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Abstract

This paper proposes a decorrelation-based approach to test hypotheses and construct confidence 

intervals for the low dimensional component of high dimensional proportional hazards models. 

Motivated by the geometric projection principle, we propose new decorrelated score, Wald and 

partial likelihood ratio statistics. Without assuming model selection consistency, we prove the 

asymptotic normality of these test statistics, establish their semiparametric optimality. We also 

develop new procedures for constructing pointwise confidence intervals for the baseline hazard 

function and baseline survival function. Thorough numerical results are provided to back up our 

theory.
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1 Introduction

The proportional hazards model (Cox, 1972) is one of the most important tools for analyzing 

time to event data, and finds wide applications in epidemiology, medicine, economics, 

and sociology (Kalbfleisch and Prentice, 2011). This model is semiparametric by treating 

the baseline hazard function as an infinite dimensional nuisance parameter. To infer the 

finite dimensional parameter of interest, Cox (1972, 1975) proposes the partial likelihood 

approach which is invariant to the baseline hazard function. In low dimensional settings, 

Tsiatis (1981); Andersen and Gill (1982) have established the consistency and asymptotic 

normality of the maximum partial likelihood estimator.

In high dimensional settings when the number of covariates d is larger than the sample 

size n, the partial maximum likelihood estimation is an ill-posed problem. To solve this 

problem, we resort to the penalized estimators (Tibshirani, 1997; Fan and Li, 2002; Gui and 
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Li, 2005). Under the condition d = o(n1/4), Cai et al. (2005) establish the oracle properties 

for the maximum penalized partial likelihood estimator using the SCAD penalty. Other 

types of estimation procedures and their theoretical properties are studied by Zhang and Lu 

(2007); Wang et al. (2009); Antoniadis et al. (2010); Zhao and Li (2012). In particular, under 

the ultra-high dimensional regime that d = o(exp(n/s)), Bradic et al. (2011); Huang et al. 

(2013); Kong and Nan (2014) establish the oracle properties and statistical error bounds of 

maximum penalized partial likelihood estimator, where s denotes the number of nonzero 

elements in the parametric component of the Cox model.

Though significant progress has been made towards developing the estimation theory. Little 

work exists on the inferential aspects (e.g., testing hypothesis or constructing confidence 

intervals) of high dimensional proportional hazard models. A notable exception is Bradic et 

al. (2011), who establish the limiting distribution of the oracle estimator. However, such a 

result hinges on model selection consistency, which is not always possible in applications. 

To the best of our knowledge, uncertainty assessment for low dimensional parameters of 

high dimensional proportional hazards model remains an open problem. This paper aims to 

close this gap by developing valid inferential procedures and theory for high dimensional 

proportional hazards models. In particular, we test hypotheses and construct confidence 

intervals for a scalar component of a d dimensional parameter vector1. Compared with 

existing work, our method does not require any types of irrepresentable condition or the 

minimal signal strength condition, thus is more practical in applications.

More specifically, we develop a unified inferential framework by extending the classical 

score, Wald and partial likelihood ratio tests to high dimensional hazards models. The key 

ingredient of our construction of these tests is a novel high dimensional decorrelation device 

of the score function. Theoretically, we establish the asymptotic distributions of these test 

statistics under the null. Using the same idea, we construct optimal confidence intervals for 

the parameters of interest. In addition, we consider the problems on inferring the baseline 

hazard and survival functions and separately establish their asymptotic normalities.

The rest of this paper is organized as follows. In Section 2, we provide some background 

on the proportional hazards model. In Section 3, we propose the methods for conducting 

hypothesis testing and constructing confidence intervals for low dimensional components 

of regression parameters. In Section 4, we provide theoretical analysis of the proposed 

methods. The inference on the baseline hazard function is studied in Section 5. In Section 6, 

we investigate the empirical performance of these methods. Section 7 contains the summary 

and discussions. More technical details and an extension to the multivariate failure time data 

are presented in the Appendix.

2 Background

We start with an introduction of notation. Let a = (a1, …, ad)T ∈ ℝd be a d dimensional 

vector and A = [ajk] ∈ ℝd×d be a d by d matrix. Let supp(a) = {j : aj ≠ 0}. For 0 < q < ∞, 

we define ℓ0, ℓq and ℓ∞ vector norms as ‖a‖0 = card(supp(a)), ‖a‖q = (∑j = 1

d ‖aj‖q)1/q
 and ‖a‖∞ 

1It is straightforward to extend the setting from univariate scalar to multivariate parameter vector.
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= max1≤j≤d|aj|. We matrix define the matrix ℓ∞-norm as the elementwise sup-norm that ‖A‖∞ 
= max1≤j,k≤d|ajk|. Let Id be the identity in ℝd×d. For a sequence of random variables {Xn}n = 1

∞

and a random variable Y, we denote Xn weakly converges to Y by Xn
d Y . We denote [n] = 

{1, …, n}.

2.1 Cox’s Proportional Hazards Model

We briefly review the Cox’s proportional hazards model. Let Q be the time to event; R 
be the censoring time, and X(t) = (X1(t), …, Xd(t))T be the d dimensional time dependent 

covariates at time t. We consider the non-informative censoring setting that Q and R are 

conditionally independent given X(t). Let W = min{Q, R} and Δ = 1{Q ≤ R} denote the 

observed survival time and censoring indicator. Let τ be the end of study time. We observe n 
independent copies of {(X(t), W, Δ) : 0 ≤ t ≤ τ}

{ Xi t , W i, Δi :0 ≤ t ≤ τ}i ∈ [n] .

We denote λ{t|X(t)} as the conditional hazard rate function at time t given the covariates 

X(t). Under the proportional hazards model, we assume that

λ{t |X t } = λ0 t exp{XT t β∗},

where λ0(t) is an unknown baseline hazard rate function, and β∗ ∈ ℝd is an unknown 

parameter.

2.2 Penalized Estimation

Following Andersen and Gill (1982), we introduce some counting process notation. For each 

i, let Ni(t) := 1{Wi ≤ t, Δi = 1} be the counting process, and Yi(t) := 1 {Wi ≥ t} be the at 

risk process for subject i. Assume that the process Yi(t) is left continuous with its right-hand 

limits satisfying ℙ(Yi(t) = 1, 0 ≤ t ≤ τ) > Cτ for some positive constant Cτ. The negative 

log-partial likelihood is

ℒ β = − 1
n ∑

i = 1

n ∫
0

τ
Xi

T u βdNi u − ∫
0

τ
log[ ∑

i = 1

n
Y i u exp{Xi

T u β}]dN u ,

where N t = ∑i = 1

n Ni t .

When the dimension d is fixed and smaller than the sample size n, β∗ can be estimated 

by the maximum partial likelihood estimator (Andersen and Gill, 1982). However, in high 

dimensional settings where n < d, the maximum partial likelihood estimator is not well 

defined. To solve this problem, Fan and Li (2002) impose the sparsity assumption and 

propose the penalized estimator

β : = argmin
β ∈ ℝd

{ℒ β + Pλ β },
(2.1)
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where Pλ( ⋅ ) is a sparsity-inducing penalty function and λ is a tuning parameter. Bradic et 

al. (2011) and Huang et al. (2013) establish the rates of convergence and oracle properties of 

the maximum penalized partial likelihood estimators β̂ using SCAD and Lasso penalties. For 

notational simplicity, we focus on the Lasso penalized estimator in this paper and indicate 

that similar properties hold for the SCAD penalty. Existing works generally impose the 

following assumptions.

Assumption 2.1—The difference of the covariates is uniformly bounded:

sup
0 ≤ t ≤ τ

max
i, i′ ≤ n

max
1 ≤ j ≤ d

|Xij t − Xi′j t | ≤ CX,

for some constant CX > 0.

Assumption 2.2—For any set S ⊂ {1, …, d} where |S | ≍ s and any vector v belonging to 

the cone, C ξ, S = {v ∈ ℝd:‖vSC‖1 ≤ ξ‖vS‖1} it holds that

κ ξ, S; ∇2ℒ β∗ = inf
0 ≠ v ∈ C ξ, S

s1/2{vT ∇2ℒ β∗ v}1/2

‖vS‖1
≥ λmin > 0.

Note that the bounded covariate condition in Assumption 2.1, which is imposed by both 

Bradic et al. (2011) and Huang et al. (2013), holds in most real applications. Assumption 

2.2 is known as the compatibility factor condition which is also used by Huang et al. 

(2013). This assumption essentially bounds the minimal eigenvalue of the Hessian matrix 

∇2ℒ(β∗) from below for those directions within the cone C ξ, S . In particular, the validity 

of this assumption has been verified in Theorem 4.1 of Huang et al. (2013). Under these 

assumptions, Huang et al. (2013) derive the rate of convergence of the Lasso estimator β̂
under the ℓ1-norm. More specifically, they prove that under Assumptions 2.1 and 2.2, if ‖β*‖0 

= s and λ ≍ n−1log d, it holds that

‖β̂ − β∗‖1 = Oℙ sλ , (2.2)

which establishes the estimation consistency in the high dimensional regime.

Additional Notations—For a vector u, we denote u⊗0 = 1, u⊗1 = u and u⊗2 = uuT. 

Denote

S r t, β = 1
n ∑

i = 1

n
Xi

⊗ r t Y i t exp{Xi
T t β} for r = 0, 1, 2 Z̄ t, β = S 1 t, β

S 0 t, β
,

Vn t, β = ∑
i = 1

n Y i t exp{Xi t Tβ}
nS 0 t, β

{Xi t − Z t, β } ⊗ 2 = S 2 t, β
S 0 t, β

− Z t, β ⊗ 2 .
(2.3)

The gradient of ℒ(β) is
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∇ℒ β = ∂ℒ β
∂β = − 1

n ∑
i = 1

n ∫
0

τ

{Xi u − Z̄ u, β }dNi u , (2.4)

and the Hessian matrix of ℒ(β) is

∇2ℒ(β) = 1
n∫0

τ

Vn u, β dN̄ u = 1
n∫0

τ S 2 u, β
S 0 u, β

− Z̄ u, β ⊗ 2 dN̄ u . (2.5)

We denote the population versions of above defined quantities by

s r t, β = E[Y t X t ⊗ rexp{X t Tβ}] for r = 0, 1, 2; e t, β = s 1 t, β
/s 0 t, β ,

(2.6)

and

H β = E ∫
0

τ s 2 t, β
s 0 t, β

− e t, β ⊗ 2 dN t , and H∗ = H β∗ , (2.7)

where H∗ is the Fisher information matrix based on the partial likelihood.

3 Testing Hyptheses and Constructing Confidence Intervals

While estimation consistency has been established in high dimensions, it remains 

challenging to develop inferential procedures (e.g., confidence intervals and testing) for high 

dimensional proportional hazards model. In this section, we propose three novel hypothesis 

testing procedures. The proposed tests can be viewed as high dimensional counterparts of 

the conventional score, Wald, and partial likelihood ratio tests.

Hereafter, for notational simplicity, we partition the vector β as β = (α, θT)T, where 

α = β1 ∈ ℝ is the parameter of interest; θ = (β2, …, βd)T ∈ ℝd−1 is the vector of 

nuisance parameters, and we denote ℒ(β) by ℒ(α, θ). Let ∇αα
2 ℒ β , ∇αθ

2 ℒ β  and ∇θθ
2 ℒ β

be the corresponding partitions of ∇2ℒ(β). Let Hαα
∗ , Hαθ

∗  and Hθθ
∗  be the corresponding 

partitions of H∗, where H∗ is defined in (2.7). For instances, Hθa
∗ = H2:d, 1

∗ ∈ ℝd − 1 and 

∇θθ
2 ℒ β = ∇2:d, 2:d

2 ℒ β ∈ ℝ d − 1 × d − 1 . Throughout this paper, without loss of generality, 

we test the hypothesis H0: α∗ = 0 versus H1: α∗ ≠ 0. Note that the extension to tests for a 

multi-dimensional vector α ∗ ∈ ℝd0, where d0 is fixed, is straightforward.

3.1 Decorrelated Score Test

In the classical low dimensional setting, we can exploit the profile partial score function

S α = ∇αℒ α, θ |θ = θ̂ α

to conduct test, where θ̂ α = argminθℒ α, θ  is the maximum partial likelihood estimator for 

θ with a fixed α. Under the null hypothesis that α∗ = 0, when d is fixed while n goes to 
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infinity, it holds that nS 0 d N 0, Hαα
∗ . If n Hαα

∗ −1S2 0  is larger than the (1 − η)th quantile 

of a chi-squared distribution with one degree of freedom, we reject the null hypothesis. 

Classical asymptotic theory shows that this procedure controls type I error with significance 

level η.

However, in high dimensions, the profile partial score function S(α) with θ̂(α) replaced 

by a penalized estimator, say the corresponding components of β̂ in (2.1), does not 

yield a tractable limiting distribution due to the existence of a large number of nuisance 

parameters. To address this problem, we construct a new type of score function for α that 

is asymptotically normal even in high dimensions. The key component of our procedure is a 

high dimensional decorrelation device, aiming to handle the impact of the high dimensional 

nuisance vector.

