN representation. (c) From this code, the DSL generates a ReactionSystem intermediate representation (IR) that is the target

structure for a range of supported simulation and analysis methods.

https://doi.org/10.1371/journal.pcbi.1011530.g001

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 4 / 19

https://doi.org/10.1371/journal.pcbi.1011530.g001
https://doi.org/10.1371/journal.pcbi.1011530


outperforming packages written in C and Fortran [31]. Simulation syntax is straightforward,

and output solutions can be plotted using the Plots.jl package [38] via a recipe that allows users

to easily select the species and times to display. CRNs can be translated and simulated using

the ODE-based RREs, the SDE-based CLE, and through discrete SSAs (Fig 2).

To demonstrate the performance of these solvers, we benchmarked simulations of CRN

models using a range of CRN modeling tools (BioNetGen, Catalyst, COPASI, GillesPy2, and

Matlab’s SimBiology toolbox). These tools were selected as they are popular and highly cited,

well documented, scriptable for running benchmark studies, and actively maintained. The

Matlab SimBiology toolbox was selected due to the enduring popularity of the Matlab lan-

guage. Overall, they provide a representative sample of the broader chemical reaction network

modeling software ecosystem. We used both ODE simulations and discrete SSAs. Fewer pack-

ages permit SDE simulations, hence such simulations were not benchmarked. We note, how-

ever, that DifferentialEquations’ SDE solvers are highly performative [42]. When comparing a

range of models, from small to large, we see that Catalyst typically outperforms the other pack-

ages, often by at least an order of magnitude (Fig 3). For the ODE benchmarks, to try to pro-

vide as fair a comparison as possible, identical absolute and relative tolerances were used for all

simulations. Furthermore, in Fig C in S1 Text we demonstrate the relation between simulation

time and actual error across the Julia solvers, lsoda, and CVODE (with the native Julia solvers

typically having smaller errors as compared to lsoda and CVODE for any given tolerance). All

SSA methods tested generate exact realizations, in the sense that they should each give statistics

consistent with the underlying Chemical Master Equation of the model [43], and their simula-

tion times are hence directly comparable. Here, the wide range of methods provided by the

JumpProcesses.jl package [44], a component of DifferentialEquations, enables Catalyst to out-

perform the other packages (most of which only provide Gillespie’s direct method or its sort-

ing direct variant [45]).

In contrast to the exact SSA methods, timestep-based ODE integrators typically provide a

variety of numerical parameters, such as error tolerances and configuration options for

implicit solvers (i.e. how to calculate Jacobians, how to solve linear and nonlinear systems,

etc). ODE simulation performance then depends on which combinations of options are used

with a given solver. Here, we limit ourselves to trying combinations of numeric solvers (Julia-

native solvers for comparing performance of Catalyst-generated models, and lsoda and/or

CVODE for comparisons between tools), methods for Jacobian computation and representa-

tion (automatic differentiation, finite differences, or symbolic computation, and dense vs.

sparse representations), linear solvers (LU, GMRES, or KLU), and whether to use a precondi-

tioner or not when using GMRES. The non-Catalyst simulators generally provide limited abil-

ity to change these options, in which case only the default was used in benchmarking. In

contrast, the DifferentialEquations.jl solvers that Catalyst utilise, while they do not require the

user to set these options, do give them full control to do so. Full documentation is available at

[46]. The details of the most performant options we used for each tool and model are provided

in Section 4.1. A list of all benchmarks we carried out (for various combinations of tool,

method, and options) is provided in Section B in S1 Text, with their results described in Figs A

and B in S1 Text. Finally, the benchmarking process is described in more detail in Section 4.1.

The observed performance results for Catalyst-generated models arise from a variety of fac-

tors. For example, Catalyst inlines all mass action reaction terms for ODE models within a sin-

gle generated function that evaluates the ODE derivative. This provides opportunities for the

compiler to optimise expression evaluation, and avoids the overhead of repeatedly calling non-

inlined functions to evaluate such terms. For the largest ODE models, Catalyst and Modeling-

Toolkit’s support for generating explicit sparse Jacobians led to significant performance

improvements when using the CVODE solver, see Section 4.1 and S1 Text. For jump process

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 5 / 19

https://doi.org/10.1371/journal.pcbi.1011530


Fig 2. Catalyst models can be simulated using both deterministic and stochastic interpretations. (a) The Brusselator network contains two species

(X and Y) and two parameters (A and B, in practical implementation these are species present in excess, but they can in practice be considered

parameters) [39, 40]. Here, we show the four reactions of the Brusselator CRN, and its implementation using the Catalyst DSL. (b-d) Simulations of

models for the Brusselator at the three physical scales supported by Catalyst (RRE, CLE, SSA). Post-processing has been carried out on the plots to

improve their visualization in this article’s format. (b) While B> 1 + A2, the deterministic model exhibits a limit cycle. This is confirmed using ODE

RRE simulations. (c) The model can also be simulated using the stochastic CLE interpretation. (d) Finally, the discrete, stochastic, jump process

interpretation is simulated via Gillespie’s direct method. The system displays a limit cycle even though B< 1 + A2, confirming the well known

phenomenon of noise induced oscillations [41].

https://doi.org/10.1371/journal.pcbi.1011530.g002

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 6 / 19

https://doi.org/10.1371/journal.pcbi.1011530.g002
https://doi.org/10.1371/journal.pcbi.1011530


SSA simulations, Catalyst uses a sparse reaction specification that automatically analyses each

reaction, and then classifies the reaction into the most performant but physically valid repre-

sentation supported by JumpProcesses.jl (corresponding to jumps with general time-varying

intensities, jumps with general rate expressions but for which the intensity is constant between

the occurrence of two jumps, and jumps for which the intensity is a mass action type rate law).

This enables JumpProcesses.jl to avoid the overhead of calling a large collection of user-pro-

vided functions via pointers, by using a single pre-defined and inlined function to evaluate

individual mass action reaction intensities, while still supporting calling general user rate func-

tions via pointers (for non-mass action rate laws). These Catalyst-specific features, when cou-

pled to the large variety of solvers in DifferentialEquations.jl and broad flexibility in tuning

solver components (i.e. different Jacobian and jump representations, flexibility in choice of lin-

ear solvers, etc.), help enable Catalyst’s observed performance.

