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INTRODUCTION: Capsule endoscopy (CE) is a minimally invasive examination for evaluating the gastrointestinal tract.

However, its diagnostic yield for detecting gastric lesions is suboptimal. Convolutional neural networks

(CNNs) are artificial intelligence models with great performance for image analysis. Nonetheless, their

role in gastric evaluation by wireless CE (WCE) has not been explored.

METHODS: Our group developed a CNN-based algorithm for the automatic classification of pleomorphic gastric

lesions, including vascular lesions (angiectasia, varices, and red spots), protruding lesions, ulcers, and

erosions. A total of 12,918 gastric images from 3 different CE devices (PillCam Crohn’s; PillCam SB3;

OMOMHDCE system)were used from the construction of the CNN:1,407 fromprotruding lesions; 994

from ulcers and erosions; 822 from vascular lesions; and 2,851 from hematic residues and the

remaining images from normal mucosa. The images were divided into a training (split for three-fold

cross-validation) and validation data set. The model’s output was compared with a consensus

classification by 2WCE-experienced gastroenterologists. The network’s performance was evaluated by

its sensitivity, specificity, accuracy, positive predictive value and negative predictive value, and area

under the precision-recall curve.

RESULTS: The trainedCNNhad a97.4%sensitivity; 95.9% specificity; and positive predictive value and negative

predictive value of 95.0% and 97.8%, respectively, for gastric lesions, with 96.6% overall accuracy.

The CNN had an image processing time of 115 images per second.

DISCUSSION: Our group developed, for the first time, a CNN capable of automatically detecting pleomorphic gastric

lesions in both small bowel and colon CE devices.
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INTRODUCTION
The detection and treatment of multiple gastric lesions is of ut-
termost importance. Conventional esophagogastroduodeno-
scopy (EGD) is the current standard of care for gastric evaluation,
either in a screening setting or in patients with upper gastroin-
testinal (GI) symptoms, given its ease in identifying and treating
gastric lesions. However, upper endoscopy is an invasive exami-
nation, with a non-neglectable risk of perforation, bleeding,

infection, or even cardiopulmonary adverse events (1). Further-
more, EGD can be uncomfortable, and the use of sedation tech-
niques during the examination can increase costs (2) related to
the procedure itself and result in loss of working days by patients.

Capsule endoscopy (CE) is a minimally invasive examination
that allows the entire visualization of the GI tract (3), with each
capsule type having its own characteristics (Figure 1). Recently,
it has emerged as an alternative for conventional EGD in the
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evaluation of the upper GI tract, especially the small bowel
(4,5). With the development of colon CE (CCE), CE-based
panendoscopy is an important discussion matter (6), with
minimally invasive evaluation of the entire GI tract. However,
CE diagnostic performance for gastric lesions is suboptimal,
limiting its clinical use (7). The stomach’s anatomy is very
different from that of the esophagus or duodenum, and its
collapsed structure in the absence of insufflation makes the
observation of all its surfaces difficult, especially the more
proximal regions (8). CE dependence of the peristaltic
movements can be a challenge when implementing this
technology in the clinical setting. Besides, CE is a time-
consuming examination, with reading times for a single ex-
amination ranging from 30 to 120 minutes (9).

The large number of image frames presented by CE devices
favors the development of artificial intelligence (AI) tools for
image analysis. Convolutional neural networks (CNNs) are a
multilayer AI architecture with high performance levels for image
analysis, inspired in the neural architecture of the human visual
cortex, making it suitable for detection of imaging patterns (10).
Recently, CNNmodels have revealed promising results in several
fields of medicine (10–13). CE is one of themost studied fields for
the development of CNN-based technologies for automatic de-
tection of lesions and normal mucosa (14,15). Moreover, future
application of AI tools might increase CE diagnostic yield while,
at the same time, shorten its reading time and increase its cost-
effectiveness. Nonetheless, the role of this technology in the
identification of gastric lesions by using wireless CE (WCE) is yet
to be explored. In this project, our group aimed to create a CNN-
based system for the automatic classification of multiple gastric
lesions using 3 different CE devices, focusing on vascular lesions
(angiectasia, varices, and red spots), protruding lesions, ulcers,
and erosions.