More specifically, we propose a decorrelated score test for H0: α∗ = 0. We first estimate θ∗ 

by θ̂ using the ℓ1 penalized estimator β̂ in (2.1). Next, we calculate a linear combination of 

the partial score function ∇θℒ(0, θ̂) to best approximate ∇αℒ(0, θ̂). The population version of 

the vector of coefficients in the best linear combination can be calculated as

w ∗ = argminE{∇αℒ 0, θ∗ − wT ∇θℒ 0, θ∗ }2

= E{∇θℒ 0, θ∗ ∇θℒ 0, θ∗ T}
−1

E{∇θℒ 0, θ∗ ∇αℒ 0, θ∗ } = Hθθ
∗ − 1Hθα

∗ ,
(3.1)

where the last equality is by the second Bartlett identity (Tsiatis, 1981). In fact, w∗T∇θℒ(0, 

θ∗) can be interpreted as the projection of ∇αℒ(0, θ∗) onto the linear span of the partial 

score function ∇θℒ(0, θ∗). In high dimensions, one cannot directly estimate w∗ by the 

corresponding sample version since the problem is ill-posed. Motivated by the definition of 

w∗ in (3.1), we estimate it by the Dantzig selector,

w =w ∈ ℝd − 1
argmin ‖w‖1, subject to ‖∇αθ

2 ℒ(β) − wT ∇θθ
2 ℒ(β)‖∞ ≤ λ′, (3.2)

where λ′ is a tuning parameter. Since w∗ is of high dimension d − 1, we impose the sparsity 

condition on w∗. Given θ and w, we propose a decorrelated score function for α as

U(α, θ) = ∇αℒ(α, θ) − wT ∇θℒ(α, θ) . (3.3)

Geometrically, the decorrelated score function is approximately orthogonal to any 

component of the nuisance score function ∇θℒ(0, θ∗). This orthogonality property, which 

does not hold for the original score function ∇αℒ(α, θ), reduces the variability caused by 

the nuisance parameters. A geometric illustration of the decorrelation-based methods is 

provided in Figure 1, which also incorporates the illustration of the decorrelated Wald 

and partial likelihood ratio tests to be introduced in the following subsections. Technically, 

the uncertainty of estimating θ in the partial score function ∇αℒ(α, θ) can be reduced by 

subtracting the decorrelation term wT ∇θℒ(α, θ). As will be shown in the next section, this 

is a key step to establish the result that the decorrelated score function U(0, θ) weakly 

converges to N(0, Hα|θ) under the null, where Hα |θ = Hαα
∗ − Hαθ

∗ Hθθ
∗ − 1Hθα

∗ . This further explains 
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why the decorrelated score function U(α, θ) rather than the original score function ∇αℒ(α, θ)
should be used as the inferential function in high dimensions. On the other hand, in the 

low dimensional setting, it can be shown that the decorrelated score function U(α, θ) is 

asymptotically equivalent to the profile partial score function S(α).

To test if α* = 0, we need to standardize U(0, θ) in order to construct the test statistic. We 

estimate Hα|θ by

Hα |θ = ∇αα
2 ℒ(α, θ) − wT ∇θα

2 ℒ(α, θ) . (3.4)

Hence, we define the decorrelated score test statistic as

Sn = nHα |θ
−1 U2(0, θ), where U(0, θ) and Hα |θ are defined in (3.3) and (3.4) . (3.5)

In the next section, we show that under the null, Sn converges weakly to a chi-squared 

distribution with one degree of freedom. Given a significance level η ∈ (0,1), the score test 

ψS(η) is

ψS(η) = 0 if Sn ≤ χ1
2(1 − η)

1 otherwise
, (3.6)

where χ1
2(1 − η) denotes the (1 − η)th quantile of a chi-squared random variable with one 

degree of freedom, and the null hypothesis α∗ = 0 is rejected if and only if ψS(η) = 1.

3.2 Confidence Intervals and Decorrelated Wald Test

The decorrelated score test does not provide a confidence interval for α∗ with a desired 

coverage probability. In low dimensions, by examing the limiting distribution of the 

maximum partial likelihood estimator, we can get a confidence interval for α∗ (Andersen 

and Gill, 1982), which is equivalent to the classical Wald test. This subsection extends 

the classical Wald test for the proportional hazards model to high dimensional settings to 

construct confidence intervals for the parameters of interest.

The key idea of performing Wald test is to derive a regular estimator for α∗. Our procedure 

is based on the deccorelated score function U(α, θ) in (3.3). Since U(α, θ) serves as an 

approximately unbiased estimating equation for α, the root of the equation U(α, θ) = 0
with respect to α defines an estimator for α*. However, searching for the root may 

be computationally intensive, especially when α is multi-dimensional. To reduce the 

computational cost, we exploit a closed-form estimator α∼ obtained by linearizing U(α, θ) = 0

at the initial estimator α. More specifically, let β = (α, θT )
T

 be the ℓ1 penalized estimator in 

(2.1), we adopt the following one-step estimator,

α∼ = α − ∂U(α, θ)
∂α

−1
U(α, θ), where U(α, θ) = ∇αℒ(α, θ) − wT ∇θℒ(α, θ) . (3.7)
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In the next section, we prove that n(α∼ − α∗) converges weakly to N 0, Hα |θ
−1 . Hence, let 

Z1−η/2 be the (1 − η/2)-th quantile of N(0, 1). We show that

α∼ − n−1/2Z1 − η/2Hα |θ
−1/2, α∼ + n−1/2Z1 − η/2Hα |θ

−1/2

is a 100(1 − η)% confidence interval for α∗.

From the perspective of hypothesis testing, the decorrelated Wald test statistic for H0: α∗ = 0 

versus H1: α∗ ≠ 0 is

W n = nHα |θα∼2, where α∼ and Hα |θ are defined in (3.7) and (3.4), respectively . (3.8)

Consequently, the decorrelated Wald test at significance level η is

ψW(η) = 0 if W n ≤ χ1
2(1 − η),

1 otherwise,
(3.9)

and the null hypothesis α∗ = 0 is rejected if and only if ψW(η) = 1.

3.3 Decorrelated Partial Likelihood Ratio Test

In low dimsional settings, the partial likelihood ratio test 

statistic is PLRT = 2n{ℒ(0, θP(0)) − ℒ(αP, θP)} where θP(0) = argminθℒ(0, θ) and 

(αP, θP) = argminα, θℒ(α, θ) are the maximum partial likelihood estimators under the null 

and alternative, respectively. Hence, PLRT evaluates the validity of the null hypothesis 

by comparing the partial likelihood under H0 with that under H1. Similar to the partial 

score test, the partial likelihood ratio test also fails in the high dimensional setting due to 

the presence of a large number of nuisance parameters. In this section, we propose a new 

version of the partial likelihood ratio test which is valid in high dimensions.

To handle the impact of high dimensional nuisance parameters, we define the (negative) 

decorrelated partial likelihood for α as ℒdecor(α) = ℒ(α, θ − αw). The reason for this name 

is that the derivative of ℒdecor(α) with respect to α evaluated at α = 0 is identical to the 

decorrelated score function U(0, θ) in (3.3). The decorrelated partial likelihood ℒdecor(α) 

plays the same role as the profile partial likelihood ℒ(α, θ(α)) in the low dimensional setting. 

Hence, the decorrelated partial likelihood ratio test statistic is defined as

Ln = 2n{ℒdecor(0) − ℒdecor(α∼)}, where ℒdecor(α) = ℒ(α, θ − αw), (3.10)

and α∼ is given in (3.7). As discussed in the previous subsection, α∼ is a one-step 

approximation of the global minimizer of ℒdecor(α). Hence, the log-likelihood ratio Ln

evaluates the validity of the null hypothesis by comparing the decorrelated partial likelihood 

under H0 with that under H1. This is a natural extension of the classical partial likelihood 

ratio test to the high dimensional setting.
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In the next section, we show that Ln converges weakly to a chi-squared distribution with one 

degree of freedom. Therefore, a decorrelated partial likelihood ratio test with significance 

level η is

ψL(η) = {0 if Ln ≤ χ1
2(1 − η)

1 otherwise
, (3.11)

and ψL(η) = 1 indicates a rejection of the null hypothesis.

4 Asymptotic Properties

In this section, we derive the limiting distributions of the decorrelated test statistics under the 

null hypothesis. More detailed proofs are provided in Appendix A. In our analysis, we make 

the following regularity assumptions.

Assumption 4.1

The true hazard is uniformly bounded, i.e., sup
t ∈ [0, τ]

max
i ∈ [n]

|Xi
T(t)β∗| = O(1).

Assumption 4.2

It holds that ‖w∗‖0 = s′ ≍ s, and sup
t ∈ [0, τ]

max
i ∈ [n]

|Xi, 2:d
T (t)w∗| = O(1).

Assumption 4.3

The Fisher information matrix is bounded, ‖H∗‖∞ = O(1), and its minimum eigenvalue is also 

bounded from below, Λmin(H∗) ≥ Ch > 0, which implies that Hα |θ = Hαα
∗ − Hαθ

∗ Hθθ
∗ − 1Hθα

∗ ≥ Cℎ.

To connect these assumptions with existing literature, Assumptions 4.1 and 4.2 extend 

Assumption (iv) of Theorem 3.3 in van de Geer et al. (2014a) to the proportional hazards 

model. In particular, the sparsity assumption of w∗ ensures that the Dantzig selector w
converges to w∗ at a fast rate. Assumption 4.3 is related to the Fisher information matrix, 

which is essential even in low dimensional settings.

Our main result characterizes the asymptotic normality of the decorrelated score function 

U(0, θ) in (3.3) under the null.

Theorem 4.4

Under Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3, let λ ≍ n −−1 log d, λ′ ≍ s n−1log d and 

n−1/2s3 log d = o(1). Under the null hypothesis that α∗ = 0, the decorrelated score function 

U(0, θ) defined in (3.3) satisfies

nU(0, θ) d Z, where Z N(0, Hα |θ), (4.1)

and Hα |θ = Hαα
∗ − Hαθ

∗ Hθθ
∗ − 1Hθα

∗ .
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As we have discussed before, the limiting variance of the decorrelated score function can 

be estimated by Hα |θ = ∇αα
2 ℒ(α, θ) − wT ∇θα

2 ℒ(α, θ). The next lemma shows the consistency of 

Hα |θ.

Lemma 4.5

Suppose Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold. If λ ≍ n−1log d and λ′ ≍ s n−1log d, 

we have

|Hα |θ − Hα |θ | = Oℙ s2 log d
n ,

where Hα |θ is defined in (3.4).

By Theorem 4.4 and Lemma 4.5, the next corollary shows that under the null hypothesis, 

type I error of the decorrelated score test ψS(η) in (3.6) converges asymptotically to 

the significance level η. Let the associated p-value of the decorrelated score test be 

PS = 2{1 − Φ(Sn)}, where Φ(·) is the cumulative distribution function of the standard normal 

random variable and Sn is the score test statistic defined in (3.5). The distribution of PS 

converges to a uniform distribution asymptotically.

Corollary 4.6

Suppose Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold, λ ≍ n−1log d, λ′ ≍ s n−1log d and 

n−1/2s3 log d = o(1). The decorrelated score test and the its corresponding p-value satisfy

lim
x ∞

ℙ(ψS(η) = 1 |α∗ = 0) = η, and PS
d Unif[0, 1], when α∗ = 0,

where Unif[0, 1] denotes a random variable uniformly distributed in [0, 1].

We then analyze the decorrelated Wald test under the null. We derive the limiting 

distribution of the one-step estimator α∼ defined in (3.7) in the next theorem.

Theorem 4.7

Suppose Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold, and λ ≍ n−1log d, λ′ ≍ s n−1log d, 

n−1/2s3 log d = o(1). When the null hypothesis α∗ = 0 holds, the decorrelated estimator α∼

satisfies

nα∼ d Z, where Z N(0, Hα |θ
−1 ) . (4.2)

Utilizing the asymptotic normality of α∼, we can establish the limiting type I error of ψW (η) 

in (3.9), in the next corollary. Note that, it is straightforward to generalize the result to be 

n(α∼ − α∗) d Z, where Z N(0, Hα |θ
−1 ) for any α∗. This gives us a confidence interval of α∗.
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Corollary 4.8

Under Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3, suppose λ ≍ n−1log d, λ′ ≍ s n−1log d and 

n−1/2s3 log d = o(1). The type I error of the decorrelated Wald test ψW(η) and its 

corresponding p-value PW = 2{1 − Φ(W n)} satisfy

lim
n

ℙ(ψW (η) = 1 |α∗ = 0) = η, and PW
d Unif[0, 1] when α∗ = 0.

In addition, an asymptotic (1 − η) × 100% confidence interval of α∗ is

α∼ − Φ−1(1 − η/2)
nHα |θ

, α∼ + Φ−1(1 − η/2)
nHα |θ

.

Finally, we characterize the limiting distribution of the decorrelated partial likelihood ratio 

test statistic Ln introduced in (3.10).

Theorem 4.9

Suppose Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold, λ ≍ n−1log d, λ′ ≍ s n−1log d and 

n−1/2s3 log d = o(1). If the null hypothesis α∗ = 0 holds, the decorrelated likelihood ratio test 

statistic Ln in (3.10) satisfies

Ln
d Zχ, where Zχ χ1

2 . (4.3)

This theorem justifies the decorrelated partial likelihood ratio test ψL(η) in (3.11). Also, let 

the p-value associated with the decorrelated partial likelihood ratio test be PL = 1 − F (Ln), 
where F(·) is the cumulative distribution function of χ1

2. Similar to Corollaries 4.6 and 4.8, 

we characterize the type I error of the test ψL(η) in (3.11) and its corresponding p-value 

below.