2.3 Catalyst enables composable, symbolic modeling of CRNs

Catalyst’s primary feature is that its models are represented using a CAS, enabling them to be

algebraically manipulated. Examples of how this is utilised include automatic computation

Fig 3. Simulations of Catalyst models outperform those of other modeling packages. Benchmarks of simulation runtimes for Catalyst and four other

modeling packages (BioNetGen, COPASI, GillesPy2, and Matlab SimBiology). The benchmarks were run on the multi-state (Multistate, 9 species and

18 reactions [47]), multi-site (Multisite 2, 66 species and 288 reactions [48]), epidermal growth factor receptor signalling (Egfr_net, 356 species and

3749 reactions [49]), B-cell receptor (1122 species and 24388 reactions [50]), and high-affinity human IgE receptor signalling (Fceri_gamma2, 3744

species and 58276 reactions [51]) models. (a-e) Benchmarks of deterministic RRE ODE simulations of the five models. Each bar shows, for a given

method, the runtime to simulate the model (to steady-state for those that approach a steady-state). For Catalyst, we show the three best-performing

native Julia methods, as well as the performance of lsoda and CVODE. For each of the other tools, we show its best-performing method. Identical values

for absolute and relative tolerance are used across all packages and methods. For each benchmark, the method options used can be found in Section 4.1,

the exact benchmark times in Table A in S1 Text, and further details on the solver options for each tool in Section B in S1 Text. While this figure only

contains the most performant methods, a full list of methods investigated can be found in Section B in S1 Text, with their results described in Figs A

and B in S1 Text. (f-j) Benchmarks of stochastic chemical kinetics SSA simulations of the five models. Via JumpProcesses.jl, Catalyst can use several

different algorithms (e.g. Direct, Sorting Direct, RSSA, and RSSACR above) for exact Gillespie simulations. Here, the simulation runtime is plotted

against the (physical) final time of the simulation. Due to their long runtimes, some tools were not benchmarked for the largest models. We note that, in

[52], it was remarked that BioNetGen (dashed orange lines) use a pseudo-random number generator in SSAs that, while fast, is of lower quality than

many (slower) modern generators such as Mersenne Twister. For full details on benchmarks, see Section 4.1.

https://doi.org/10.1371/journal.pcbi.1011530.g003

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 7 / 19

https://doi.org/10.1371/journal.pcbi.1011530.g003
https://doi.org/10.1371/journal.pcbi.1011530


of system Jacobians, calculation and elimination of conservation laws, and simplification of

generated symbolic DAE models via ModelingToolkit’s symbolic analysis tooling. These

techniques can help speed up numeric simulations, while also facilitating higher level analy-

sis. One example is enabling users to generate ODE models with non-singular Jacobians via

the elimination of conservation laws, which can aid steady-state analysis tooling. Catalyst

also provides a network analysis API, enabling the calculation of a variety of network proper-

ties beyond conservation laws, including linkage classes, weak reversibility, and deficiency

indices.

Catalyst’s symbolic representation permits model internals to be freely extracted, investi-

gated, and manipulated, giving the user full control over their models (Fig 4). This enables var-

ious forms of programmatic model creation, extension and composition. Model structures

that occur repetitively can be duplicated, and disjoint models can be connected together. For

example, such functionality can be used to model a population of cells, each with defined

neighbours, where each cell can be assigned a duplicate of the same simple CRN. The CRNs

within each cell can then be connected to those of its neighbours, enabling models with spatial

structures. Similarly, one could define a collection of genetic modules, and then compose such

modules together into a larger gene regulatory network.

Catalyst is highly flexible in the allowed Julia functions that can be used in defining rates,

rate laws, or stoichiometry coefficients. This means that while reaction rates and rate laws are

typically constants, parameters, or simple functions, e.g. Hill functions, they may also include

other terms, such as neural networks or data-driven, empirically defined, Julia functions. Like-

wise, stoichiometric coefficients can be random variables by defining them as a symbolic vari-

able, and setting that variable equal to a Julia function sampling the appropriate probability

distribution. Such functionality can be utilized, for example, to model transcriptional bursting

[53], where the produced mRNA copy-numbers are random variables. Finally, standard Cata-

lyst-generated ODE and SDE models are differentiable, in that the generated codes can be

used in higher-level packages that rely on automatic differentiation [34]. In this way Catalyst-

generated models can be used in machine-learning based analyses.

That Catalyst gives full access to its model internals, combined with its composability,

allows other packages to easily integrate into, and build upon, it. Indeed, this is already being

utilised by independent package developers. The MomentClosure.jl Julia package, which

implements several techniques for moment closure approximations, is built to be deployed

on Catalyst models [54]. It can generate symbolic finite-dimensional ODE system approxi-

mations to the full, infinite system of moment equations associated with the chemical master

equation. These symbolic approximations can then be compiled and solved via Modeling-

Toolkit in a similar manner to how Catalyst’s generated RRE ODE models are handled. Simi-

larly, FiniteStateProjection.jl [55] builds upon Catalyst and ModelingToolkit to enable the

numerical solution of the chemical master equation, while DelaySSAToolkit.jl [56] can

accept Catalyst models as input to its SSAs that handle stochastic chemical kinetics models

with delays. Another example of how Catalyst’s flexibility enables its integration into the

Julia ecosystem is that CRNs with polynomial ODEs (a condition that holds for pure mass

action systems) can be easily converted to symbolic steady-state systems of polynomial equa-

tions. This enables polynomial methods, such as homotopy continuation, to be employed on

Catalyst models. Here, homotopy continuation (implemented by the HomotopyContinua-

tion.jl Julia package) can be used to reliably compute all roots of a polynomial system [57].

This is an effective approach for finding multiple steady states of a system. When the CRN

contains Hill functions (with integer exponents), by multiplying by the denominators, one

generates a polynomial system with identical roots to the original, on which homotopy con-

tinuation can still be used.

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 8 / 19

https://doi.org/10.1371/journal.pcbi.1011530


2.4 Catalyst models are compatible with a wide range of ancillary tools and

methods

The Julia SciML, and broader Julia, ecosystem offers a wide range of techniques for working

with models and data based around the IR that Catalyst produces (Fig 5). While the reactions

Fig 4. The simulation pipeline of a Catalyst model, with internal intermediates displayed. Code as written by the user (yellow background), and as

generated internally by Catalyst and ModelingToolkit (blue and grey backgrounds respectively) are shown, in addition to the generated structures and

their fields (blue background, some of the internal fields are omitted in all displayed structures). (a) A symbolic ReactionSystem for a reversible

dimerisation reaction is created using either the DSL, or programmatically using the Symbolics computer algebraic system. (b) The

ReactionSystem can be converted into a ModelingToolkit ODESystem structure, corresponding to a symbolic RRE ODE model. (c) By providing

initial conditions, parameter values, and a time span, the ODESystem can be simulated, generating an output solution. The generated (internal) Julia

code for evaluating the derivatives defining the ODEs, which gets compiled and is input to the ODE solver, is displayed in grey. At each step, the user

has the ability to investigate and manipulate the generated structures.

https://doi.org/10.1371/journal.pcbi.1011530.g004

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 9 / 19

https://doi.org/10.1371/journal.pcbi.1011530.g004
https://doi.org/10.1371/journal.pcbi.1011530


that constitute a CRN are often known in developing a model, system parameters (these typi-

cally correspond to reaction rates) rarely are. A first step in analyzing a model is identifiability

analysis, where we determine whether the parameters can be uniquely identified from the data

[58]. This is enabled through the StructuralIdentifiability.jl package. In the next step,

Fig 5. A wide range of features are available for Catalyst model analysis. A CRN model can be created either through the DSL, by

manually declaring the reaction events, or by loading it from a file. The model is stored in the ReactionSystem IR, which can be

used as input to a wide range of methods. Purple boxes indicate code written by the user, and green boxes the corresponding output.