METHODS
Study design

This multicentric multidevice study was based on gastric images
obtained from 3 different types of CE devices (PillCam SB3;
PillCam Crohn’s; and OMOM HD CE system) in 2 different
centers (CentroHospitalar Universitário São João andManopH),
comprising 5,846 CE examinations in 4,372 patients.

This project was developed in a noninterventional fashion
(without intervention in the clinical management of each patient
involved). This study was performed following the Declaration of
Helsinki andwith approval from the ethics committee of São João
University Hospital/Faculty of Medicine of the University of
Porto (No.CE 407/2020). Information potentially associatedwith
the identification of the patients was omitted, and effective data
anonymization for researchers involved in CNN development
was assured by random number assignment for each patient. A
legal team with Data Protection Officer Certification (Maastricht
University) ensured the nontraceability of data and conformity
with the general data protection regulation.

CE protocol

CE procedures were conducted using 3 different CE devices: the
PillCam SB3 system (Medtronic, Minneapolis, MN), the PillCam
Crohn’s (Medtronic), and the OMOM HD (Jinshan Science &
Technology, Chongqing, Yubei, China). Images from PillCam
SB3 and PillCam Crohn’s CE were reviewed using PillCam
software version 9 (Medtronic), whereas images from theOMOM

HD device were reviewed using the Vue Smart software (Jinshan
Science & Technology). Possible patient-identifying information
(name, operating number, and date of procedure) was removed
by image processing. After that, each extracted frame was stored
and labeled with a consecutive number.

Each patient was asked to undergo bowel preparation in line
with previous recommendations by the European Society of
Gastrointestinal Endoscopy (16). In summary, patients were
asked to follow a clear liquid diet on the day before capsule in-
gestion, with fasting the night before the examination. Before
capsule ingestion, patients drank a bowel preparation consisting
of 2 L of polyethylene glycol solution. Simethicone was used as an
antifoaming agent. Domperidone 10 mg was used as a prokinetic
if the capsule remained in the stomach 1 hour after ingestion
(which implied image review on the data recorder worn by the
patient).

Classification of lesions

The gastric segment video was reviewed for identification of
multiple gastric lesions. This included thefirst gastric image distal
to the esophagogastric junction until the last image before the
appearance of the duodenal mucosa. The whole group of gastric
lesions included vascular lesions (angiectasia, varices, and red
spots), protruding lesions, ulcers, and erosions. The definitions of
the different lesions were adapted from classification scores used
in small bowel CE (SBCE) (17). Regarding vascular lesions, red
spots were defined as a punctuate (,1 mm) flat lesion with a
bright red area, within the mucosal layer, without vessel ap-
pearance (18). Angiectasia was defined as a distinct reddish lesion
constituting tortuous and clustered capillary dilations within the
mucosal layer. Varices were defined as raised venous dilatation
with a serpiginous appearance. Protruding lesions included pol-
yps, epithelial tumors, subepithelial lesions, nodules, and venous
structures (19). Mucosal erosions were defined as minimal loss of
epithelial layering surrounded by normal mucosa. Ulcers were
defined as depressed loss of epithelial covering, with a whitish
base and surrounding swollen mucosa, with an estimated di-
ameter of .5 mm.

Classification of the extracted images was performed by 3
gastroenterologists with CE expertise (M.M.S., H.C., and P.A.),
each having read over 1,000 CE examinations before this study.
The inclusion of a specific image implied the concordance of
classification between at least 2 experts.

CNN development

After evaluating all the examinations, 12,918 selected gastric
images from 107 CE examinations were inserted into a CNN
model with transfer learning. The full image data set had 1,407
images of protruding lesions; 994 from ulcers and erosions; 822
from vascular lesions; and 2,851 from hematic residues, with the
remaining images being from normal mucosa.

The selected images were divided into 2 different data sets, one
training data set (around 90% of the full image data set5 11,289),
which was divided into 3 independent subsets, and an in-
dependent validation data set (around 10% of the full image data
set 5 1,629). On division, all images from a given patient were
allocated to the same data set (patient-split design). The valida-
tion data set was used to evaluate the performance of the CNN
model. The study design is summarized with a flowchart pre-
sented in Figure 2.
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When creating the CNN, the Xception model with its weights
trained on ImageNet was used. To transfer this learning to our
data, the convolutional layers of the model were kept. We re-
moved the last fully connected layers and attached fully con-
nected layers based on the number of classes used to classify our
endoscopic images.