Corollary 4.10

Suppose Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold, λ ≍ n−1log d, λ′ ≍ s n−1log d and 

n−1/2s3 log d = o(1). The type I error of the decorrelated partial likelihood ratio test ψL(η) 

with significance level η and its associated p-value PL satisfy

lim
x ∞

ℙ(ψL(η) = 1 |α∗ = 0) = η, and PL
d Unif[0, 1] when α∗ = 0.

By Corollaries 4.6, 4.8 and 4.10, we see that the decorrelated score, Wald and partial 

likelihood ratio tests are asymptotically equivalent as summarized in the next corollary.
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Corollary 4.11

Suppose Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold, λ ≍ n−1log d, λ′ ≍ s n−1log d and 

n−1/2s3 log d = o(1). If the null hypothesis α* = 0 holds, the test statistics Sn in (3.5), W n in 

(3.8), and Ln in (3.10) are asymptotically equivalent, i.e.,

Sn = W n + oℙ(1) = Ln + oℙ(1) .

To summarize this subsection, Corollaries 4.6, 4.8 and 4.10 characterize the asymptotic 

distributions of the proposed decorrelated test statistics under the scaling when n−1/2s3 log d 
= o(1) under the null hypothesis. It is known that Hα |θ is the semiparametric information 

lower bound for inferring α. Theorem 4.7 shows that α∼ achieves the semiparametric 

information bound, which indicates the semiparametric efficiency of α∼. Using the 

asymptotic equivalence in Corollary 4.11, all of our test statistics are semiparametrically 

efficient (van der Vaart, 2000).

Remark 4.12

All the theoretical results in this section are still valid if we replace the Lasso penalty with 

nonconvex SCAD or MCP penalties as long as the consistency result (2.2) holds.

Remark 4.13

When the model is misspecified, we denote the oracle parameter as

βo = argmin
β

E∗{ℒ(β)},

where E∗ is the expectation under the true model. Our proposed methods are still applicable 

to test if β1
o = 0 and construct confidence intervals for β1

o.

Remark 4.14

Existing works mainly consider high dimensional inferences for linear and generalized 

models; see Lockhart et al. (2014); Chernozhukov et al. (2013); van de Geer et al. (2014b); 

Javanmard and Montanari (2013) and Zhang and Zhang (2014). More specifically, Lockhart 

et al. (2014) consider conditional inference, while we consider unconditional inference. 

The others propose estimators that are asymptotically normal. Compared with existing 

approaches, we provide a unified framework which are more general in two aspects: (i) 

Our framework can deal with nonconvex penalties, while it is unclear if existing works are 

still valid under nonconvex penalities. (ii) Our framework based on the decorrelated score 

function provides a natural approach to deal with the misspecified model. In contrast, most 

existing methods assume the model must be correct.

5 Inference on the Baseline Hazard Function

The baseline hazard function
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Λ0(t) = ∫
0

t
λ0(u)du

is treated as a nuisance function in the log-partial likelihood method. In practice, inferences 

on the baseline hazard function is also of interest. To the best of our knowledge, estimating 

the baseline hazard function or the survival function and construct confidence intervals in 

high dimensions remains unexplored. In this section, we extend the decorrelation approach 

to construct confidence intervals for the baseline hazard function and the survival function. 

All the proof details are provided in Appendix B.

We consider the following Breslow-type estimator for the baseline hazard function. Given 

an ℓ1-penalized estimator β derived from (2.1), the direct plug-in estimator for the baseline 

hazard function at time t is

Λ0(t, β) = ∫
0

t ∑i = 1

n dNi(u)

∑i = 1

n Y i(u)exp{Xi
T(u)β}

. (5.1)

Since the plug-in estimator β does not posses a tractable distribution, inference based 

on the estimator Λ0(t, β) is difficult. To handle this problem, we adopt the decorrelation 

approach as in the previous sections and estimate Λ0(t) by the sample version of 

Λ0(t, β) − {∇Λ0(t, β∗)}TH ∗ − 1∇ℒ(β), where

Λ0(t, β) = E∫
0

t dNi(u)
S(0)(u, β)

,

and the gradient ∇Λ0(t, β*) is taken with respect to the corresponding β component, and H* 

is the Fisher information matrix defined in (2.7). Similar to Section 3.1, we directly estimate 

H ∗ − 1∇Λ0(t, β) by the following Dantzig selector

u(t) = argmin‖u(t)‖1, subject to ‖∇Λ0(t, β) − ∇2ℒ(β)u(t)‖∞ ≤ δ, (5.2)

where δ is a tuning parameter. It can be shown that the estimator u(t) converges to u*(t) = 

H*−1∇Λ0(t, β*) under the following regularity assumption.

Assumption 5.1

It holds that ‖u∗(t)‖0 = s′ ≍ s for all 0 ≤ t ≤ τ.

Note that Assumption 5.1 plays the same role as Assumption 4.2 in the previous section. 

Corollary B.2 in Appendix B characterizes the rate of convergence of u(t). Hence, the 

decorrelated baseline hazard function estimator at time t is

Λ∼0(t, β) = Λ0(t, β) − u(t)T ∇ℒ(β), where u(t) is defined in (5.2) . (5.3)
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Based on the estimator (5.3), the survival function S0(t) = exp{−Λ0(t)} is estimated by 

S∼(t, β) = exp{ − Λ∼0(t, β)}. The main theorem of this section characterizes the asymptotic 

normality of Λ∼0(t, β) and S∼(t, β) as follows.

Theorem 5.2

Suppose Assumptions 2.1, 2.2, 4.1, 4.3 and 5.1 hold, λ ≍ n−1log d, δ ≍ s′ n−1log d and 

n−1/2s3 log d = o(1). We have, for any t ∈ [0,τ], the decorrelated baseline hazard function 

estimator Λ∼0(t, β) in (5.3) satisfies

n{Λ0(t) − Λ∼0(t, β)} d Z, where Z N 0, σ1
2(t) + σ2

2(t) ,

and

σ1
2(t) = ∫

0

t λ0(u)du
E[exp{XT(u)β∗}Y (u)]

and σ2
2(t) = ∇Λ0(t, β∗)TH ∗ − 1∇Λ0(t, β∗) . (5.4)

The estimated survival function S∼(t, β) satisfies

n{S∼(t, β) − S0(t)}
d Z′, where Z′ N 0, σ1

2(t) + σ2
2(t)

exp(2Λ0(t)) .

Given Theorem 5.2, we further need to estimate the limiting variances σ1
2(t) and σ2

2(t). To this 

end, we use

σ1
2(t) = ∫

0

t dΛ0(u, β)
n−1∑i′ = 1

n exp{Xi′
T(u)β}Y i′(u)

and σ2
2(t) = {∇Λ0(t, β)}Tu(t),

where Λ0(t, β) is defined in (5.1).

We conclude this section by the following corollary which provides confidence intervals for 

Λ0(t) and S0(t).

Corollary 5.3

Suppose Assumptions 2.1, 2.2, 4.2, 4.3 and 5.1 hold, λ ≍ n−1log d, δ ≍ s n−1log d and 

n−1/2s3 log d = o(1). For any t > 0 and 0 < η < 1,

lim
x ∞

ℙ |Λ0(t) − Λ∼0(t, β) | ≤ Φ−1(1 − η/2){σ1
2(t) + σ2

2(t)}1/2

n = 1 − η,

and

lim
x ∞

ℙ |S0(t) − S∼0(t, β) | ≤ Φ−1(1 − η/2){σ1
2(t) + σ2

2(t)}1/2exp{ − Λ∼0(t, β)}
n = 1 − η .
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6 Numerical Results

This section reports numerical results of our proposed methods using both simulated and 

real data. We test the methods proposed in Section 3 and Section 5 by considering empirical 

behaviors for inferences on the individual regression coefficients βj’s and the baseline 

hazard function Λ0(t).

6.1 Inference on the Parametric Component

We first investigate empirical performances of the decorrelated score, Wald and partial 

likelihood ratio tests on the parametric component β as proposed in Section 3. To estimate 

β∗ and w∗, we choose the tuning parameters λ by 10-fold cross-validation and set 

λ′ = 1
2 n−1log d. We find that our simulation results are insensitive to the choice of λ′. 

We conduct decorrelated score, Wald and partial likelihood ratio tests for β1 which is set 

to be 0 under null hypothesis H0: β1 = 0 versus alternative Ha: β1 ≠= 0, where we set the 

significance level to be η = 0.05. In each setting, we simulate n = 150 independent samples 

from a multivariate Gaussian distribution Nd(0, Σ) for d = 100, 200, or 500, where Σ is a 

Toeplitz matrix with Σjk = ρ|j−k| and ρ = 0.25, 0.4, 0.6 or 0.75. The cardinality of the active 

set s is either 2 or 3, and the regression coefficients in the active set are either all 1’s (Dirac) 

or drawn randomly from the uniform distribution Unif[0, 2]. We set the baseline hazard rate 

function to be identity. Thus, the i-th survival time follows an exponential distribution with 

mean exp(Xi
Tβ∗). The i-th censoring time is independently generated from an exponential 

distribution with mean U × exp(Xi
Tβ∗), where U ~ Unif[1, 3]. As discussed in Fan and Li 

(2002), this censoring scheme results in about 30% censored samples.

The above simulation is repeated 1,000 times. The empirical type I errors of the decorrelated 

score, Wald and partial likelihood ratio tests are summarized in Tables 1 and 2. We see that 

the empirical type I errors of all three tests are close to the desired 5% significance level, 

which supports our theoretical results. This observation holds for the whole range of ρ, s and 

d specified in the data generating procedures. In addition, as expected, the empirical type I 

errors further deviate from the significance level as d increases for all three tests, illustrating 

the effects of dimensionality d on finite sample performance.

We also investigate the empirical power of the proposed tests. Instead of setting β1 = 0, we 

generate the data with β1 = 0.05, 0.1, 0.15, …, 0.55, following the same simulation scheme 

introduced above. We plot the rejection rates of the three decorrelated tests for testing H0 : 

β1 = 0 with significance level 0.05 and ρ = 0.25 in Figure 2. We see that when d = 100, the 

three tests share similar power. However, for larger d (e.g., d = 500), the decorrelated partial 

likelihood ratio test is the most powerful test. In addition, the Wald test is less effective for 

problems with higher dimensionality. Based on our simulation results, we recommend the 

decorrelated partial likelihood ratio test for inference in high dimensional problems.

6.2 Inference on the Baseline Hazard Function on Simulated Data

In this section, we demonstrate the empirical performance of the decorrelated inference 

procedure on the baseline hazard function Λ0(t) proposed as in Section 5. We consider three 

scenarios with Λ0(t) = t, t2/2 and t3/3. Note that when Λ0(t) = p−1tp, the survival time 

Fang et al. Page 15

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2023 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



follows a Weibull distribution with shape parameter p and scale parameter {pexp(−Xi
Tβ∗)}1/p

, 

i.e., W (p, {pexp(−Xi
Tβ∗)}1/p). We use the same data generating procedures for the covariate 

Xi’s, parameter β∗ and censoring time R as in the previous subsection.

In each simulation, we construct 95% confidence intervals for Λ0(t) at t = 0.2 using the 

procedures proposed in Section 5. The simulation is repeated 1,000 times. The results for 

the empirical coverage probabilities of Λ0(t) are summarized in Tables 3 and 4. It is seen 

that the coverage probabilities are all between 93% and 97%, which matches our theoretical 

results.

To further examine the performance of our method, we conduct additional simulation studies 

by plotting the 95% confidence intervals of Λ0(t) at t = 0.05, 0.1, 0.15, …, 0.5, with Λ0(t) = t 
and t2/2. The results are presented in Figures 3 and 4.

6.3 Analyzing a Gene Expression Dataset

We apply the proposed testing procedures to analyze a genomic data set, which is collected 

from a diffuse large B-cell lymphoma study analyzed by Alizadeh et al. (2000). One of the 

goals in this study is to investigate how the gene expression levels in B-cell malignancies 

are associated with the survival time. The expression values for over 13,412 genes in B-cell 

malignancies are measured by microarray experiments. The data setcontains 40 patients with 

diffuse large B-cell lymphoma who are recruited and followed until death or the end of 

the study. A small proportion (≈5%) of the gene expression values are not well measured 

and are treated as missing values by Alizadeh et al. (2000). For simplicity, we impute the 

missing values of each gene by the median of the observed values of the same gene. The 

average survival time is 43.9 months and the censored rate is 55%. Since the sample size n = 

40 is small, we conduct pre-screening by fitting univariate proportional hazards models and 

only keep d = 200 genes with the smallest p-values.

We apply the proposed score, Wald and partial likelihood ratio tests to the pre-screened data. 

The same strategy for choosing the tuning parameters as that in the simulation studies is 

adopted. We repeatedly apply the hypothesis tests for all parameters. To control the family-

wise error rate due to the multiple testing, the p-values are adjusted by the Bonferroni’s 

method. To be more conservative, we only report the genes with adjusted p-values less 

than 0.05 by all of the three methods in Table 5. Many of the genes which are significant 

in the hypothesis tests are biologically related to lymphoma. For instance, the relation 

between lymphoma and genes FLT3 (Meierhoff et al., 1995), CDC10 (Di Gaetano et al., 

2003), CHN2 (Nishiu et al., 2002) and Emv11 (Hiai et al., 2003) have been experimentally 

confirmed. This provides evidence that our methods can be used to discover scientific 

findings in applications involving high dimensional datasets.