For some methods, either one, or both, boxes are omitted.

https://doi.org/10.1371/journal.pcbi.1011530.g005

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 10 / 19

https://doi.org/10.1371/journal.pcbi.1011530.g005
https://doi.org/10.1371/journal.pcbi.1011530


parameters can be fitted to data. This can be done using DiffEqParamEstim.jl, which provides

simple functions that are easy to use. Alternatively, more powerful packages, like Optimiza-

tion.jl and the Turing.jl Julia library for Bayesian analysis, offer increased flexibility for experi-

enced users [59]. Furthermore, unknown CRN structures (such as a species’s production rate)

can be approximated using neural networks and then fitted to data. This functionality is

enabled by the SciMLSensitivity package [60]. More broadly, system steady states can be com-

puted using the NLSolve.jl or HomotopyContinuation.jl Julia packages [57]; bifurcation struc-

tures can be calculated, and bifurcation diagrams generated, with the BifurcationKit.jl library

[61]; and SciMLSensitivity.jl and GlobalSensitivity.jl can be used to investigate the sensitivity

and uncertainty of model solutions with regard to parameters [62]. Finally, options for display-

ing CRNs, either as network graphs (via Graphviz) or Latex formatted equations (via Latexify.

jl), also exist.

3 Discussion

In this article, we have introduced the Catalyst library for modeling of CRNs. It represents

models through the ModelingToolkit.jl IR, which is used across the SciML organization and

Julia ecosystem libraries, and can be automatically translated into optimized inputs for numer-

ical simulations (RRE ODE, CLE SDE, and stochastic chemical kinetics jump process models).

Our benchmarks demonstrate that Catalyst often outperforms other tools by an order of mag-

nitude or more. Moreover, it can compose with a variety of other Julia packages, including

data-driven modeling tooling (parameter fitting and model inference), and other functionality

(identifiable analysis, sensitivity analysis, steady state analysis, etc). The IR is based on the

Symbolics.jl CAS, enabling algebraic manipulation and simplification of Catalyst models. This

can both be harnessed by the user (e.g. to create models programmatically) and by software

(e.g. for automated Jacobian computations). Finally, this also enables easy connection to other

Julia packages for symbolic analysis, such as enabling polynomial methods (e.g homotopy con-

tinuations) to act on CRN ODEs that have a polynomial form.

In addition to the wide range of powerful tools enabled by the combination of the Mode-

lingToolkit IR and the Symbolics CAS, Catalyst also provides a DSL that simplifies the declara-

tion of smaller models. Of a finalized pipeline that evaluates a model with respect to a specific

scientific problem, the model declaration is typically only a minor part. However, reaching a

final model often requires the production and analysis of several alternative network topolo-

gies. If the barrier to create, or modify, a model can be reduced, more topologies can be

explored in a shorter time. Thus, an intuitive interface can greatly simplify the model explora-

tion portion of a research project. By providing a DSL that reads CRN models in their most

natural form, Catalyst helps to facilitate model construction. In addition, this form of declara-

tion makes code easier to debug, as well as making it easier to understand for non-experts.

While several previous tools for CRN modeling have been primarily designed around their

own interface, we have instead designed Catalyst to be called from within standard Julia pro-

grams and scripts. This is advantageous, since it allows the flexibility of analysing a model with

custom code, without having to save and load simulation results to and from files. Further-

more, by integrating our tool into a larger context (SciML), support for a large number of

higher-order features is provided, without requiring any separate implementation within

Catalyst. This strategy, with modeling software targeting an IR (here provided by Modeling-

Toolkit) enables modelers across widely different domains to collaborate in the development

and maintenance of tools. We believe this is the ideal setting for a package like Catalyst.

Development of Catalyst is still active, with several types of additional functionality

planned. This includes specialised support for spatial models, including spatial SSA solvers for

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 11 / 19

https://doi.org/10.1371/journal.pcbi.1011530


the reaction-diffusion master equation, and general support for reaction models with transport

on graphs at both the ODE and jump process level. A longer-term goal is to enable the specifi-

cation of continuous-space reaction models with transport, and interface with Julia partial dif-

ferential equation libraries to seamlessly generate such spatially-discrete ODE and jump

process models. Furthermore, unlike BioNetGen, COPASI, and GillesPy2, Catalyst does not

currently support hybrid methods. These allow model components to be defined at different

physical scales (such as resolving some reactions via ODEs and others via jump processes) [63,

64]. This, as well as τ-leaping-based solvers [65, 66], are planned for future updates. Such

hybrid approaches can help to overcome the potential negativity of solutions that can arise in

τ-leaping and CLE-based models [67]. In the CLE case, Catalyst currently wraps rate laws

within the coefficients of noise terms in absolute values to avoid square roots of negative num-

bers, allowing SDE solvers to continue time-stepping even when solutions become negative

(following the approach in [68]). We hope to also integrate alternative modelling approaches,

such as the constrained CLE [67], which avoid negativity of solutions via modification of the

dynamics at the positive-negative population boundary. Finally, given Catalyst’s support for

units we hope to implement functionality for automatically converting between concentration

and “number of” units within system specifications by allowing users to specify compartments

with associated size units.

Catalyst is available for free under the permissive MIT License. The source code can be

found at https://github.com/SciML/Catalyst.jl. It is also a registered package within the Julia

ecosystem and can be installed from within a Julia environment using the commands using
Pkg; Pkg.add("Catalyst"). Full documentation, including tutorials and an API, can

be found at https://catalyst.sciml.ai/stable/. Issues and help requests can be raised either at the

Catalyst GitHub page, on the Julia discourse forum (https://discourse.julialang.org/), or at the

SciML organization’s Julia language Slack channels (#diffeq-bridged and #sciml-
bridged). The library is open to pull requests from anyone who wishes to contribute to its

development. Users are encouraged to engage in the project.

4 Materials and methods

4.1 Benchmarks

Benchmarks were carried out using the five CRN models used in [52]. The .bngl files provided

in [52] were used as input to BioNetGen, while COPASI, GillesPy2, and Matlab used the corre-

sponding (BioNetGen generated) .xml files. Catalyst used the corresponding (by BioNetGen

generated) .net files. The exception was the BCR model, for which we used the .bngl file from

[50], rather than the one from [52]. Throughout the simulations, no observable values were

saved. Where options were available to reduce solution time point save frequency, and these

improved performances, these were used (Section C in S1 Text). BioNetGen, COPASI, and

GillesPy2 simulations were performed using their corresponding Python interfaces. To ensure

the correctness of the solvers, for each combination of model, tool, method, and options, ODE

and SSA simulations were carried out and the results were plotted. The plots were inspected to

ensure consistency across all simulations (Figs D-M in S1 Text). Runtimes were measured

using timeit (in Python), BenchmarkTools.jl (in Julia, [69]), and timeit (in Matlab). For

each benchmark, the median runtime over several simulations was used (the number of simu-

lations carried out for each benchmark, over which we took the median, is described in

Table 1).

For ODE benchmarks, simulation run times were measured from the initial conditions

used in [52] to the time for the model to reach its (approximate) steady state (Table 2). The

exception was the BCR model, which exhibited a pulsing limit cycle behaviour. For this, we

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 12 / 19

https://github.com/SciML/Catalyst.jl
https://catalyst.sciml.ai/stable/
https://discourse.julialang.org/
https://doi.org/10.1371/journal.pcbi.1011530


simulated it over 20,000 time units, allowing it to complete three pulse events (Fig G in S1

Text). For ODE simulations, for all tools, the absolute tolerance was set to 10−9 and the relative

tolerance 10−6. Primarily tests were carried out using the lsoda and CVODE solvers [70, 71].