Our group used 2 blocks, each having a fully connected layer,
followed by a dropout layer of 0.25 drop rate. After these 2 blocks,
a dense layer with a size defined as the number of categories to
classifywas added.A learning rate of 0.0001, batch size of 128, and
20 epochswere set by trial and error.We usedTensorFlow 2.3 and
Keras libraries to prepare the data and run the model. The
analyses were performed with a computer equipped with an Intel
XeonGold 6130 processor (Intel, SantaClara, CA) and aNVIDIA
Quadro RTX 4000 graphic processing unit (NVIDIA, Santa
Clara, CA).

Performance measures and statistical analysis

For each image, the CNN model calculated the probability for
each category (pleomorphic gastric lesions vs normal), with a
given probability (Figure 3). A higher probability translated
into a greater CNN prediction confidence. The software-
generated heatmaps localized features that predicted a lesion
probability (Figure 4). The CNN’s output was compared with
a consensus classification provided by 2 WCE-experienced
gastroenterologists.

At the first experiment, a 3-fold cross-validation was per-
formed, with the division of the development data set into 3
even-sized image subsets. The primary performance measures
included sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and accuracy. These
measures were represented with their means and 95% confi-
dence intervals. The precision-recall (PR) curve and area un-
der the precision-recall curve were used to measure the
performance of the model.

The performance results from the 3-fold subsets were used to
identify the better parameters of theCNN.These parameters were
then applied in the validation data set, which was evaluated
afterward.

Statistical analysis was performed using Sci-Kit learn version
0.22.2 (20).

RESULTS

Construction of the network

From a total of 5,846 CE examinations, our group developed a
CNN-based model with 12,918 gastric images. Each image
was evaluated by the CNN, which predicted a classification,

subsequently compared with the experts’ labelling. The re-
peated data inputs in the subset folds of the training data
set allowed the adjustment of the CNN parameters. Sub-
sequently, the fine-tuned CNN performance was evaluated in
the validation data set.

Global performance of the network

For the first analysis, a 3-fold cross-validation of the training data
set was performed. The performance results of the 3-folds of the
trainingmodel are presented in Table 1. Overall, the training data
set had a mean sensitivity of 87.8%, specificity of 92.3%, PPV of
91.4%, and NPV of 89.2%. The mean accuracy of the model
was 90.2%.

In the second analysis, the remaining 10% of the retrieved
images were used as a validation data set for evaluation of the
CNN’s performance. The confusion matrix between the trained
CNN and experts’ classification is presented in Table 2. The CNN
model identified pleomorphic gastric lesions with a sensitivity of
97.4%, specificity of 95.9%, PPV of 95.0%, NPV of 97.8%, and
accuracy of 96.6% (Table 1). The model had an area under the
precision-recall curve of 1.00.

Figure 2. Study flowchart for the training and validation phases. CE,
capsule endoscopy; CNN, convolutional neural network; L, pleomorphic
gastric lesions; N, normal; PR, precision-recall.

Figure 1. Different types of capsule endoscopies that are discussed in this
article.
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Computational performance of the CNN

The CNN’s image processing time of the validation data set was
115 images per second (8.7 milliseconds per frame), with a total
viewing time of 14.2 seconds.

DISCUSSION
In this proof-of-concept study, our group developed a WCE-
based CNN capable of detecting multiple gastric lesions in both
SBCE and CCE devices. This model demonstrated high perfor-
mance levels in all the evaluated parameters, with 97.4% sensi-
tivity, 95.9% specificity, and 96.6% global accuracy for
pleomorphic gastric lesions. These results were achieved with an
image processing time of 115 images per second. Furthermore,
the diagnostic yield of the model was verified not only in SBCE
devices but also in CCE, with 3 different types of CE devices.
Thereby, our group reckons that the development of AI-powered
WCE might change the landscape regarding the classification of
pleomorphic gastric lesions (protuberant, vascular, ulcers, or
erosions).