7 Discussion

We proposed a novel decorrelation-based approach to conduct inference for both the 

parametric and nonparametric components of high dimensional Cox’s proportional hazards 

models. Unlike existing works, our methods do not require conditions on model selection 
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consistency or minimal signal strength. Theoretical properties of the proposed methods 

are established. Extensive numerical investigations are conducted on the simulated and 

real datasets to examine the finite sample performances of our methods. To the best of 

our knowledge, this paper for the first time provides a unified framework on uncertainty 

assessment of high dimensional Cox’s proportional hazards models. Our methods can be 

extended to conduct inference for other high-dimensional survival models such as censored 

linear model (Müller and van de Geer, 2014) and additive hazards model (Lin and Lv, 2013).

In this paper, we focus on the Cox’s proportional hazards model for the univariate survival 

data. In practice, many biomedical studies involve multiple survival outcomes. For instance, 

in the Framingham Heart Study by Dawber (1980), both time to coronary heart disease and 

time to cerebrovascular accident are observed. How the inference can be drawn by jointly 

analyzing the multivariate survival data in the high dimensional setting remains largely 

unexplored. To address this problem, we extend the proposed hypothesis testing procedures 

to deal with the multivariate survival data. More details are presented in Appendix D.

The proposed methods involve two tuning parameters λ and λ′. The presence of multiple 

tuning parameters in the inferential procedures is encountered in many recent works even 

under high dimensional linear models (Chernozhukov et al., 2013; van de Geer et al., 2014b; 

Javanmard and Montanari, 2013; Zhang and Zhang, 2014). Theoretically, we establish 

the asymptotic normality of the test statistics when λ ≍ n−1log d and λ′ ≍ s n−1log d. 

Empirically, our numerical results suggest that cross-validation seems to be a practical 

procedure for the choice of λ. As an important future investigation, it is of interest to 

provide rigorous theoretical justification of practical procedures such as cross-validation for 

the choice of tuning parameters.
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Refer to Web version on PubMed Central for supplementary material.
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A Proofs in Section 4

In this section, we provide the detailed proofs in Section 4. We first provide a key lemma 

which characterizes the asymptotic normality of ∇ℒ(β∗). This lemma is essential in our later 

proofs to derive the asymptotic distributions of the test statistics.

Lemma A.1

Under Assumptions 2.1, 4.2 and 4.3, for any vector v ∈ ℝd, if ‖v‖0 ≤ s′ and 

n−1/2 s′3log d = o(1), it holds that
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nvT ∇ℒ(β∗)
vTH∗v

d N(0, 1), where H∗ is defined in (2.7) .

Proof

Let Mi(t) = Ni(t) − ∫
0

t

Y i(u)λ0(u)du. By the definition of ∇ℒ(β*) in (2.4), we have

∇ℒ(β∗) = − 1
n ∑

i = 1

n ∫
0

τ
{Xi(u) − Zn(u, β∗)}dMi(u)

= − 1
n ∑

i = 1

n ∫
0

τ
{Xi(u) − e(u, β∗)}dMi(u) − 1

n ∑
i = 1

n ∫
0

τ
{e(u, β∗) − Xn(u, β∗)}dMi(u),

Thus, by the identity H∗ = nVar{∇ℒ(β∗)}, we have

nvT ∇ℒ(β∗)
vTH∗v

= − 1
n

vT

vTH∗v
∑

i = 1

n ∫
0

τ
{Xi(u) − e(u, β∗)}dMi(u)

S

− 1
n

vT

vTH∗v
∑

i = 1

n ∫
0

τ
{e(u, β∗) − Xn(u, β∗)}dMi(u)

E

.

For the first term S, denote by

ξi = vT

vTH∗v
∫

0

τ
{Xi(u) − e(u, β∗)}dMi(u) .

We have E(ξi) = 0, and Var(n−1/2S) = 1. Thus S is a sum of n independent random variables 

with mean 0. To get the asymptotic distribution of n−1/2S, we verify the Lyapunov condition. 

Indeed, we have

1
n3/2 ∑

i = 1

n
E vT

vTH∗v
∫

0

τ
{Xi(u) − e(u, β∗)}dMi(u)

3

≤ C
Cℎ

3/2n3/2 ∑
i = 1

n
s′3/2 sup

u ∈ [0, τ]
‖Xi(u) − e(u, β∗)‖∞

3

= O(s′3/2n−1/2),

where the inequality follows by Assumption 4.3 for some constant C, and the equality holds 

by Lemma C.1 and Assumption 2.1. Thus, the Lyapunov condition holds by our scaling 

assumption that s′3/2n−1/2 = o(1). Apply Lindeberg Feller Central Limit Theorem, we have 

n−1/2S d N(0, 1).

Fang et al. Page 18

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2023 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Next, we prove that the second term E = oℙ(1). Since

E = 1
n

vT

vTH∗v
∑

i = 1

n ∫
0

τ
{e(u, β∗) − Xn(u, β∗)}1dMi(u)

≤ 1
n

s′1/2
λmin

sup
u ∈ [0, τ]

‖e(u, β∗) − Xn(u, β∗)‖∞∫
0

τ

∑
i = 1

n
1dMi(u) .

By Lemma C.1, it holds that supu ∈ [0, τ]‖e(u, β∗) − Xn(u, β∗)‖∞ = Oℙ( n−1log d). It holds that, for 

some constant C > 0,

E ≤ C
n

1
λmin

s′log d
n ∫

0

τ

∑
i = 1

n
1dMi(u) .

It remains to bound the term ∫
0

τ

∑i = 1

n 1dMi(u) . By Theorem 2.11.9 and Example of 

2.11.16 of van der Vaart and Wellner (1996), G(t): = n−1/2∑i = 1

n Mi(t) converges weakly to 

a tight Gaussian process G(t). Furthermore, by Strong Embedding Theorem of Shorack and 

Wellner (2009), there exists another probability space such that S ∗ (0)(β, t), S ∗ (1)(β, t), G∗(t)

converges almost surely to s ∗ (0)(β, t), s ∗ (1)(β, t), G∗(t) , where * indicates the existences in 

a new probability space. This implies that ∫
0

τ

|dG(t) | = ∫
0

τ

|dG∗(t) | + oℙ(1). We have, by our 

assumption n−1 s′log d = oℙ(1), the term E satisfies that

E = Oℙ
s′log d

n ⋅ 1
n = oℙ(1) .

Combining this with the result that n−1/2S d N(0, 1) concludes the proof. □

Next, we characterize the rate of convergence of the Dantzig selector w in (3.2) in the 

following lemma.

Lemma A.2

Under Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3, If λ′ ≍ s′ n−1log d, we have

‖w − w∗‖1 = Oℙ(s′s n−1log d), (A.1)

where w and w* are defined in (3.2) and (3.1), respectively.

Proof

As shown in Lemma C.6, under Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3, the condition (C.7) 

in Lemma C.8 is satisfied for λ′ ≍ s′ n−1log d. Consequently, we have
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‖w − w∗‖1 = Oℙ(s′s n−1log d),

which concludes the proof. □

Proof of Theorem 4.4

To derive the asymptotic distribution of nU(0, θ), we start with decomposing U(0, θ) into 

several terms.

U(0, θ) = ∇αℒ(0, θ) − wT ∇θℒ(0, θ)
= ∇αℒ(0, θ∗) + ∇αθ

2 ℒ(0, θ)(θ − θ∗) − {wT ∇θℒ(0, θ∗) + wT ∇θθ
2 ℒ(0, θ∼)(θ − θ∗)}

= ∇αℒ(0, θ∗) − w ∗ T ∇θℒ(0, θ∗)
S

+ (w∗ − w)T ∇θℒ(0, θ∗)
E1

+ {∇αθ
2 ℒ(0, θ) − wT ∇θθ

2 ℒ(0, θ∼)} θ − θ∗

E2

,
(A.2)

where the second equality holds by the mean value theorem for some θ = θ∗ + u(θ − θ∗), 
θ∼ = θ∗ + u′(θ − θ∗) and u, u′ ∈ [0, 1].

We consider the terms S, E1 and E2 separately. For the first term S, by Lemma A.1, taking 

v = 1, − w ∗ T T . We have,

nS d Z, where Z N(0, Hα |θ) . (A.3)

For the term E1, we have,

E1 ≤ ‖w − w∗‖1‖∇θℒ(0, θ∗)‖∞ = Oℙ s′λ′ n−1log d , (A.4)

where ‖w − w∗‖1 = Oℙ(s′λ′) by Lemma C.8, and ‖∇θℒ(0, θ∗)‖∞ = Oℙ n−1log d  by Lemma 

C.3.

For the term E2, we have,

E2 = {∇αθ
2 ℒ(0, θ) − Hαθ

∗ Hθθ
∗ − 1 ∇θθ

2 ℒ(0, θ∼)}(θ − θ∗)
E21

+ (w∗ − w)T ∇θθ
2 ℒ(0, θ∼)(θ − θ∗)

E22

.
(A.5)

Considering the terms E21 and E22 separately, first, we have,

E21 = {∇αθ
2 ℒ(0, θ) − Hαθ

∗ + Hαθ
∗ − Hαθ

∗ Hθθ
∗ − 1 ∇θθ

2 ℒ(0, θ∼)}(θ − θ∗)
≤ ‖∇αθ

2 ℒ(0, θ) − Hαθ
∗ ‖∞‖θ − θ∗‖1 + |Hαθ

∗ (Id − 1 − Hθθ
∗ − 1 ∇θθ

2 ℒ(0, θ∼))(θ − θ∗) | ,
(A.6)

where the inequality holds by Hölder’s inequality. For the first term in the above inequality, 

we have
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‖∇αθ
2 ℒ(0, θ) − Hαθ

∗ ‖∞‖θ − θ∗‖1 = Oℙ(s2λ2), (A.7)

since ‖θ − θ∗‖1 = Oℙ(sλ) by (2.2) and ‖∇αθℒ(0, θ) − Hαθ
∗ ‖∞ = Oℙ(sλ) by Lemma C.5.

For the second term in (A.6), by Hölder’s inequality, we have

|Hαθ
∗ (Id − 1 − Hθθ

∗ − 1 ∇θθ
2 ℒ(0, θ∼))(θ − θ∗) | = |Hαθ

∗ Hθθ
∗ − 1(Hθθ

∗ − ∇θθ
2 ℒ(0, θ∼))(θ − θ∗)|

≤ ‖w∗‖1‖Hθθ
∗ − ∇θθ

2 ℒ(0, θ∼)‖∞‖θ − θ∗‖1 = Oℙ(s′s2λ2),
(A.8)

where the last equality holds since ‖w∗‖1 = O(s′) by Assumption 4.2, 

‖Hθθ
∗ − ∇θθ

2 ℒ(0, θ∼)‖∞ = Oℙ(sλ) by Lemma C.5, and ‖θ − θ∗‖1 = Oℙ(sλ) by (2.2). Plugging (A.7) 

and (A.8) into (A.6), we have

|E21 | = Oℙ(s′s2λ2) . (A.9)

For the second term E22 in (A.5), we have,

|E22 | ≤ ‖w − w∗‖1‖∇θθ
2 ℒ(0, θ∼)‖∞‖θ − θ∗‖1 = Oℙ(s′sλ′λ), (A.10)

where we use the results that ‖w − w∗‖1 = Oℙ(s′λ′) by Lemma C.8, ‖θ − θ∗‖1 ≤ Oℙ(sλ) by 

(2.2), and ‖∇θθ
2 ℒ(0, θ∼)‖∞ = Oℙ(1) by Lemma C.5.

Plugging (A.6) and (A.10) into (A.5), we have E2 = Oℙ(n−1s′s2log d). Combining it with 

(A.4), we have

|E1 | + |E2 | = Oℙ
s′s2log d

n = oℙ
1
n , (A.11)

where the last equality holds by the assumption that n−1/2s3 log d = o(1) and s ≍ s′. 

Combining (A.11), (A.3) and (A.2), our claim (4.1) holds as desired. □

Proof of Lemma 4.5

By the definition of Hα|θ and Hα |θ, we have

|Hα |θ − Hα |θ | ≤ |Hαα
∗ − ∇αα

2 ℒ(α, θ)|
E1

+ |Hαθ
∗ Hθθ

∗ − 1Hθα
∗ − wT ∇θα

2 ℒ(α, θ)|
E2

.
(A.12)

We consider the two terms separately. For the first term E1, we have by Lemma C.5, 

E1 = Oℙ(sλ). For the second term E2, we have,

E2 = |Hαθ
∗ Hθθ

∗ − 1Hθα
∗ − wT ∇θα

2 ℒ(α, θ) | = |Hαθ
∗ Hθθ

∗ − 1Hθα
∗ − wTHθα

∗ + wTHθα
∗ − wT ∇θα

2 ℒ(α, θ)|

≤ |Hαθ
∗ Hθθ

∗ − 1Hθα
∗ − wTHθα

∗ |
E21

+ |wTHθα
∗ − wT ∇θα

2 ℒ(α, θ)|
E22

.
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For the term E21, we have, by Hölder’s inequality,

E21 ≤ ‖Hαθ
∗ Hθθ

∗ − 1 − wT‖1‖Hθα
∗ ‖∞ = Oℙ(s′λ′), (A.13)

where the last inequality holds by the fact that ‖Hαθ
∗ Hθθ

∗ − 1 − wT‖1 = Oℙ(s′λ′), and ‖Hθα
∗ ‖∞ = O(1)

by Assumption 4.3.