However, Catalyst has access to additional ODE solvers via DifferentialEquations.jl (more spe-

cifically OrdinaryDiffEq.jl). Some of these (such as QNDF and TRBDF2) are competitive with

lsoda and CVODE, hence these additional solvers were also benchmarked [72, 73]. All bench-

marks were carried out on the MIT supercloud HPC [74]. We used its Intel Xeon Platinum

8260 units (each node has access to 192 GB RAM and contains 48 cores, of which only a single

one was used). Each benchmark was carried out on a single, exclusive, node, to ensure they

were not affected by the presence of other jobs. Julia, Matlab, and Python all were set to use

only a single thread, ensuring multi-threading did not affect performance (e.g. Julia solvers

will automatically utilise additional available threads to speed up the linear solvers of implicit

simulators). Finally, work-precision diagrams were investigated to determine the relationship

between simulation time and error in the native Julia solvers (Fig C in S1 Text). All bench-

marking code is avaiable at (Code availability) under a permissive MIT license.

When using CVODE or implicit solvers, Catalyst permits a range of simulation options.

By default, Jacobians are computed through automatic differentiation [34]. This option can

either be disabled (with the Jacobian then being automatically computed through finite dif-

ferences), or an option can be set to automatically compute, and use, a symbolic Jacobian

from Catalyst models. Another option enables a sparse representation of the Jacobian matrix.

Furthermore, the underlying linear solver for all implicit methods can be specified. We tried

both the default option (which automatically selects one), but also specified either the

LapackDense (using LU), GMRES, or KLU linear solvers. When the GMRES linear solver is

used, a preconditioner can be set. Here we investigated both using no preconditioner, and

using an incomplete LU preconditioner (described further in Section B in S1 Text).

Table 1. Number of simulations used to calculate median simulation times.

Model: Multistate Multisite2 Egfr_net BCR Fceri_gamma2

BioNetGen (ODE) 10 10 10 10 10

BioNetGen (SSA) 10 10 10 4 5

COPASI (ODE) 10 10 10 10 10

COPASI (SSA) 10 10 10 2 5

GillesPy2 (ODE) 10 10 10 5 10

GillesPy2 (SSA) 10 10 10 2 5

For each benchmark, we performed a number of simulations, computing their median runtime. The number of such simulations depends on the tool and model (with

this number given in this table). As default, we used 10, but in some cases we needed to reduce this to enable the benchmark to be completed within a reasonable time.

For Julia and Matlab benchmarks, the number of simulations was automatically determined by the timeit tool and the BenchmarkTools.jl package, respectively.

https://doi.org/10.1371/journal.pcbi.1011530.t001

Table 2. Final (physical) time for model steady states in ODE benchmarks.

Model: Multistate Multisite2 Egfr_net BCR Fceri_gamma2

20 s 2 s 10 s 20,000 s 150 s

For each model, we determined the time at which it had (approximately) reached a steady state. These times were used for the ODE benchmarks in Fig 3 and Fig A in S1

Text. Unlike the other models, BCR exhibits a limit cycle. Here, rather than simulating until an (approximate) steady state had been reached, we simulated it for 20,000

time units (permitting it to complete 3 pulse events, Fig G in S1 Text).

https://doi.org/10.1371/journal.pcbi.1011530.t002

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 13 / 19

https://doi.org/10.1371/journal.pcbi.1011530.t001
https://doi.org/10.1371/journal.pcbi.1011530.t002
https://doi.org/10.1371/journal.pcbi.1011530


Jacobians were generated using either automatic differentiation (when either the Multistate,

Multisite2, or Egfr_net models were simulated using Julia solvers) or finite differences. The

exception was for the KLU linear solver, for which we used a symbolically computed

Jacobian. When we used either the KLU linear solver, or preconditioned GMRES, a sparse

Jacobian representation was used. Generally, the non-Catalyst tools have fewer available

solvers (typically depending on CVODE) and options, however, we tried those we found

available. We also note that Catalyst CVODE simulations without any options specified still

compare favourably to the other tools (Fig A in S1 Text). The methods and options used for

the benchmarks in Fig 3 are described in Table 3. Their performance is also described in

Table A in S1 Text (this contains the same information as Fig 3, but as numbers rather than a

bar chart). For a full list of benchmarks carried out, and the options used, see Section B in S1

Text. Furthermore, Fig A in S1 Text shows the performance of all trialed combinations of

methods and options, with Fig B in S1 Text showing the performance when the simulations

are carried out for increasing final model (physical) times.

Stochastic chemical kinetics simulations of Catalyst models used SSAs defined in JumpPro-

cesses.jl [44], a component of DifferentialEquations.jl. In Fig 3, Direct refers to Gillespie’s

direct method [9], SortingDirect to the sorting direct method of [45], RSSA and RSSACR to

the rejection and composition-rejection SSA methods of [75–77]. Dependency graphs needed

for the different methods are automatically generated via Catalyst and ModelingToolkit as

input to the JumpProcesses.jl solvers. Due to supercloud not permitting single runs longer

than 4 days, for the largest models, the slowest tools and methods were not benchmarked. The

BCR model exhibits pulses, to ensure that at least some pulses were included in each SSA simu-

lation, this model was simulated over very long timespans (> 10, 000 seconds). For a full list of

SSA benchmarks and their options, please see Section C in S1 Text.

The benchmarks were carried out on Julia version 1.8.5, using Catalyst version 13.1.0,

JumpProcesses version 9.5.1, and OrdinaryDiffEq version 6.49.0. Note that JumpProcesses

and OrdinaryDiffEq are both components in the meta DifferentialEquations.jl package. We

used Python version 3.9.15, the version 0.7.9 python interface for BioNetGen, the basico

Table 3. Options used for the benchmarked ODE methods displayed in the main text figure.

Model: Multistate Multisite2 Egfr_net BCR Fceri_gamma2

Julia solver 1 Vern6 BS5 VCABM QNDF1,2,3,4 QNDF1,2,3,4

Julia solver 2 Vern7 Vern8 BS5 FBDF1,2,3,4 FBDF1,2,3,4

Julia solver 3 Tsit5 Tsit5 Vern6 KenCarp41,2,3,4 TRBDF21,2,3,4

Catalyst lsoda lsoda lsoda lsoda lsoda lsoda

Catalyst CVODE CVODE CVODE1 CVODE1 CVODE1,2,4 CVODE1,2,4

BioNetGen CVODE1 CVODE1 CVODE1 CVODE CVODE1

COPASI CVODE CVODE CVODE CVODE CVODE

GillesPy2 lsoda lsoda lsoda lsoda lsoda

Matlab CVODE CVODE CVODE CVODE CVODE

For each model the options used for the 3 most performant native Julia solvers, the Julia lsoda and CVODE implementations, and each other tool (the results using these

benchmarks are found in Fig 3). Each field contains the method used for that model. Further options (including whenever a specific linear solver was selected) are

described through superscript tags.
1GMRES linear solver was used.
2Sparse Jacobian representation was used (a Catalyst option only).
3Automatic differentiation (as a mean of Jacobian calculation) was turned off (a Catalyst option only).
4An incomplete LU preconditioner was supplied to the GMRES linear solver (a Catalyst option only).

https://doi.org/10.1371/journal.pcbi.1011530.t003

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 14 / 19

https://doi.org/10.1371/journal.pcbi.1011530.t003
https://doi.org/10.1371/journal.pcbi.1011530


version 4.47 python interface for COPASI, GillesPy2 version 1.8.1, and Matlab version 9.8

with SimBiology version 5.10.