Furthermore, it is important to consider some methodology
points about this study. The division between training and vali-
dation data sets was based on a patient-split design. Thus, all the
given images from a single patient were included in the same data
set. In the development of a CNNmodel, the inclusion of similar
images in both data sets could imply an overfitting of the model
(because the model would recognize a very similar image present
in the training data set). Therefore, we believe that the risk of the
model’s overfitting was reduced. Moreover, a 3-fold cross-
validation was performed. The data set was divided into 3 equal-
sized, nonoverlapping folds, with images from a single exami-
nation allocated exclusively to one-fold. The average of these
metrics across all iterations was used as an aggregate measure of
the model’s performance. This aggregated performance measure

provides a more reliable assessment of the model’s ability to
classify new, unseen images, increasing confidence in the model’s
generalizability. In addition, our group used PR curves instead of
receiver-operating characteristic (ROC) curves for the model
evaluation. In cases of data imbalance in a certain variable, ROC
curves are known for being excessively optimistic in the evalua-
tion of a model/biomarker performance (21), with PR curves
being a proved alternative (22). In our study, this was defined by a
larger representation of normal gastric mucosa than gastric le-
sions. Given our focus on determining all the lesion images, in-
stead of identifying the commoner true negatives, which are
implied in the ROC curve construction, the PR curve was then
preferred.

The interoperability challenge is one of the main points of
interest in the implementation of AI-based technologies in
medicine (23), with the need for generalization of technology
across multiple platforms and devices. The interoperability
challenge has been a point of focus in the recent years in the
electronic health records system (24), but a recent article by Tang
et al stated interoperability between different systems to be a
determinant factor for the application of AI tools in radiology
(25). Therefore, the results of our work in 3 different CE devices,
either in SBCE or CCE, are a proof of the interoperability of the
CNN in different outsets, fundamental for its implementation in
the clinical practice. This is, to our knowledge, the first CNN
model capable of diagnosing pleomorphic gastric lesions in 3
different CE devices, comprising both SBCE and CCE.

Recently, the concept of WCE-based panendoscopy has
been the focus of numerous studies (26). However, CE (par-
ticularly CCE) is a time and resource-consuming examination
with a large number of image frames produced, which is a
disadvantage against conventional endoscopy evaluation. Fur-
thermore, despite numerous studies about CNN models in

Figure 3.Output obtained from the application of the CNN for pleomorphic gastric lesions. The bars represent the estimated probability by the CNNmodel.
The finding with the highest probability was outputted as the predicted classification. The blue bars represent a correct prediction, whereas the red bars
represent an incorrect prediction. CNN, convolutional neural network; L, pleomorphic gastric lesions; N, normal.
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small bowel and colon evaluation by WCE (9,15), there are no
published articles about CNN models for gastric evaluation in
WCE. Therefore, implementation of a specific gastric CNN,
associated with small bowel and colon CNN, is important for
increasing the diagnostic yield and cost-effectiveness of WCE-
based panendoscopy, giving it an advantage over conventional
endoscopy by providing simultaneous evaluation of the full
length of the GI tract in a minimally invasive single examina-
tion. Our specific gastric CNN, with proven results in both
SBCE and CCE devices, may contribute to reduceWCE reading
times while increasing its diagnostic yield, reducing the sub-
jective bias in image evaluation by experts. The integration and
application in the clinical practice of such CNN would be piv-
otal for the implementation of aminimally invasiveWCE-based
panendoscopy.

Nonetheless, there are intrinsic limitations of the WCE to be
considered. WCE is performed without air insufflation and
stomach cavity distention, and the devices’movement depends
only on abdominal peristalsis. This results in a significant re-
duction in stomach surface visualization, mainly the more

proximal part and the fundus. The evaluation of gastric lesions
by CE has regained a renewed interest with the development of
magnetic controlled CE (MCE), a subtype of CE with good
performance in evaluating gastric lesions, even in asymptomatic
individuals (27,28). Xia et al (29) were the first to develop a
CNN-based model for the detection of multiple gastric lesions
and applied it to MCE. Their model focused on identifying 7
categories of gastric images (erosions, polyps, ulcers, sub-
mucosal tumors, xanthomas, normal mucosa, and invalid im-
ages). The CNN-based model had 96.2% sensitivity, 76.2%
specificity, 16.0%PPV, 99.7%NPV, and 77.1% accuracy, with an
area under the curve of 0.84. Although this study represents a
significant breakthrough in the application of AI to minimally
invasive techniques of gastric inspection, MCE is limited to very
few research centers, contrary to widely available conventional
WCE. In addition, MCE implies a learning curve for procedure
performance (30). Besides, there is, to our knowledge, a lack of
comparative studies betweenWCE andMCE diagnostic yield in
the evaluation of gastric lesions. Whereas MCE may overcome
the peristalsis dependence, it is still affected by the absence of

Figure 4. Heatmaps obtained from the application of the CNN showing pleomorphic gastric lesions as identified by the CNN. CNN, convolutional neural
network; L, pleomorphic gastric lesions; N, normal.