For the second term E22, we have, by Hölder’s inequality,

E22 ≤ ‖w‖1‖Hθα
∗ − ∇θα

2 ℒ(α, θ)‖∞ = Oℙ(s′sλ), (A.14)

where the last equality holds by the assumption that ‖w∗‖1 = O(s′), the result 

‖w − w∗‖ = Oℙ(s′λ′) by (A.1) and by Lemma C.5 that ‖Hθα
∗ − ∇θα

2 ℒ(α, θ)‖∞ = Oℙ(sλ).

Combining (A.13) and (A.14), we have, E2 ≤ E21 + E22 = Oℙ(s′λ′). Together with the result 

that E1 = Oℙ(s2λ), the claim holds as desired. □

Proof of Theorem 4.7

Based on our construction of α∼ in (3.7), we have

α∼ = α − ∂U(α, θ)
∂α

−1
U(α, θ) = α − Hα |θ

−1 U(α, θ) + U(α, θ) Hα |θ
−1 − ∂U(α, θ)

∂α
−1

R1

= α − Hα |θ
−1 U(0, θ) + (α − 0)∂U(α, θ)

∂α + R1

= α − Hα |θ
−1 U(0, θ) − αHα |θ

−1 Hα |θ + αHα |θ
−1 Hα |θ − ∂U(α, θ)

∂α
R2

+ R1 = − Hα |θ
−1 U(0, θ) + R1 + R2,

(A.15)

where (A.15) holds by the mean value theorem for some α = uα and u ∈ [0, 1]. For the term 

R1, note that

|U(α, θ) − U(0, θ) | = |α | ⋅ ∂U(α′, θ)
∂α

where the equality holds by mean-value theorem with α′ = uα for some u ∈ [0, 1]. Under the 

null hypothesis α* = 0, by Theorem 3.2 of Huang et al. (2013), |α − α∗ | ≤ ‖β − β∗‖1 = Oℙ(sλ). 
By regularity condition Hα |θ = O(1) and Lemma 4.5, it also holds that | ∂U(α′, θ)/ ∂α | = Oℙ(1). 
Thus, we have

|U(α, θ) − U(0, θ) | = Oℙ(sλ), and |U(0, θ) | = Oℙ(n−1/2), (A.16)

where the second equality holds by Theorem 4.4. Thus, by triangle inequality, we have

|R1 | ≤ |U(α, θ) − U(0, θ) | ⋅ Hα |θ
−1 − ∂U(α, θ)

∂α
−1

+ |U(0, θ) | ⋅ Hα |θ
−1 − ∂U(α, θ)

∂α
−1

= Oℙ s3log d
n ,
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where the last equality holds by (A.16) and Lemma 4.5.

For the term R2, we have,

|R2 | ≤ |αHα |θ
−1 | ⋅ Hα |θ − ∂U(α, θ)

∂α = Oℙ s3log d
n ,

where the last inequality holds by the fact that |α | = Oℙ(sλ), |Hα |θ | = O(1) and Lemma 4.5.

Consequently, it holds that,

nα∼ d Z, where Z N(0, Hα |θ
−1 ),

and the last equality follows by Theorem 4.4 and our the assumption that n−1/2s3 log d = 

o(1). The claim follows as desired. □

Proof of Theorem 4.9

We have

ℒ(α∼, θ − α∼w) − ℒ(0, θ)

= α∼∇αℒ(0, θ) − α∼wT ∇θℒ(0, θ) + α∼2

2 ∇αα
2 ℒ(α, θ) + α∼2

2 wT ∇θθ
2 ℒ(0, θ)w − α∼2wT ∇θℒ(α′, θ)

= α∼U(0, θ)
T1

+ α∼2

2 {∇αα
2 ℒ(α, θ) + wT ∇θθ

2 ℒ(0, θ)w − 2w∼T ∇θα
2 ℒ(α′, θ′)}

T2

,

(A.17)

where the first equality follows by the mean-value theorem with α = u1α, α′ = u2α, 

θ = θ∗ + u3(θ − θ∗), and θ′ = θ∗ + u4(θ − θ∗) for some 0 ≤ u1, u2, u3, u4 ≤ 1.

We first look at the term T1. Under the null hypothesis α* = 0, nU(0, θ) d Z + oℙ(1) and 

nα∼ = − Hα |θ
−1 Z + oℙ(1) by Theorems 4.4 and 4.7, respectively, where Z ~ N(0,Hα|θ). We 

have,

T 1 = {n−1/2Z + oℙ(n−1/2)}{ − n−1/2Hα |θ
−1 Z + oℙ(n−1/2)} = − n−1Z2Hα |θ

−1 + oℙ

(n−1) . (A.18)

Next, we look at the term T2,

T 2 = α∼2

2 (Hαα
∗ + HαθHθθ

∗ − 1Hθα
∗ − 2Hαθ

∗ Hθθ
∗ − 1Hθα

∗ )
T21

+ α∼2

2 [{∇αα
2 ℒ(α, θ) − Hαα

∗ } + {wT ∇θθ
2 ℒ(0, θ)w − w∗Hθθ

∗ w∗} − 2{w∼T ∇θα
2 ℒ(α′, θ′) − Hαθ

∗ w∗}]
T22

(A.19)
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It holds by Theorem 4.7 that nα∼ d Hαθ
−1Z. Together with the regularity condition 

Hα |θ = O(1), we have,

2nT 21 = nα∼2Hα |θ
d Hα |θ

−1 Z2 . (A.20)

Considering the term T22, we have

T 22 = α∼2

2 {∇αα
2 ℒ(α, θ) − Hαα

∗ }
R1

+ {wT ∇θθ
2 ℒ(0, θ)w − w∗Hθθ

∗ w∗}
R2

−2{w∼T ∇αθ
2 ℒ(α′, θ′) − w ∗ THαθ

∗ }
R3

.
(A.21)

For the first term |R1|, we have, by Lemma C.5, |R1 | = | ∇αα
2 ℒ(α, θ) − Hαα

∗ | = Oℙ(sλ). For the 

second term,

|R2 | = |wT ∇θθ
2 ℒ(0, θ)w − w∗Hθθ

∗ w∗|
≤ | (w − w∗)T ∇θθ

2 ℒ(0, θ)(w − w∗) | + 2 |w∗∇θθ
2 ℒ(0, θ)(w − w∗)|

+ |w ∗ T(∇θθ
2 ℒ(0, θ) − Hθθ

∗ )w∗|
≤ ‖∇θθ

2 ℒ(0, θ)‖∞‖w − w∗‖1
2 + 2‖w∗‖1‖∇θθ

2 ℒ(0, θ)‖∞‖w − w∗‖1

+‖w∗‖1
2‖∇θθ

2 ℒ(0, θ) − Hθθ
∗ ‖∞

= Oℙ(s′2λ′2) + Oℙ(s′2λ′) + Oℙ(s′2sλ),

(A.22)

where the last equality follows by (2.2), Lemma C.4, Lemma C.8 and the sparsity 

Assumption 4.1 of w*.

For the third term |R3|, we have

|R3 | ≤ |{∇αθ
2 ℒ(α′, θ′) − Hαθ

∗ }w | + |Hαθ
∗ (w − w∗)|

≤ 2 |{∇αθ
2 ℒ(α′, θ′) − Hαθ

∗ }(w − w∗) | + |{∇αθ
2 ℒ(α′, θ′) − Hαθ

∗ }w∗ | + |Hαθ
∗ (w − w∗)|

≤ 2‖∇αθ
2 ℒ(α′, θ′) − Hαθ

∗ ‖∞‖w − w∗‖1 + 2‖∇αθ
2 ℒ(α′, θ′) − Hαθ

∗ ‖∞‖w∗‖1

+2‖Hαθ
∗ ‖∞‖w − w∗‖1 .

Note that ‖∇αθ
2 ℒ(α′, θ′) − Hαθ

∗ ‖∞‖w − w∗‖1 = Oℙ(s′sλ′λ) by Lemma C.8 and Lemma 

C.4, ‖∇αθℒ(α′, θ′) − Hαθ
∗ ‖∞‖w∗‖1 = Oℙ(s′sλ) by Lemma C.4 and Assumption 4.2, and 

‖Hαθ
∗ ‖∞‖w − w∗‖1 = Oℙ(s′λ′) by Assumption 4.3 and Lemma C.8. We have |R3 | = Oℙ(s′sλ).

Combining the results above, we have,

T 22 = α∼2

2 ⋅ Oℙ(s′2sλ) = Oℙ
s′2s log d

n3/2 = Oℙ(n−1), (A.23)
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where the second equality follows by Theorem 4.7 that α∼ = Oℙ(n−1/2) under the null 

hypothesis, and the last equality follows by the assumption that n−1/2s′s2 log d = o(1).

Combining (A.20) and (A.23) with (A.19), we have

2nT 2
d Hα |θ

−1 Z2, where Z N(0, Hα |θ) . (A.24)

Plugging (A.18) and (A.24) into (A.17), by Theorem 4.4,

−2n{ℒ(α∼, θ − α∼w) − ℒ(0, θ)} d Zχ
2, where Zχ χ1

2,

which concludes the proof. □

B Proofs in Section 5

In this section, we provide detailed proofs in Section 5.

Lemma B.1

Under Assumptions 2.1, 2.2, 4.2, 4.3 and 5.1, ‖∇Λ̂0(t, β̂) − ∇Λ0(t, β∗)‖∞ = Oℙ(s n−1log d).

Proof

By the definition of Λ̂0(t, β̂) in (5.1), we have,

‖∇Λ̂0(t, β̂) − ∇Λ0(t, β∗)‖∞ = 1
n∫0

t S(1)(u, β̂)dN̄(u)

{S(0)(u, β̂)}2 + E∫
0

t s(1)(u, β∗)dN(u)
{s(0)(u, β∗)}2

∞

= Oℙ s log d
n ,

where the last inequality follows by the same argument in Lemma C.5. □

A corollary of Lemma B.1 and Lemma C.8 follows immediately which characterizes the rate 

of convergence of û(t).

Corollary B.2

Under Assumptions 2.1, 2.2, 4.2, 4.3 and 5.1, if δ ≍ s n−1log d we have,

‖û(t) − u∗(t)‖1 = Oℙ ss′ log d
n .

Proof of Theorem 5.2

We first decompose n{Λ0(t) − Λ∼0(t, β̂)} into two terms that
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n{Λ0(t) − Λ∼0(t, β̂)} = n{Λ0(t) − Λ∼0(t, β∗)}
I1(t)

+ n{Λ̂0(t, β∗) − Λ∼0(t, β̂)}
I2(t)

.

Let Mi(t) = Ni t − ∫
0

t

Y i u λ0(u)du. For the first term nI1(t), we have

nI1(t) = ∫
0

t n∑i = 1
n dMi(u)

∑i = 1
n Y i(u)exp{Xi

T(u)β∗}
.

Since Mi(t) is a martingale, nI1(t) becomes a sum of martingale residuals. By Andersen and 

Gill (1982), we have, as n → ∞, nI1(t)
d N 0, σ1

2(t) , where

σ1
2(t) = ∫

0

t λ0(u)du
E[exp{XT (u)β∗}Y (u)]

.

For the second term I2(t), we have, by mean value theorem, for some β∼ = β∗ + t(β̂ − β∗), 

β∼′ = β∗ + t′(β̂ − β∗) and 0 ≤ t, t′ ≤ 1,

I2(t) = Λ̂0(t, β∗) − Λ̂0(t, β̂) + {û(t)}T ∇ℒ(β̂)

= (β∗ − β̂)T ∇Λ̂0(t, β∼) + {û(t)}T{∇ℒ(β∗) + ∇2ℒ(β∼′)(β̂ − β∗)}

= {u∗(t)}T ∇ℒ(β∗) + {β∗ − β̂}T ∇Λ̂0(t, β∼) + {u∗(t)}T ∇2ℒ(β∼′)(β̂ − β∗)
R1

+{û(t) − u∗(t)}T{∇ℒ(β∗) + ∇2ℒ(β∼′)(β̂ − β∗)}
R2

.

Next, we consider the two terms R1 and R2. For the term R1, we have

R1 = (β∗ − β̂)T ∇Λ̂0(t, β∼) + {u∗(t)}T ∇2ℒ(β∼′)(β̂ − β∗)

= (β∗ − β̂)T [H∗H ∗ − 1∇Λ̂0(t, β∼) − ∇2ℒ(β∼′)H ∗ − 1∇Λ̂0(t, β∗)]

= {β∗ − β̂}T{∇Λ̂0(t, β∼) − ∇Λ0(t, β∗)}
R11

+ (β∗ − β̂)T [H∗ − ∇2ℒ(β∼′)]H ∗ − 1∇Λ0(t, β∗)
R12

.