Supporting information

S1 Text. Additional benchmarks and benchmark information.

(PDF)

Acknowledgments

The authors thank the 26 other individuals who contributed commits to Catalyst, the Catalyst

tutorials, and the Catalyst documentation, along with the many users who have offered sugges-

tions and opened issues. The authors acknowledge the MIT SuperCloud and Lincoln Labora-

tory Supercomputing Center for providing (HPC, database, consultation) resources that have

contributed to the research results reported within this paper/report.

Author Contributions

Conceptualization: Torkel E. Loman, Chris Rackauckas, Samuel A. Isaacson.

Formal analysis: Torkel E. Loman, Chris Rackauckas, Samuel A. Isaacson.

Funding acquisition: Chris Rackauckas, Samuel A. Isaacson.

Investigation: Torkel E. Loman, Chris Rackauckas, Samuel A. Isaacson.

Methodology: Torkel E. Loman, Chris Rackauckas, Samuel A. Isaacson.

Project administration: Chris Rackauckas, Samuel A. Isaacson.

Software: Torkel E. Loman, Yingbo Ma, Vasily Ilin, Shashi Gowda, Niklas Korsbo, Nikhil

Yewale, Chris Rackauckas, Samuel A. Isaacson.

Supervision: Chris Rackauckas, Samuel A. Isaacson.

Validation: Torkel E. Loman, Chris Rackauckas, Samuel A. Isaacson.

Visualization: Torkel E. Loman.

Writing – original draft: Torkel E. Loman, Chris Rackauckas, Samuel A. Isaacson.

Writing – review & editing: Torkel E. Loman, Chris Rackauckas, Samuel A. Isaacson.

References
1. Feinberg M. Chemical reaction network structure and the stability of complex isothermal reactors—I.

The deficiency zero and deficiency one theorems. Chemical Engineering Science. 1987; 42:2229–

2268. https://doi.org/10.1016/0009-2509(87)80099-4

2. Chandran D, Copeland WB, Sleight SC, Sauro HM. Mathematical modeling and synthetic biology. Drug

discovery today Disease models. 2008; 5(4):299–309. https://doi.org/10.1016/j.ddmod.2009.07.002

PMID: 27840651

3. Resat H, Petzold L, Pettigrew MF. Kinetic Modeling of Biological Systems. In: Ireton R, Montgomery K,

Bumgarner R, Samudrala R, McDermott J, editors. Computational Systems Biology. Methods in Molec-

ular Biology. Totowa, NJ: Humana Press; 2009. p. 311–335. Available from: https://doi.org/10.1007/

978-1-59745-243-4_14.

4. Mun EY, Geng F. An epidemic model for non-first-order transmission kinetics. PLoS ONE. 2021; 16(3):

e0247512. https://doi.org/10.1371/journal.pone.0247512 PMID: 33705424

5. Narula J, Tiwari A, Igoshin OA. Role of Autoregulation and Relative Synthesis of Operon Partners in

Alternative Sigma Factor Networks. PLoS Computational Biology. 2016; 12(12):e1005267. https://doi.

org/10.1371/journal.pcbi.1005267 PMID: 27977677

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 15 / 19

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011530.s001
https://doi.org/10.1016/0009-2509(87)80099-4
https://doi.org/10.1016/j.ddmod.2009.07.002
http://www.ncbi.nlm.nih.gov/pubmed/27840651
https://doi.org/10.1007/978-1-59745-243-4_14
https://doi.org/10.1007/978-1-59745-243-4_14
https://doi.org/10.1371/journal.pone.0247512
http://www.ncbi.nlm.nih.gov/pubmed/33705424
https://doi.org/10.1371/journal.pcbi.1005267
https://doi.org/10.1371/journal.pcbi.1005267
http://www.ncbi.nlm.nih.gov/pubmed/27977677
https://doi.org/10.1371/journal.pcbi.1011530


6. Bjørnstad ON, Shea K, Krzywinski M, Altman N. The SEIRS model for infectious disease dynamics.

Nature Methods. 2020; 17(6):557–558. https://doi.org/10.1038/s41592-020-0856-2 PMID: 32499633

7. Schwall CP, Loman TE, Martins BMC, Cortijo S, Villava C, Kusmartsev V, et al. Tunable phenotypic var-

iability through an autoregulatory alternative sigma factor circuit. Molecular Systems Biology. 2021; 17

(7):1–16. https://doi.org/10.15252/msb.20209832 PMID: 34286912

8. Gillespie DT. The chemical Langevin equation. Journal of Chemical Physics. 2000; 113(1):297–306.

https://doi.org/10.1063/1.481811

9. Gillespie DT. A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled

Chemical Reactions. Journal of Computational Physics. 1976; 22:403–434. https://doi.org/10.1016/

0021-9991(76)90041-3

10. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry.

1977; 81(25):2340–2361. https://doi.org/10.1021/j100540a008

11. Schaff J, Fink CC, Slepchenko B, Carson JH, Loew LM. A general computational framework for model-

ing cellular structure and function. Biophysical Journal. 1997; 73(3):1135–1146. https://doi.org/10.1016/

S0006-3495(97)78146-3 PMID: 9284281

12. Hoops S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, et al. COPASI—A COmplex PAthway SImu-

lator. Bioinformatics. 2006; 22(24):3067–3074. https://doi.org/10.1093/bioinformatics/btl485 PMID:

17032683

13. Gonzalez AG, Naldi A, Sánchez L, Thieffry D, Chaouiya C. GINsim: A software suite for the qualitative

modelling, simulation and analysis of regulatory networks. BioSystems. 2006; 84(2):91–100. https://doi.

org/10.1016/j.biosystems.2005.10.003 PMID: 16434137

14. Klamt S, Saez-Rodriguez J, Gilles ED. Structural and functional analysis of cellular networks with Cell-

NetAnalyzer. New York. 2008; 13:1–13.

15. Smith LP, Bergmann FT, Chandran D, Sauro HM. Antimony: a modular model definition language. Bio-

informatics. 2009; 25(18):2452–2454. https://doi.org/10.1093/bioinformatics/btp401 PMID: 19578039

16. Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris MK, et al. CellNOptR: A flexi-

ble toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Systems Biol-

ogy. 2012; 6. https://doi.org/10.1186/1752-0509-6-133 PMID: 23079107

17. Lopez CF, Muhlich JL, Bachman JA, Sorger PK. Programming biological models in Python using PySB.

Molecular Systems Biology. 2013; 9(1):1–19. https://doi.org/10.1038/msb.2013.1 PMID: 23423320

18. Starruß J, De Back W, Brusch L, Deutsch A. Morpheus: A user-friendly modeling environment for multi-

scale and multicellular systems biology. Bioinformatics. 2014; 30(9):1331–1332. https://doi.org/10.