Table 1. Performance measures of the 3-fold cross-validation of the training data set and validation data set for detection of pleomorphic

gastric lesions

—→ Sensitivity, % (CI) Specificity, % (CI) PPV, % (CI) NPV, % (CI) Accuracy, % (CI) AUPRC

Fold 1 (n 5 3,754) 81.8 (79.9–83.5) 97.8 (97.1–98.4) 97.2 (96.3–97.9) 85.3 (84.0–86.5) 90.1 (89.1–91.0) 0.93

Fold 2 (n 5 3,755) 90.8 (89.4–92.1) 83.8 (82.1–85.4) 83.8 (82.4–85.2) 90.8 (89.5–91.9) 87.2 (86.0–88.2) 0.96

Fold 3 (n 5 3,780) 91.0 (89.5–92.2) 95.4 (94.3–96.2) 94.7 (93.6–95.6) 92.0 (90.9–93.0) 93.2 (92.4–94.0) 0.98

Training data set mean (n5 11,289) 87.8 (86.9–88.7) 92.3 (91.6–93.0) 91.4 (90.6–92.0) 89.2 (88.5–89.9) 90.2 (89.6–90.7)

Validation data set (n 5 1,629) 97.4 (96.0–98.4) 95.9 (94.4–97.1) 95.0 (93.3–96.3) 97.8 (96.7–98.6) 96.6 (95.6–97.4) 1.00

AUPRC, area under the precision-recall curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.
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stomach distention, with reduction in the proximal stomach
visibility. In fact, a small study ofMCE in healthy volunteers by
Liao et al showed that, despite visualization of the more distal
stomach regions byWCE in 100% of the patients, visualization
of the gastric cardia and the fundus was only achieved in 82.4%
and 85.3% of the patients, respectively (31). Moreover, our
model showed better performance marks in all the evaluated
parameters, including image processing. Thus, our group be-
lieves that the better performance of ourmodel, combined with
the worldwide availability of WCE devices, will contribute to
make the generalization of this model more feasible. In addi-
tion, MCE primary focus is not a panendoscopic evaluation of
the GI tract but a minimally invasive alternative for conven-
tional EGD.

Our group developed the first CNN model for gastric lesion
evaluation by SBCE and CCE with high sensitivity, specificity,
accuracy, and image processing capacity. However, despite the
promising results of our model, this is only a proof-of-concept
study and the first step to the application of this model to a real
clinical scenario.

Nonetheless, our study has several limitations. First, this study
was conducted in a retrospectivemanner. Therefore, in the future,
larger prospective multicentric studies are needed for assessment
of the clinical utility of this tool. Furthermore, our results were
based on still images, requiring studies with real-time WCE
videos in the future.

In conclusion, the use of CNN models in clinical practice can
become the standard of care in only a few years. In the gastro-
enterology field, optimization of WCE examinations with CNN-
based technologies has been evolving recently, but the role of
these systems for detection of gastric lesions in conventional
WCE has not been explored yet.

Our CNN system was the first, to our knowledge, to detect
gastric lesions with high accuracy and sensitivity, with excellent
imaging processing times in SBCE and CCE devices. The appli-
cation of these systems in clinical practice will favor the cost-
effectiveness of WCE in a panendoscopy evaluation, with an as-
sociated standardization of the classification and reduction of the
reading time of the examination. Larger multicentric prospective
real-time studies are needed to confirm this proof-of-concept
study.
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Study Highlights

WHAT IS KNOWN

3 Capsule endoscopy (CE) is a minimally invasive examination
for evaluating the entire gastrointestinal tract.

3 The diagnostic yield of CE for gastric lesions is suboptimal.

WHAT IS NEW HERE

3 Our group developed a convolutional neural network-based
model for the classification of pleomorphic gastric lesions.

3 The model’s diagnostic yield was verified in both small bowel
and colon CE devices.

3 Artificial intelligence algorithms could increase the diagnostic
yield of capsule panendoscopy.
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