It holds that |R11 | ≤ ‖β∗ − β̂‖1‖∇Λ0(t, β∼) − ∇Λ̂0(t, β∗)‖∞ = Oℙ(s2n−1log d) by (2.2) and Lemma 

B.1, and |R12 | ≤ ‖β∗ − β̂‖1‖H∗ − ∇2ℒ(β∼′)‖∞‖u∗(t)‖1 = Oℙ(s′s2n−1log d). Summing them up, by 

triangle inequality, we have |R1 | = Oℙ(s′s2n−1log d).

For the term R2, we have

|R2| ≤ ‖û(t) − u∗(t)‖1‖∇ℒ(β∗)‖∞ + ‖û(t) − u∗(t)‖1‖∇2ℒ(β′∼)‖∞‖β̂ − β∗‖1

= Oℙ(s′sn−1log d) + Oℙ(s′s2n−1log d),
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where the last inequality holds by Lemma C.3 and C.5.

Meanwhile, by Lemma A.1, taking v = u∗(t), we have the term 

nu ∗ T (t)∇ℒ(β∗) d N(0, σ2
2(t)), where σ2

2 t = ∇Λ0 t, β∗ TH ∗ − 1∇Λ0(t, β∗). Thus, we have,

nI2(t)
d Z, where Z N(0, σ2

2(t)),

and σ2
2 t = ∇Λ0 t, β∗ TH ∗ − 1∇Λ0(t, β∗).

Following the standard martingale theory, the covariance between I1(t) and I2(t) is 0. Our 

claim holds as desired. □

C Technical Lemmas

In this section, we prove some concentration results of the sample gradient ∇ℒ(β∗) and 

sample Hessian matrix ∇2ℒ(β∗). The mathematical tools we use are mainly from empirical 

process theory.

We start from introducing the following notations. Let ‖·‖ℙ,r denote the Lr(ℙ)-norm. For 

any given ε > 0 and the function class ℱ, let N[](ε, ℱ, Lr(ℙ)) and N(ε, ℱ, L2(ℚ)) denote 

the bracketing number and the covering number, respectively. The quantifies log N[](ε, ℱ, 

Lr(ℙ)) and log N(ε, ℱ, L2(ℚ)) are called entropy with bracketing and entropy, respectively. 

In addition, let F be an envelope of ℱ where |f| ≤ F for all f ∈ ℱ. The bracketing integral and 

uniform entropy integral are defined as

J[](δ, ℱ, Lr(ℙ)) = ∫
0

δ
logN[](ε, ℱ, Lr(ℙ))dε,

and

J(δ, ℱ, L2) = ∫
0

δ
logsup

ℚ
N ε‖F‖ℚ, 2, ℱ, L2(ℚ) dε,

respectively, where the supremum is taken over all probability measures ℚ with ‖F‖ℚ,2 

> 0. Denote the empirical process by Gn(f) = n1/2(ℙn − ℙ)(f), where ℙn(f) = n−1∑i = 1

n f(Xi)

and ℙ(f) = E(f(Xi)). The following three Lemmas characterize the bounds for the expected 

maximal empirical processes and the concentration of the maximal empirical processes.

Lemma C.1

Under Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3, there exist some constant C > 0, such that, for 

r = 0, 1, 2, with probability at least 1 − O(d−3),

sup
t ∈ [0, τ]

‖s(r)(t, β∗) − S(r)(t, β∗)‖∞ ≤ C log d
n ,
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where s(r)(t, β*) and S(r)(t, β*) are defined in (2.6) and (2.3).

Proof

We will only prove the case for r = 1, and the cases for r = 0 and 2 follow by the similar 

argument. For j = 1,…, d, let

Ej = sup
t ∈ [0, τ]

|Sj
1 t, β∗ − sj

1 t, β∗ |,

where Sj
1 t, β∗  and sj

1 t, β∗  denote the j-th component of S(1)(t, β*) and s(1)(t, β*), 

respectively. We will prove a concentration result of Ej.

First, we show the class of functions {Xj(t)Y (t) exp (XT(t)β*) : t ∈ [0, τ]} has bounded 

uniform entropy integral. By Lemma 9.10 of Kosorok (2007), the class ℱ = {Xj(t) : t ∈ 
[0, τ]} is a VC-hull class associated with a VC class of index 2. By Corollary 2.6.12 

of van der Vaart and Wellner (1996), the entropy of the class ℱ satisfies log N(∈‖F‖Q,2, 

ℱ, L2(ℚ)) ≤ C′(1/∈) for some constant C′ > 0, and hence ℱ has the uniform entropy 

integral J 1, ℱ, L2 ≤ ∫
0

1

K 1/ ∈ d ∈ < ∞. By the same argument, we have that {exp{X(t)T 

β*} : t ∈ [0, τ]} also has a uniform entropy integral. Meanwhile, by example 19.16 of 

van der Vaart and Wellner (1996), {Y (t) : t ∈ [0, τ]} is a VC class and hence has 

bounded uniform entropy integral. Thus, by Theorem 9.15 of Kosorok (2007), we have 

{Xj(t)Y(t)exp{X(t)Tβ*} : t ∈ [0, τ]} has bounded uniform entropy integral.

Next, taking the envelop F as supt ∈ [0, τ] |Xj(t)Y (t) exp {XT (t)β*}|, by Lemma 19.38 of van 

der Vaart (2000),

E Ej ≤ C1n−1/2J 1, ℱ, L2 ‖F‖ℙ, 2 ≤ Cn−1/2,

for some positive constants C1 and C. By McDiarmid’s inequality, we have, for any Δ > 0,

ℙ Ej ≥ Cn−1/2 1 + Δ ≤ ℙ Ej ≥ E Ej + n−1/2CΔ ≤ exp −C2Δ2L−2 ,

for some positive constant C2 and L, and the desired result follows by taking Δ = n−1log d a 

union bound over j = 1, …, d. □

Lemma C.2

Suppose the Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold, and λ ≍ n−1log d. We have, for r = 

0, 1, 2 and t ∈ [0, τ],

‖S r (t, β̂ − S r) t, β∗ ‖
∞

= Oℙ s log d
n .
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Proof

Similar to the previous Lemma, we only prove the case for r = 1, and the other two cases 

follow by the similar argument. For the case r = 1, we have

‖S 1 (t, β̂) − S 1 t, β∗ ‖∞ = 1
n ∑

i = 1

n
Y i t [exp{Xi

T t β̂} − exp{Xi
T t β∗}]Xi t

∞

≤ max
i

{Y i t ‖Xi t ‖∞|exp{Xi
T t β̂} − exp{Xi

T t β∗}|}

≤ CX ⋅ max
i

|exp{Xi
T t β∗}[exp{Xi

T t (β̂ − β∗)} − 1]|

(C.1)

≤ CX ⋅ C1 ⋅ max
i

‖Xi t ‖∞‖β̂ − β∗‖1

= Oℙ s log d
n ,

(C.2)

where (C.1) holds by the Assumption 2.1 for some constant CX > 0; (C.2) holds by 

Assumption 4.1 that Xi
T(t)β∗ = O(1) and exp(|x|) ≤ 1+2|x| for any |x| sufficiently small, and 

the last equality holds by (2.2). Our claim holds as desired. □

Lemma C.3

Under Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3, there exists a positive constant C, such that 

with probability at least 1 − O(d−3),

‖∇ℒ(β∗)‖∞ ≤ C log d
n .

Proof

By definition, we have, for all j = 1, …, d,

∇jℒ(β∗) = − 1
n ∑

i = 1

n ∫
0

τ

{Xij(u, β∗) − Xj(u, β∗)}dMi(u)

= 1
n ∑

i = 1

n ∫
0

τ

Xj(u, β∗)dMi(u) − 1
n ∑

i = 1

n ∫
0

τ

Xij(u, β∗)dMi(u) .
(C.3)

For the first term, we have for all t ∈ [0, τ],

Xj(t, β∗) − ej(t, β∗) = Sj
(1)(t, β∗) − sj

(1)(t, β∗)
S(0)(t, β∗)

− sj
(1)(t, β∗){S(0)(t, β∗) − s(0)(t, β∗)}

S(0)(t, β∗)s(0)(t, β∗)
. (C.4)

By Assumption 2.1 and the fact that ℙ(y(τ) > 0) > 0, we have that 

supt ∈ [0, τ] |Xj(t, β∗) − ej(t) | ≤ C1 for some constant C1 > 0. In addition,
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1
n ∑

i = 1

n ∫
0

τ
Xj(u, β∗)dMi(u) ≤ sup

f ∈ ℱj

1
n ∑

i = 1

n ∫
0

τ
f(u)dMi(u),

where ℱj denotes the class of functions f: [0, τ] → ℝ which have uniformly bounded 

variation and satisfy supt∈[0,τ] |f(t) − ej(t)| ≤ δ1 for some δ1. By constructing ℓ∞ balls 

centered at piecewise constant functions on a regular grid, one can show that the covering 

number of the class ℱj satisfies N(ε, ℱj, l∞) ≤ (C2ε−1)C3ε−1
 for some positive constants C2, 

C3. Let Gj = {∫
0

∞

f(t)dM(t):f ∈ ℱj}. Note that for any two f1, f2, ∈ ℱj,

∫
0

τ
f1(t) − f2(t)dM(t) ≤ sup

u ∈ [0, τ]
|f1(u) − f2(u)|∫

0

τ
|dM(t)| .

By Theorem 2.7.11 of van der Vaart and Wellner (1996), the bracketing number of the 

class Gj satisfies N[] 2ε‖F‖ℙ, 2, Gj, l2(ℙ) ≤ N(ε, ℱj, ‖ ⋅ ‖∞) ≤ (C2ε−1)C3ε−1
, where F∫

0

τ

|dM(t)|. 

Hence, Gj has bounded bracketing integral. An application of Corollary 19.35 of van der 

Vaart (2000) yields that

E sup
f ∈ ℱj

1
n ∑

i = 1

n ∫
0

τ
f(u)dMi(u) ≤ n−1/2C4

for some constant C4 > 0. Then, by McDiarmid’s inequality,

ℙ 1
n ∑

i = 1

n ∫
0

τ
Xj(u, β∗)dMi(u) > t ≤ ℙ sup

f ∈ ℱj

1
n ∑

i = 1

n ∫
0

τ
f(u)dMi(u) > t ≤ exp − nt2

C5
,

for some constant C5. Following by the union bound, we have with probability at least 

1 − O(d−3),

1
n ∑

i = 1

n ∫
0

τ
Xj(u, β∗)dMi(u)

∞

≤ C log d
n ,

Note that the second term of (C.3) is a sum of i.i.d. mean-zero bounded random variables. 

Following by the Hoeffding inequality and the union bound, we have with probability at 

least 1 − O(d−3),

‖1
n ∑

i = 1

n ∫
0

∞
Xij(u, β∗)dMi(u)‖

∞

≤ C log d
n ,

for some constant C. The claim follows as desired. □
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Lemma C.4

Under Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3, for any 1 ≤ j, k ≤ d, there exists a positive 

constant C, such that with probability at least 1 − O(d−1),

max
j, k = 1, …, d

|∇jk
2 ℒ(β∗) − Hjk

∗ | ≤ C log d
n . (C.5)

Proof

By the definitions of ∇2ℒ(β*) and H* in (2.5) and (2.7), we have

∇2ℒ(β∗) − H∗ = 1
n∫0

τ S 2 t, β∗

S 0 t, β∗ −
s 2 t, β∗

s 0 t, β∗ dN(t)

T1

+ 1
n∫0

τ s 2 t, β∗

s 0 t, β∗ dN(t) − E ∫
0

τ s 2 t, β∗

s 0 t, β∗ dN(t)

T2

+ 1
n∫0

τ
e t, β∗ ⊗ 2 − Z t, β∗ ⊗ 2 dN(t)

T3

+E ∫
0

τ
e t, β∗ ⊗ 2dN(t) − 1

n∫0

τ
e t, β∗ ⊗ 2dN(t)

T4

.

For the term T1, we have, with probability at least 1 − O(d−1),

‖T1‖∞ ≤ sup
t ∈ [0, τ]

S(2)(t, β∗)
S(0)(t, β∗)

− s(2)(t, β∗)
s(0)(t, β∗) ∞

⋅ 1
n∫0

τ
dN(t) ≤ C1

log d
n ,

where the last inequality follows by Lemma C.1. Next, by Assumption 2.1, we have

s(2)(t, β∗)
s(0)(t, β∗) ∞

< ∞ .

Consequently, T2 becomes an i.i.d. sum of mean 0 bounded random variables. Hoeffding’s 

inequality gives that with probability at least 1 − O(d−1), ‖T2‖∞ ≤ C2 n−1log d. Meanwhile, 

the terms T3 and T4 can be bounded similarly. Our claim holds as desired. □

Lemma C.5

Under Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3, let β̂ be the estimator for β* estimated by (2.1) 

satisfying the result in (2.2) that ‖β − β∗‖1 = Oℙ(sλ) with λ ≍ O n−1log d . Then, we have, 

for any β∼ = β∗ + u(β − β∗) with u ∈ [0, 1],
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‖∇2ℒ(β∼)‖∞ = Oℙ(1), and ‖∇2ℒ(β∼) − H∗‖∞ = Oℙ s log d
n .