1093/bioinformatics/btt772 PMID: 24443380

19. Drawert B, Hellander A, Bales B, Banerjee D, Bellesia G, Jr BJD, et al. Stochastic Simulation Service:

Bridging the Gap between the Computational Expert and the Biologist. PLOS Computational Biology.

2016; 12(12):e1005220. https://doi.org/10.1371/journal.pcbi.1005220 PMID: 27930676

20. Kazeroonian A, Fröhlich F, Raue A, Theis FJ, Hasenauer J. CERENA: ChEmical REaction Network

Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics. PLOS ONE.

2016; 11(1):1–15. https://doi.org/10.1371/journal.pone.0146732 PMID: 26807911

21. Harris LA, Hogg JS, Tapia JJ, Sekar JAP, Gupta S, Korsunsky I, et al. BioNetGen 2.2: Advances in

rule-based modeling. Bioinformatics. 2016; 32(21):3366–3368. https://doi.org/10.1093/bioinformatics/

btw469 PMID: 27402907

22. Ostrenko O, Incardona P, Ramaswamy R, Brusch L, Sbalzarini IF. pSSAlib: The partial-propensity sto-

chastic chemical network simulator. PLOS Computational Biology. 2017; 13(12):e1005865. https://doi.

org/10.1371/journal.pcbi.1005865 PMID: 29206229

23. Medley JK, Choi K, König M, Smith L, Gu S, Hellerstein J, et al. Tellurium notebooks-An environment

for reproducible dynamical modeling in systems biology. PLOS Computational Biology. 2018; 14(6):

e1006220. https://doi.org/10.1371/journal.pcbi.1006220 PMID: 29906293

24. Choi K, Medley JK, König M, Stocking K, Smith L, Gu S, et al. Tellurium: An extensible python-based

modeling environment for systems and synthetic biology. Biosystems. 2018; 171:74–79. https://doi.org/

10.1016/j.biosystems.2018.07.006 PMID: 30053414

25. Haiman ZB, Zielinski DC, Koike Y, Yurkovich JT, Palsson BO. MASSpy: Building, simulating, and visu-

alizing dynamic biological models in Python using mass action kinetics. PLOS Computational Biology.

2021; 17(1):e1008208. https://doi.org/10.1371/journal.pcbi.1008208 PMID: 33507922

26. Poole W, Pandey A, Shur A, Tuza ZA, Murray RM. BioCRNpyler: Compiling chemical reaction networks

from biomolecular parts in diverse contexts. PLOS Computational Biology. 2022; 18(4):e1009987.

https://doi.org/10.1371/journal.pcbi.1009987 PMID: 35442944

27. Bezanson J, Karpinski S, Shah VB, Edelman A. Julia: A Fast Dynamic Language for Technical Comput-

ing. arXiv. 2012; p. 1–27.

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 16 / 19

https://doi.org/10.1038/s41592-020-0856-2
http://www.ncbi.nlm.nih.gov/pubmed/32499633
https://doi.org/10.15252/msb.20209832
http://www.ncbi.nlm.nih.gov/pubmed/34286912
https://doi.org/10.1063/1.481811
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1021/j100540a008
https://doi.org/10.1016/S0006-3495(97)78146-3
https://doi.org/10.1016/S0006-3495(97)78146-3
http://www.ncbi.nlm.nih.gov/pubmed/9284281
https://doi.org/10.1093/bioinformatics/btl485
http://www.ncbi.nlm.nih.gov/pubmed/17032683
https://doi.org/10.1016/j.biosystems.2005.10.003
https://doi.org/10.1016/j.biosystems.2005.10.003
http://www.ncbi.nlm.nih.gov/pubmed/16434137
https://doi.org/10.1093/bioinformatics/btp401
http://www.ncbi.nlm.nih.gov/pubmed/19578039
https://doi.org/10.1186/1752-0509-6-133
http://www.ncbi.nlm.nih.gov/pubmed/23079107
https://doi.org/10.1038/msb.2013.1
http://www.ncbi.nlm.nih.gov/pubmed/23423320
https://doi.org/10.1093/bioinformatics/btt772
https://doi.org/10.1093/bioinformatics/btt772
http://www.ncbi.nlm.nih.gov/pubmed/24443380
https://doi.org/10.1371/journal.pcbi.1005220
http://www.ncbi.nlm.nih.gov/pubmed/27930676
https://doi.org/10.1371/journal.pone.0146732
http://www.ncbi.nlm.nih.gov/pubmed/26807911
https://doi.org/10.1093/bioinformatics/btw469
https://doi.org/10.1093/bioinformatics/btw469
http://www.ncbi.nlm.nih.gov/pubmed/27402907
https://doi.org/10.1371/journal.pcbi.1005865
https://doi.org/10.1371/journal.pcbi.1005865
http://www.ncbi.nlm.nih.gov/pubmed/29206229
https://doi.org/10.1371/journal.pcbi.1006220
http://www.ncbi.nlm.nih.gov/pubmed/29906293
https://doi.org/10.1016/j.biosystems.2018.07.006
https://doi.org/10.1016/j.biosystems.2018.07.006
http://www.ncbi.nlm.nih.gov/pubmed/30053414
https://doi.org/10.1371/journal.pcbi.1008208
http://www.ncbi.nlm.nih.gov/pubmed/33507922
https://doi.org/10.1371/journal.pcbi.1009987
http://www.ncbi.nlm.nih.gov/pubmed/35442944
https://doi.org/10.1371/journal.pcbi.1011530


28. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to numerical computing. SIAM

Review. 2017; 59(1):65–98. https://doi.org/10.1137/141000671

29. Ma Y, Gowda S, Anantharaman R, Laughman C, Shah V, Rackauckas C. ModelingToolkit: A Composa-

ble Graph Transformation System For Equation-Based Modeling; 2021.

30. Gowda S, Ma Y, Cheli A, GwóźzdźM, Shah VB, Edelman A, et al. High-Performance Symbolic-Numer-

ics via Multiple Dispatch. ACM Commun Comput Algebra. 2022; 55(3):92–96. https://doi.org/10.1145/

3511528.3511535

31. Rackauckas C, Nie Q. DifferentialEquations.jl—A Performant and Feature-Rich Ecosystem for Solving

Differential Equations in Julia. Journal of Open Research Software. 2017; 5(15):15. https://doi.org/10.

5334/jors.151

32. Welsh C, Xu J, Smith L, König M, Choi K, Sauro HM. libRoadRunner 2.0: a high performance SBML

simulation and analysis library. Bioinformatics. 2023; 39(1):btac770. https://doi.org/10.1093/

bioinformatics/btac770 PMID: 36478036

33. Abel JH, Drawert B, Hellander A, Petzold LR. GillesPy: A Python Package for Stochastic Model Building

and Simulation. IEEE Life Sciences Letters. 2017; 2(3):35–38. https://doi.org/10.1109/LLS.2017.

2652448

34. Harrison D. A Brief Introduction to Automatic Differentiation for Machine Learning; 2021. Available from:

http://arxiv.org/abs/2110.06209.

35. Obatake N, Shiu A, Tang X, Torres A. Oscillations and bistability in a model of ERK regulation. J Math

Biol. 2019; 79(4):1515–1549. https://doi.org/10.1007/s00285-019-01402-y PMID: 31346693

36. Jain A, Lang P. SBMLToolkit.jl; 2022. https://github.com/SciML/SBMLToolkit.jl.

37. Isaacson SA. ReactionNetworkImporters.jl; 2022. https://github.com/SciML/

ReactionNetworkImporters.jl.