Proof

Let ξ = maxu≥0 maxi,i′ |∆T{Xi(u) − Xi′ (u)}|, where Δ = β∼ − β∗. By Lemma 3.2 of Huang et 

al. (2013), it holds that,

exp( − 2ξ)∇2ℒ(β∗) ≺_ ∇2ℒ(β∼) ≺_ exp(2ξ)∇2ℒ(β∗), (C.6)

where A ⪯ B means that the matrix B − A is a positive semidefinite matrix.

Note that the diagonal elements of a positive semidefinite matrix can only be nonnegative. 

In addition, for a positive semidefinite matrix A ∈ ℝd×d, it is easy to see that 

‖A‖∞ = maxj{aij}j = 1
d . We have,

exp( − 2ξ)‖∇2ℒ(β∗)‖∞ ≤ ‖∇2ℒ(β∼)‖∞ ≤ exp(2ξ)‖∇2ℒ(β∗)‖∞ .

By (2.2) that ‖β − β∗‖1 = Oℙ(sλ), which implies that ‖β∼ − β∗‖1 = Oℙ(sλ) as β∼ is on the line 

segment connecting β* and β. Hence, ξ = Oℙ(sλ). By triangle inequality,

‖∇2ℒ(β∼) − H∗‖∞ ≤ ‖∇2ℒ(β∼) − ∇2ℒ(β∗)‖∞

E1

+ ‖∇2ℒ(β∗) − H∗‖∞

E2

.

We consider the two terms separately, for the first term E1, we have, by (C.6) and taking the 

Taylor’s expansion of exp(2ξ),

‖∇2ℒ(β∼) − ∇2ℒ(β∗)‖∞ ≤ 2‖ξ∇2ℒ(β∗)‖∞ + oℙ(ξ) .

Since ξ = Oℙ(sλ), and by Assumption 4.3, we have,

‖∇2ℒ(β∼) − ∇2ℒ(β∗)‖∞ = Oℙ(sλ),

and E1 = Oℙ(s n−1log d) as λ ≍ n−1log d. In addition, E2 = Oℙ(s n−1log d) by Lemma C.4. It 

further implies that ‖∇2ℒ(β∼)‖∞ = Oℙ(1). □

Lemma C.6

Under Assumptions 2.1, 2.2 4.1, 4.2 and 4.3, it holds that

‖∇αθ
2 ℒ(β) − w ∗ T ∇θθ

2 ℒ(β)‖∞ = Oℙ s log d
n .
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Proof

By triangle inequality, we have

‖∇αθ
2 ℒ(β) − w ∗ T ∇θθ

2 ℒ(β)‖∞

≤ ‖Hαθ
∗ − w ∗ THθθ

∗ ‖∞

E1

+ + ‖∇θα
2 ℒ(β) − Hθα

∗ ‖∞

E2

+ ‖w ∗ THθθ
∗ − ∇θθ

2 ℒ(β)‖∞

E3

.

It is seen that E1 = 0 by the definition of w∗ = Hθθ
∗ − 1Hθα

∗  in (3.1). In addition, 

E2 = Oℙ(s n−1log d) by Lemma C.5. For the term E3, we have

E3 ≤ ‖w ∗ T{∇θθ
2 ℒ(β) − ∇θθ

2 ℒ(β∗)}‖∞

E31

+ ‖w ∗ T{∇θθ
2 ℒ(β∗) − Hθθ

∗ }‖∞

E32

.

For the term E31, by the definition of ∇2ℒ(·) in (2.5), we have

w ∗ T{∇θθ
2 ℒ(β) − ∇θθ

2 ℒ(β∗)} = w ∗ T 1
n ∑

i = 1

n ∫
0

τ S(2)(t, β)
S(0)(t, β)

− S(2)(t, β∗)
S(0)(t, β∗)

dNi(t)
θθ

T1

+w ∗ T 1
n ∑

i = 1

n ∫
0

τ
Z(t, β) ⊗ 2 − Z(t, β∗) ⊗ 2

θθ

T2

.

For the term T1, we have

T1 = 1
n ∑

i = 1

n ∫
0

τ S(0)(t, β∗)w ∗ TSθθ
(2)(t, β) − S(0)(t, β)w ∗ TSθθ

(2)(t, β∗)
S(0)(t, β)S(0)(t, β∗)

For ease of notation, in the rest of the proof, let S(r)(t): = S(r)(t, β) and S*(r)(t): = S(r)(t, β*) 

for r = 0, 1, 2. We have, for the k-th component of T1,

T1, k = 1
n ∑

i = 1

n ∫
0

τ S ∗ (0)(t)1
n ∑i′ = 1

n yi′(t)exp{Xi′
T(t)β}w ∗ TXi′, θ(t)Xi′, k(t)

S(0)(t)S ∗ (0)(t)
dNi(t)

− 1
n ∑

i = 1

n ∫
0

τ S(0)(t)∑i′ = 1
n yi′(t)exp{Xi′

T(t)β∗}w ∗ TXi′, θ(t)Xi′, k(t)

S(0)(t)S ∗ (0)(t)
dNi(t) .

Consequently, it holds that
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T1, k

≤ 1
n ∑

i = 1

n ∫
0

τ {S ∗ (0)(t) − S(0)(t)}1
n ∑i′ = 1

n Y i′(t)exp{Xi′
T(t)β}w ∗ TXi′, θ(t)Xi′, k(t)

S(0)(t)S ∗ (0)(t)
dNi(t)

+ 1
n ∑

i = 1

n ∫
0

τ S(0)(t)1
n ∑i′ = 1

n Y i′(t)[exp{Xi′
T(t)β} − exp{Xi′

T(t)β∗}]w ∗ TXi′, θ(t)Xi′, k(t)

S(0)(t)S ∗ (0)(t)
dNi(t)

≤ sup
t ∈ [0, τ]

1
n ∑

i = 1

n {S ∗ (0)(t) − S(0)(t)}[1
n ∑i′ = 1

n Y i′(t)exp{Xi′
T(t)β∗}w ∗ TXi′, θ(t)Xi′, k(t)]

S(0)(t)S ∗ (0)(t)
⋅ τ

+ 1
n ∑

i = 1

n {S ∗ (0)(t) − S(0)(t)}[1
n ∑i′ = 1

n Y i′(t)[exp{Xi′
T(t)β} − exp{Xi′

T(t)β∗}]w ∗ TXi′, θ(t)Xi′, k(t)]

S(0)(t)S ∗ (0)(t)
⋅ τ

+ 1
n ∑

i = 1

n S(0)(t)1
n ∑i′ = 1

n Y i′(t)[exp{Xi′
T(t)β} − exp{Xi′

T(t)β∗}]w ∗ TXi′, θ(t)Xi′, k(t)

S(0)(t)S ∗ (0)(t)
⋅ τ

= Oℙ(s n−1log d),

where the last equality holds by Assumptions 2.1 and 4.1 that Xi
T(t)β∗ is bounded, S*(0)(t) is 

bounded away from 0, and by Lemma C.2 that |S(r)(t) − S ∗ (r)(t) | = Oℙ s n−1log d .

The term T2 can be bounded by the similar argument, and our claim holds as desired. □

Lemma C.7

Under Assumptions 2.1 and 2.2, and if n−1/2s3 log d = o(1), the RE condition 

holds for the sample Hessian matrix ∇2ℒ(β). Specifically, for the vectors in the cone 

C = {v|‖vS‖1 ≤ ξ‖vSC‖1}, we have

vT ∇2ℒ(β)v
‖v‖2

≥ 1
2κ2(ξ, |S|; ∇2ℒ(β∗)), for all v ∈ C .

Proof

By Lemma 3.2 of Huang et al. (2013), we have exp(−2ξb)∇2ℒ(β) ⪯ ∇2ℒ(β+b), where ξb = 

maxu≥0 maxi,i′,k,k′ |bT{Xik(u) − Xi′k′(u)}|. Let b = β − β∗. By Assumption 2.1 that ‖{Xik(u) 

− Xi′k′(u)}‖∞ ≤ CX, we have ξb = Oℙ(s n−1log d) by (2.2), we have ‖β − β∗‖1 = Oℙ(sλ). 

By the scaling assumption that n−1/2s3 log d = o(1), we have ξb ≤ 1
2 log 2. Consequently, 

exp(−2ξb) ≥ 1/2. We have ∇2ℒ(β) ≻_ 1
2 ⋅ ∇2ℒ(β∗). Since the cone C is a subset of ℝd, our 

claim follows as desired. □

Lemma C.8

Under Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3, if
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‖∇θα
2 ℒ(β) − w ∗ T ∇θθ

2 ℒ(β)‖∞ ≤ λ′, (C.7)

we have, the Dantzig selector w defined in (3.2) satisfies

‖w − w∗‖1 ≤ 16λ′s′
κ2(1, s′; ∇2ℒ(β∗))

.

Proof

We first derive the result that the vector Δ = w − w∗ belongs to the cone 

C = {v|‖vSC‖1 ≤ ‖vS‖1}. By our assumption (C.7), and since ‖w‖1 ≤ ‖w∗‖1 by the optimality 

condition of Dantzig selector in (D.2), we have

‖wS‖1 + ‖wSC‖1 ≤ ‖wS
∗ ‖1,

where we use the fact that ‖wSC∗ ‖1 = 0.

By triangle inequality, we have

‖wS
∗ ‖1 ≤ ‖wS‖1 + ‖ΔS‖1 .

Summing up the above two inequalities, we have

‖ΔSC‖1 ≤ ‖ΔS‖1 . (C.8)

Meanwhile, by the feasibility conditions of the Dantzig selector w and w*, we have

‖∇θθ
2 ℒ(β)Δ‖∞ ≤ ‖∇θα

2 ℒ(β) − w ∗ T ∇θθ
2 ℒ(β)‖∞ + ‖∇θα

2 ℒ(β) − w∇θθ
2 ℒ(β)‖∞

≤ 2λ′ . (C.9)

By (C.8) and (C.9), we have

ΔT ∇θθ
2 ℒ(β)Δ ≤ ‖Δ‖1‖∇θθ

2 ℒ(β)Δ‖∞ ≤ 2λ′‖Δ‖1 ≤ 4λ′‖ΔS‖1 .

By Lemma C.8, it holds that

ΔT ∇θθ
2 ℒ(β)Δ ≥ 1

2κ2(1, s′; ∇2ℒ(β∗))‖ΔS‖2
2,

which implies that

ΔT ∇θθ
2 ℒ(β)Δ ≥ 1

2κ2(1, s′; ∇2ℒ(β∗))s−1‖ΔS‖2
1 .

Consequently, we have
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‖ΔS‖1
8λ′s′

κ2(1, s′; ∇2ℒ(β∗))
.

By (C.8), it holds that

‖Δ‖1 ≤ 2‖ΔS‖1 ≤ 16λ′s′
κ2(1, s′; ∇2ℒ(β∗))

.

as desired. □

D Extensions to Multivariate Failure Time Data

In real applications, it is also of interest to study multivariate failure time outcomes. 

For example, Cai et al. (2005) consider the time to coronary heart disease and time to 

cerebrovascular accident. In their study, the primary sampling unit is the family. Using 

multivariate model, it takes the advantage to incorporate the assumption that the failure 

times for subjects within a family are likely to be correlated. In this section, we extend our 

method to conduct inference in the high dimensional multivariate failure time setting.

To be more specific about the model, assume there are n independent clusters (families). 

Each cluster i contains Mi subjects, and for each subject, there are K types of failure may 

occur. Thus, it is reasonable to assume that the number K is fixed that does not increase 

with dimensionality d and sample size n. For example, Cai et al. (2005) study the time to 

coronary heart disease and the time to cerebrovascular accident where K = 2. Denote the 

covariates of the kth failure type of subject m in cluster i at time t by Xikm(t). The marginal 

hazards model is taken as

Λikm{ | t |Xikm(t)} = Λ0k(t)exp{Xikm
T (t)β},

where the baseline hazard functions Λ0k(t)’s are treated as nuisance parameters, and 

the model is known as mixed baseline hazards model. Using this model, our inference 

procedures are conducted based on the pseudo-partial likelihood approach, since the 

working model does not assume any correlation for the different failure times within each 

cluster. The log pseudo-partial likelihood loss function is

ℒ(β) = − 1
n ∑

k = 1

K
∑

i = 1

n
∑

m = 1

Mi ∫
0

τ
Xikm

T (u)βdNikm(u) −

∑
k = 1

K ∫
0

τ
log ∑

i = 1

n
∑

m = 1

Mi
Y ikm(u)exp{Xikm

T (u)β} dNk(u) ,

where Yikm(t) and Nikm(t) denote the at risk indicator and the number of observed failure 

event at time t of the kth type on subject m in cluster i, and N̄k = ∑i = 1

n ∑m = 1

Mi Nikm for each k. 

The penalized maximum pseudo likelihood estimator is
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β̂ = argmin
β ∈ ℝd

ℒ β + Pλ β . (D.1)

To connect the multivariate failure time model with Cox’s proportional hazards model, first, 

we observe that we can drop the index m. This is by the fact that, for each (i, m) where 

i ∈ {1, …n} and m ∈ {1, …, Mi}, we can map (i, m) to i′ = ∑j = 1

i − 1 Mj + m, and we define 

∑j = 1

0 Mj = 0. It is not difficult to see the mapping is a bijection. After the mapping, the 

penalized estimator remains the same. Thus, without loss of generality, we assume Mi = 

1 for all i, and we drop the index m. Next, we observe that the loss function ℒ β  is 

decomposable that

ℒ β = ∑
k = 1

K
ℒ k β ,

where

ℒ k β = − 1
n ∑

i = 1

n ∫
0

t
Xik

T u βdNik u − ∫
0

t
log ∑

i = 1

n
Y ik u exp{Xik

T u β} dN̄k u .

Thus, the loss function of multivariate failure time model can be decomposed into a sum 

of K loss functions of Cox’s proportional hazards models. However, the extension of the 

inference of the Cox model to multivariate failure time model is not trivial since the loss 

function is derived from a pseudo-likelihood function.

First, we extend the estimation procedure to the multivariate failure time model in the high 

dimensional setting, where we take Pλ(β) = λ‖β‖1. It is not difficult to obtain that (2.2) holds 

for the multivariate failure time model. An alternative approach is that we estimate β∗ using 

each type k of failure time independently. Specifically, we construct the estimator β̂by

β̂ = K−1 ∑
k = 1

K
β̂ k , where β̂ k = argmin

β k
ℒ k (β k ) + λ‖β k ‖1, for all k .

Since for each β̂
k

, ‖β̂
k

− β∗‖1 = Oℙ λs  by (2.2), it is readily seen that ‖β̂ − β∗‖1 = Oℙ λs .

We extend the decorrelated score, Wald and partial likelihood ratio tests to the multivariate 

failure time model. We first introduce some notation. For k = 1, …, K,

Sk
r t, β = 1

n ∑
i = 1

n
Xik

⊗ r t Y ik t exp{Xik
T t β}, for r = 0, 1, 2, and Z̄kn t, β = Sk

1 t, β
Sk

0 t, β
,

where their corresponding population versions are
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sk
r t, β = E[Y k t Xik t ⊗ rexp{Xik t β}], for r = 0, 1, 2 and ek t, β = sk

1 t, β /sk
0 t, β .

Next, we derive the gradient and Hessian matrix at the point β of the loss function,

∇ℒ β = − 1
n ∑

k = 1

K
∑

i = 1

n ∫
0

τ
{Xik u − Z̄kn u, β }dNik u ,

and

∇2ℒ β = 1
n ∑

k = 1

K ∫
0

τ Sk
2 u, β

Sk
0 u, β

− Z̄kn(u, β ⊗ 2) dN̄k u .

The population version of the gradient and Hessian matrix are

g β = ∑
k = 1

K
E + [∫

0

τ
{X u − ek u, β }dN̄k u ],

and

H β = ∑
k = 1

K
E + ∫

0

τ sk
2 u, β

sk
0 u, β

− e u, β ⊗ 2 dN̄k u .

For notational simplicity, let H∗ = H(β∗).

Note that, utilizing the decomposable structure, by the similar argument, the concentration 

results in Appendix C hold for the empirical gradient and Hessian matrix. We estimate the 

decorrelation vector w∗ = Hθθ
∗ − 1Hθα

∗  by the following Dantzig selector

ŵ = argmin‖w‖1, subject to ‖∇θα
2 ℒ 0, θ̂ − wT ∇θθ

2 ℒ 0, θ̂ ‖
∞

≤ δ, (D.2)

where δ is a tuning parameter. The rate of convergence of ŵ follows by the similar argument 

as in Lemma C.8.

We first introduce the decorrelated score test in multivariate failure time model. Suppose the 

null hypothesis is H0: α∗ = 0, and the alternative hypothesis is Hα: α∗ ≠ 0. The decorrelated 

score function is constructed similar to (3.3) that

Û
M

(0, θ̂) = ∇αℒ(0, θ̂) − ŵT ∇θℒ(0, θ̂) . (D.3)

The main technical difference between the multivariate failure time model and the univariate 

Cox’s model is that, the loss function of Cox’s model is a log profile likelihood function, 
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and Bartlett’s identity Var {∇ℒ β∗ } = ∇2ℒ β∗  holds. In multivariate case, this identity 

does not hold. We need the following lemma which is analogous to Lemma A.1. We omit 

the proof details to avoid repetition.

Lemma D.1

For any vector v ∈ ℝd if ‖v‖0 ≤ s′ and n−1 s′log d = o 1  it holds that

nvT ∇ℒ β∗

vTΩv
d N 0, 1 . where Ω = Var{ n∇ℒ β∗ } ∈ ℝd × d .

By the similar argument as in Theorem 4.4, we derive the asymptotic normality of ÛM(0, θ̂)
in the next theorem.

Theorem D.2

Suppose that Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold. Let ÛM 0, θ̂  be defined in (D.3). 

Under the null hypothesis that α∗ = 0 and if λ ≍ n−1log d, δ ≍ s′ n−1log d, n−1/2s3 log d = 
o(1), we have

nÛM(0, θ̂) d Z, where Z N 0, σ2 and σ2 = Ωαα − 2w ∗ TΩθα + w ∗ TΩθθw∗ .

Proof

By the definition of ÛM(0, θ̂) and mean value theorem, we have, for some z, z′ ∈ [0, 1], 

θ̄ = θ∗ + z(θ̂ − θ∗) and θ∼ = θ∗ + z′(θ̂ − θ∗),

ÛM(0, θ̂) = ∇αℒ(0, θ̂) − ŵT ∇θℒ(0, θ̂)

= ∇αℒ(0, θ∗) + ∇αθℒ(0, θ∗) − {ŵT ∇θℒ(0, θ∗) + ŵ∇θθℒ(0, θ∼)(θ̂ − θ∗)}

= ∇αℒ(0, θ∗) − w ∗ T ∇θℒ(0, θ∗)
S

+ (w∗ − ŵ)T ∇θℒ(0, θ∗)
E1

+{∇αθℒ(0, θ̄) − ŵT ∇θθℒ(0, θ∼)}(θ̂ − θ∗)
E2

.

Using Lemma D.1, taking b = (1, −w∗T)T and by the assumption that ‖w∗‖0 ≤ s0, it holds 

that

nS d Z, where Z N 0, σ2 and σ2 = Ωαα − 2w ∗ TΩθα + w ∗ TΩθθw∗ .

Following a similar proof as that in Theorem 4.4 and utilizing the separable in multivariate 

failure time model, we have nE1 = Oℙ 1  and nE2 = Oℙ 1 . This concludes our proof. □
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Remark D.3

Under the assumptions of D.2, using plug-in estimator σ̂2 = Ω̂αα − 2ŵΩ̂θα + ŵTΩ̂θθŵ converges 

to σ2 at the rate of Oℙ s′s n−1log d = Oℙ 1 .

Next, we extend the decorrelated Wald test to the multivariate failure time model, which 

constructs confidence intervals for α*. We first estimate β* by ℓ1-penalized estimator 

β̂ = α̂, θ̂ . Let

α∼M = α̂ −
∂ÛM α̂, θ̂

∂α

−1

ÛM α̂, θ̂ .

We derive the asymptotic normality of α∼M in the next theorem.

Theorem D.4

Suppose Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold. For λ ≍ n−1log d, δ ≍ s′ n−1log d and 

n−1/2s3 log d = o(1) under the null hypothesis that α* = 0, we have

nα∼ d Z, where Z N 0, σ2/γ4 ,

and σ2 = Ωαα−2w*T Ωθα + w*TΩθθw*, γ2 = Hαα
∗ − w ∗ THθα

∗ .

Proof

By the definition of α∼, we have,

α = α − γ−2 − γ−2 +
∂UM α, θ

∂α

−1
U α, θ

= α − γ−2 UM 0, θ +
α − 0 ∂UM α, θ

∂α + γ−2 −
∂UM α, θ

∂α

−1
U α, θ , where

= α − γ−2UM 0, θ − αγ2γ−2 + αγ−2 γ2 −
∂UM α, θ

∂α + UM α, θ γ−2 −
∂UM α, θ

∂α

−1
,

= −γ−2UM 0, θ
S

+ αγ−2 γ2 −
∂UM α, θ

∂α

R1

+ UM α, θ γ−2 −
∂UM α, θ

∂α

−1

R2

,

where the second equality holds by mean value theorem for some ᾱ = υα̂ and υ ∈ [0, 1]. For 

the first term above, we have nS d Z where Z ~ N(0, σ2/γ4) by Theorem D.2. In addition, 
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nR1 = Oℙ 1  and nR2 = Oℙ 1  by the similar argument in Theorem 4.7. This concludes the 

proof. □

Finally, we extend the decorrelated partial likelihood ratio test to the multivariate failure 

time model. The test statistic is

2n ℒ 0, θ̂ − ℒ α∼, θ̂ − α∼ŵ .

Under the null hypothesis, the test statistic follows a weighted chi-squared distribution as 

shown in the following theorem.

Theorem D.5

Suppose Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold. If λ ≍ n−1log d, δ ≍ s′ n−1log d and 

n−1/2s3 log d, under the null hypothesis α* = 0, we have

2n ℒ(0, θ̂) − ℒ(α∼, θ̂ − α∼ŵ) d σ2γ−2Zχ, where Zχ χ1
2,

and σ2 = Ωαα−2w*T Ωθα + w*TΩθθw*, γ2 = Hαα
∗ − w ∗ THθα

∗ .

Proof

We have, by mean value theorem, for some α = v1α, α′ = v2α, θ = θ∗ + t3(θ − θ∗) and 

θ′ = θ∗ + v4(θ − θ∗) and 0 ≤ v1, v2, v3, v4 ≤ 1,

ℒ(α∼, θ − α∼w) − ℒ(0, θ)

= α∼∇αℒ(0, θ) − α∼wT ∇θℒ(0, θ) + α∼2
2 ∇αα(ℒ(α, θ) + wT ∇θθℒ(0, θ)w − α∼2wT ∇αθℒ(α′, θ′)

= α∼U(0, θ)
L

+ α∼2
2 ∇ααℒ(α, θ) + wT ∇θθℒ(0, θ)w − 2w∇αθℒ(α′, θ′)

E
.

We first look at the term L. By Theorem D.2, we have U(0, θ) = U(0, θ∗) + oℙ(n−1/2), and by 

Theorem D.4 α∼ = − γ−2U(0, θ) + oℙ(n−1/2), we have

L = − γ−2UM(0, θ)2 + oℙ(n−1)

Next, we look at the term E,

E = α∼2
2 (Hαα

∗ + Hαθ
∗ Hθθ

∗ − 1Hθα
∗ − 2Hαθ

∗ Hθθ
∗ − 1Hθα

∗ )
E1

+ α∼2
2 {∇ααℒ(α, θ) − Hαα

∗ } + {wT ∇θθℒ(0, θ)w − w∗Hθθ
∗ w∗} − 2{w∼ ∇αθℒ(α′, θ′) − Hαθ

∗ w∗}
E2

.

Fang et al. Page 41

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2023 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



By Theorem D.4, it holds that 2nE1
d σ2γ−2Zχ. In addition, by the similar argument as in 

Theorem 4.9, we have E2 = oℙ(n−1). Thus, we have

2n{ℒ(0, θ) − ℒ(α∼, θ − α∼w)} d σ2γ−2Zχ, where Zχ χ1
2,

which concludes our proof. □
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Figure 1. 
Geometric illustration of the decorrelated score, Wald and partial likelihood ratio tests. 

The purple surface corresponds to the log-partial likelihood function. The orange plane is 

the tangent plane of the surface at point (α, θ). The two red arrows in the orange plane 

represent ∇αℒ and ∇θℒ. The correlated score function in blue is the projection of ∇αℒ 
onto the space orthogonal to ∇θℒ. Given Lasso estimator α, the decorrelated Wald estimator 

is α∼ = α − δ, where δ = {∂U(α, θ)/ ∂α}−1U(α, θ). The decorrelated partial likelihood ratio test 

compares the log-partial likelihood function values at (α, θ) and (α∼, θ − α∼w).
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Figure 2. 
Empirical rejection rates of the decorrelated score, Wald and partial likelihood ratio tests on 

simulated data with different active set sizes and dimensionality.
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Figure 3. 
95% confidence intervals for the baseline hazard function at t = 0.05, 0.1, …, 0.5. The red 

solid line denotes the estimated baseline hazard function Λ∼(t), and blue dashed line denotes 

Λ0(t) = t.
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Figure 4. 
95% confidence intervals for the baseline hazard function at t = 0.05, 0.1, …, 0.5. The 

red solid line denotes the estimated baseline hazard function Λ∼(t), and the blue dashed line 

denotes Λ0(t) = t2/2.
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Table 5

Genes with the adjuste p-values less than 0.05 using score, Wald and partial likelihood ratio tests for the large 

B-cell lymphoma gene expression dataset.

Gene Score Wald PLRT

FLT3 1.01 × 10−2 2.86 × 10−2 1.72 × 10−2

GPD2 3.91 × 10−2 4.67 × 10−3 7.44 × 10−3

PTMAP1 7.86 × 10−3 4.84 × 10−3 3.75 × 10−3

CDC10 3.52 × 10−3 2.63 × 10−3 1.10 × 10−3

Emv11 4.96 × 10−3 2.77 × 10−4 3.49 × 10−4

CHN2 1.79 × 10−2 2.73 × 10−2 3.58 ×10−3

Ptger2 1.78 ×10−2 1.32 × 10−2 2.47 × 10−3

Swq1 4.04 × 10−3 4.21 × 10−2 3.67 × 10−2

Cntn2 4.05 × 10−3 4.84 × 10−2 4.03 × 10−2
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