38. Christ S, Schwabeneder D, Rackauckas C, Borregaard MK, Breloff T. Plots.jl—a user extendable

plotting API for the julia programming language; 2022. Available from: https://arxiv.org/abs/2204.

08775.

39. Lefever R, Nicolis G, Borckmans P. The brusselator: it does oscillate all the same. Journal of the Chemi-

cal Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 1988; 84(4):1013.

https://doi.org/10.1039/f19888401013

40. Kuznetsov YA. Elements of Applied Bifurcation Theory. vol. 112 of Applied Mathematical Sciences.

New York, NY: Springer; 2004. Available from: http://link.springer.com/10.1007/978-1-4757-3978-7.

41. Vilar JMG, Kueh HY, Barkai N, Leibler S. Mechanisms of noise-resistance in genetic oscillators. Pro-

ceedings of the National Academy of Sciences of the United States of America. 2002; 99(9):5988–

5992. https://doi.org/10.1073/pnas.092133899 PMID: 11972055

42. Rackauckas C, Nie Q. Adaptive methods for stochastic differential equations via natural embeddings

and rejection sampling with memory. Discrete Continuous Dyn Syst Ser B. 2017; 22(7):2731–2761.

https://doi.org/10.3934/dcdsb.2017133 PMID: 29527134

43. Simoni G, Reali F, Priami C, Marchetti L. Stochastic simulation algorithms for computational systems

biology: Exact, approximate, and hybrid methods. Wiley Interdisciplinary Reviews: Systems Biology

and Medicine. 2019; 11(6):e1459. PMID: 31260191

44. Isaacson SA, Ilin V, Rackauckas CV. JumpProcesses.jl; 2022. https://github.com/SciML/

JumpProcesses.jl/.

45. McCollum JM, Peterson GD, Cox CD, Simpson ML, Samatova NF. The sorting direct method for sto-

chastic simulation of biochemical systems with varying reaction execution behavior. Computational

Biology and Chemistry. 2006; 30(1). https://doi.org/10.1016/j.compbiolchem.2005.10.007 PMID:

16321569

46. Rackauckas CV. DifferentialEquations.jl Documentation; 2017. https://diffeq.sciml.ai/stable/.

47. Stefan MI, Bartol TM, Sejnowski TJ, Kennedy MB. Multi-state Modeling of Biomolecules. PLOS Compu-

tational Biology. 2014; 10(9):1–9. https://doi.org/10.1371/journal.pcbi.1003844 PMID: 25254957

48. Colvin J, Monine MI, Faeder JR, Hlavacek WS, Von Hoff DD, Posner RG. Simulation of large-scale

rule-based models. Bioinformatics. 2009; 25(7):910–917. https://doi.org/10.1093/bioinformatics/btp066

PMID: 19213740

49. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS. A network model of early events in epidermal growth

factor receptor signaling that accounts for combinatorial complexity. Biosystems. 2006; 83(2):136–151.

https://doi.org/10.1016/j.biosystems.2005.06.014 PMID: 16233948

50. Barua D, Hlavacek WS, Lipniacki T. A Computational Model for Early Events in B Cell Antigen Receptor

Signaling: Analysis of the Roles of Lyn and Fyn. The Journal of Immunology. 2012; 189(2):646–658.

https://doi.org/10.4049/jimmunol.1102003 PMID: 22711887

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 17 / 19

https://doi.org/10.1137/141000671
https://doi.org/10.1145/3511528.3511535
https://doi.org/10.1145/3511528.3511535
https://doi.org/10.5334/jors.151
https://doi.org/10.5334/jors.151
https://doi.org/10.1093/bioinformatics/btac770
https://doi.org/10.1093/bioinformatics/btac770
http://www.ncbi.nlm.nih.gov/pubmed/36478036
https://doi.org/10.1109/LLS.2017.2652448
https://doi.org/10.1109/LLS.2017.2652448
http://arxiv.org/abs/2110.06209
https://doi.org/10.1007/s00285-019-01402-y
http://www.ncbi.nlm.nih.gov/pubmed/31346693
https://github.com/SciML/SBMLToolkit.jl
https://github.com/SciML/ReactionNetworkImporters.jl
https://github.com/SciML/ReactionNetworkImporters.jl
https://arxiv.org/abs/2204.08775
https://arxiv.org/abs/2204.08775
https://doi.org/10.1039/f19888401013
http://link.springer.com/10.1007/978-1-4757-3978-7
https://doi.org/10.1073/pnas.092133899
http://www.ncbi.nlm.nih.gov/pubmed/11972055
https://doi.org/10.3934/dcdsb.2017133
http://www.ncbi.nlm.nih.gov/pubmed/29527134
http://www.ncbi.nlm.nih.gov/pubmed/31260191
https://github.com/SciML/JumpProcesses.jl/
https://github.com/SciML/JumpProcesses.jl/
https://doi.org/10.1016/j.compbiolchem.2005.10.007
http://www.ncbi.nlm.nih.gov/pubmed/16321569
https://diffeq.sciml.ai/stable/
https://doi.org/10.1371/journal.pcbi.1003844
http://www.ncbi.nlm.nih.gov/pubmed/25254957
https://doi.org/10.1093/bioinformatics/btp066
http://www.ncbi.nlm.nih.gov/pubmed/19213740
https://doi.org/10.1016/j.biosystems.2005.06.014
http://www.ncbi.nlm.nih.gov/pubmed/16233948
https://doi.org/10.4049/jimmunol.1102003
http://www.ncbi.nlm.nih.gov/pubmed/22711887
https://doi.org/10.1371/journal.pcbi.1011530


51. Faeder JR, Hlavacek WS, Reischl I, Blinov ML, Metzger H, Redondo A, et al. Investigation of Early

Events in FcεRI-Mediated Signaling Using a Detailed Mathematical Model. The Journal of Immunology.

2003; 170(7):3769–3781. https://doi.org/10.4049/jimmunol.170.7.3769 PMID: 12646643

52. Gupta A, Mendes P. An Overview of Network-Based and -Free Approaches for Stochastic Simulation

of Biochemical Systems. Computation (Basel). 2018; 6(1). https://doi.org/10.3390/

computation6010009 PMID: 29938118

53. Golding I, Paulsson J, Zawilski SM, Cox EC. Real-time kinetics of gene activity in individual bacteria.

Cell. 2005; 123(6):1025–1036. https://doi.org/10.1016/j.cell.2005.09.031 PMID: 16360033

54. Sukys A, Grima R. MomentClosure.jl: automated moment closure approximations in Julia. Bioinformat-

ics. 2021; 38(1):289–290. https://doi.org/10.1093/bioinformatics/btab469 PMID: 34170295

55. Öcal K, Sukys A. FiniteStateProjection.jl; 2022. https://github.com/kaandocal/FiniteStateProjection.jl.

56. Fu X, Zhou X, Gu D, Cao Z, Grima R. DelaySSAToolkit.jl: Stochastic simulation of reaction systems

with time delays in Julia. Bioinformatics. 2022; https://doi.org/10.1093/bioinformatics/btac472 PMID:

35799359

57. Breiding P, Timme S. HomotopyContinuation.jl: A Package for Homotopy Continuation in Julia. In: Inter-

national Congress on Mathematical Software. Springer; 2018. p. 458–465.

58. Miao H, Xia X, Perelson AS, Wu H. On Identifiability of Nonlinear ODE Models and Applications in

Viral Dynamics. SIAM Review. 2011; 53(1):3–39. https://doi.org/10.1137/090757009 PMID:

21785515

59. Ge H, Xu K, Ghahramani Z. Turing: a language for flexible probabilistic inference. In: International Con-

ference on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzar-

ote, Canary Islands, Spain; 2018. p. 1682–1690. Available from: http://proceedings.mlr.press/v84/

ge18b.html.

60. Rackauckas C, Ma Y, Martensen J, Warner C, Zubov K, Supekar R, et al.. Universal Differential Equa-

tions for Scientific Machine Learning; 2021. Available from: http://arxiv.org/abs/2001.04385.

61. Veltz R. BifurcationKit.jl; 2020. https://hal.archives-ouvertes.fr/hal-02902346.

62. Dixit VK, Rackauckas C. GlobalSensitivity.jl: Performant and Parallel Global Sensitivity Analysis with

Julia. Journal of Open Source Software. 2022; 7(76):4561. https://doi.org/10.21105/joss.04561

63. Hepp B, Gupta A, Khammash M. Adaptive hybrid simulations for multiscale stochastic reaction net-

works. The Journal of Chemical Physics. 2015; 142(3):034118. https://doi.org/10.1063/1.4905196

PMID: 25612700

64. Winkelmann S, Schütte C. Hybrid models for chemical reaction networks: Multiscale theory and applica-

tion to gene regulatory systems. The Journal of Chemical Physics. 2017; 147(11):114115. https://doi.

org/10.1063/1.4986560 PMID: 28938803

65. Gillespie DT. Approximate accelerated stochastic simulation of chemically reacting systems. The Jour-

nal of Chemical Physics. 2001; 115(4):1716–1733. https://doi.org/10.1063/1.1378322

66. Cao Y, Gillespie DT, Petzold LR. Avoiding negative populations in explicit Poisson tau-leaping. The

Journal of Chemical Physics. 2005; 123(5):054104. https://doi.org/10.1063/1.1992473 PMID:

16108628

67. Anderson DF, Higham DJ, Leite SC, Williams RJ. On Constrained Langevin Equations and (Bio)

chemical Reaction Networks. Multiscale Model Simul. 2018; 17(1):1–30. https://doi.org/10.1137/

18M1190999

68. Higham DJ. Modeling and Simulating Chemical Reactions. SIAM Review. 2008; 50(2):347–368. https://

doi.org/10.1137/060666457

69. Chen J, Revels J. Robust benchmarking in noisy environments. arXiv e-prints. 2016;.

70. Petzold L. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential

Equations. SIAM Journal on Scientific and Statistical Computing. 1983; 4(1):136–148. https://doi.org/

10.1137/0904010

71. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, et al. SUNDIALS: Suite of non-

linear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software

(TOMS). 2005; 31(3):363–396. https://doi.org/10.1145/1089014.1089020

72. Hosea M, Shampine L. Analysis and implementation of TR-BDF2. Applied Numerical Mathematics.

1996; 20(1-2):21–37. https://doi.org/10.1016/0168-9274(95)00115-8

73. Shampine LF, Reichelt MW. The matlab ode suite. SIAM journal on scientific computing. 1997; 18(1):1–

22. https://doi.org/10.1137/S1064827594276424

74. Reuther A, Kepner J, Byun C, Samsi S, Arcand W, Bestor D, et al. Interactive supercomputing on

40,000 cores for machine learning and data analysis. In: 2018 IEEE High Performance extreme Com-

puting Conference (HPEC). IEEE; 2018. p. 1–6.

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 18 / 19

https://doi.org/10.4049/jimmunol.170.7.3769
http://www.ncbi.nlm.nih.gov/pubmed/12646643
https://doi.org/10.3390/computation6010009
https://doi.org/10.3390/computation6010009
http://www.ncbi.nlm.nih.gov/pubmed/29938118
https://doi.org/10.1016/j.cell.2005.09.031
http://www.ncbi.nlm.nih.gov/pubmed/16360033
https://doi.org/10.1093/bioinformatics/btab469
http://www.ncbi.nlm.nih.gov/pubmed/34170295
https://github.com/kaandocal/FiniteStateProjection.jl
https://doi.org/10.1093/bioinformatics/btac472
http://www.ncbi.nlm.nih.gov/pubmed/35799359
https://doi.org/10.1137/090757009
http://www.ncbi.nlm.nih.gov/pubmed/21785515
http://proceedings.mlr.press/v84/ge18b.html
http://proceedings.mlr.press/v84/ge18b.html
http://arxiv.org/abs/2001.04385
https://hal.archives-ouvertes.fr/hal-02902346
https://doi.org/10.21105/joss.04561
https://doi.org/10.1063/1.4905196
http://www.ncbi.nlm.nih.gov/pubmed/25612700
https://doi.org/10.1063/1.4986560
https://doi.org/10.1063/1.4986560
http://www.ncbi.nlm.nih.gov/pubmed/28938803
https://doi.org/10.1063/1.1378322
https://doi.org/10.1063/1.1992473
http://www.ncbi.nlm.nih.gov/pubmed/16108628
https://doi.org/10.1137/18M1190999
https://doi.org/10.1137/18M1190999
https://doi.org/10.1137/060666457
https://doi.org/10.1137/060666457
https://doi.org/10.1137/0904010
https://doi.org/10.1137/0904010
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1016/0168-9274(95)00115-8
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1371/journal.pcbi.1011530


75. Thanh VH, Priami C, Zunino R. Efficient rejection-based simulation of biochemical reactions with sto-

chastic noise and delays. The Journal of Chemical Physics. 2014; 141(13):134116–134113. https://doi.

org/10.1063/1.4896985 PMID: 25296793

76. Thanh VH, Zunino R, Priami C. On the rejection-based algorithm for simulation and analysis of large-

scale reaction networks. The Journal of Chemical Physics. 2015; 142(24):244106–244114. https://doi.

org/10.1063/1.4922923 PMID: 26133409

77. Thanh VH, Zunino R, Priami C. Efficient Constant-Time Complexity Algorithm for Stochastic Simulation

of Large Reaction Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics.

2017; 14(3):657–667. https://doi.org/10.1109/TCBB.2016.2530066 PMID: 26890923

PLOS COMPUTATIONAL BIOLOGY Catalyst: Fast and flexible modeling of reaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011530 October 18, 2023 19 / 19

https://doi.org/10.1063/1.4896985
https://doi.org/10.1063/1.4896985
http://www.ncbi.nlm.nih.gov/pubmed/25296793
https://doi.org/10.1063/1.4922923
https://doi.org/10.1063/1.4922923
http://www.ncbi.nlm.nih.gov/pubmed/26133409
https://doi.org/10.1109/TCBB.2016.2530066
http://www.ncbi.nlm.nih.gov/pubmed/26890923
https://doi.org/10.1371/journal.pcbi.1011530

