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Abstract

Objective: Calcific aortic valve disease (CAVD) is a progressive condition that shares some 

common pathogenic features with atherosclerosis. Transforming growth factor (TGF)-β1 is a 

recognised mediator of atherosclerosis and is expressed in aortic valve lesions. TGF-β1 stimulates 

glycosaminoglycan (GAG) elongation of proteoglycans that is associated with increased lipid 

binding. We investigated the presence of TGF-β1 and downstream signaling intermediates in 

diseased human aortic valves and the effects of activated TGF-β1 receptor signaling on aortic 

valve interstitial cell (VIC) proteoglycan synthesis and lipid binding as a possible mechanism for 

initiation of the early lesion of CAVD.

Methods and Results: Diseased human aortic valve leaflets demonstrated strong 

immunohistochemical staining for TGF-β1 and phosphorylated Smad2/3. In primary porcine 

aortic VICs Western blots showed TGF-β1 stimulated phosphorylation in both the carboxy and 

linker regions of Smad2/3 which was inhibited by the TGF-β1 receptor inhibitor SB431542. Gel 

electrophoresis and size exclusion chromatography demonstrated that SB431542 decreased TGF-

β1-mediated [35S]-sulfate incorporation into proteoglycans in a dose-dependent manner. Further, 

in proteoglycans derived from TGF-β1 treated VICs, gel mobility shift assays demonstrated that 

inhibition of TGF-β1 receptor signaling resulted in decreased lipid binding.
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Conclusions: Classic TGF-β1 signaling is present in human aortic valves in vivo, and 

contributes to the modification of proteoglycans expressed by VICs in vitro. These findings 

suggest that TGF-β1 may promote increased LDL binding in the early phases of CAVD.
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Calcific aortic valve disease (CAVD), which includes aortic sclerosis and stenosis, is 

a progressive condition associated with substantial morbidity and mortality 1-2. The 

prevalence of aortic sclerosis increases with age, 20% in patients 65-75 years and 48% 

in patients older than 85 years 3. Advanced CAVD is the second most common indication 

for cardiac surgery in the Western world 4. Originally considered a degenerative disease 

CAVD is now recognized as the result of active pathological processes.5-6 There are 

indications that CAVD shares pathogenic features with atherosclerosis 5, 7-10. Risk factors 

including age, male gender, hypertension, hyperlipidemia and active inflammation have been 

associated with both CAVD and atherosclerosis 2, 11-14 however the disease processes are 

not identical. Laboratory and clinical studies have suggested that the progression of aortic 

stenosis might be retarded by the use of statins 15-18 and ACE inhibitors 19-22. However the 

results of controlled randomized intervention studies with statins in late-stage CAVD (i.e. 

aortic stenosis) have been negative 23-25. With the unmet clinical need for effective CAVD 

treatments it is recognized that the pathological consequences of early aortic valve changes 

in CAVD need to be elucidated at a molecular level to identify suitable new targets and 

develop rational therapeutic interventions.5-6, 26.

A hallmark of early CAVD is the structural and compositional change in the aortic 

valve extracellular matrix. Early valve thickening is characterized by disruption of the 

trilayer structure with disorganised collagen deposition in the fibrosa 27, accumulation of 

proteoglycans versican, biglycan and decorin 28-29, lipoproteins LDL, Lp(a), and ApoE as 

well as calcium 30 and inflammatory cell infiltrate 7. Recently it has been highlighted that 

despite the abundance of proteoglycans and glycosaminoglycans in sclerotic and stenotic 

aortic valves their role in CAVD is almost completely unexplored 31. Transforming growth 

factor (TGF)-β1 is a recognised mediator of atherosclerosis and is also expressed in aortic 

valve lesions 32. However the role of TGF-β1 in the initiation and progression of CAVD 

is not clear with context-dependent effects of TGF-β1 described with in vitro and in 

vivo models of CAVD. In atherosclerosis, TGF-β1 leads to the activation of proteoglycan 

synthesis in vascular smooth muscle cells and induces elongation of the glycosaminoglycan 

(GAG) chains 33-34. Elongated GAG chains are capable of increased binding of lipid 34-35 

and this interaction underlies the “response to retention” hypothesis of Williams and Tabas 

regarding the origin of atherosclerosis 36. In this study we investigated TβR signaling in 

diseased human aortic valves and the effects of TGF-β1 on porcine aortic valve interstitial 

cell proteoglycan synthesis and lipid binding to determine whether the proteoglycans 

produced by aortic valve interstitial cells could have a role in the initiation of the early 

sclerotic stage of CAVD.
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Methods

Immunohistochemical analysis

Valve leaflets were fixed in 4% paraformaldehyde in 0.1M phosphate buffer overnight prior 

to processing. Radial cross-sections from intact leaflets were cut from annulus to free edge, 

embedded in paraffin, and cryosectioned in 5 - 10 micron thick sections according to routine 

procedures. Immunohistochemistry was performed to evaluate distribution and expression of 

extracellular matrix components. Primary antibodies were to TGF-β1 (R&D Systems, 1:20), 

and phosphorylated Smad2/3 (Chemicon, 1:1000). A universal streptavidin/biotin (Vector 

Laboratories, Burlingame, CA) and diaminobenzidine detection system (DAKO, Denmark) 

was used for colorimetric detection. Negative controls for all markers were performed in the 

absence of primary antibodies. Sections were counterstained with hematoxylin and images 

recorded using a Zeiss microscope with a Zeiss Axiocam digital camera (Germany). A total 

of seven tricuspid aortic valves were studied. Stenotic valves (three female 74, 75 and 82 

years and two male 62 and 76 years) were obtained at valve replacement surgery and control 

valves (female 54 and male 73 years) were collected from hearts undergoing non-valve 

disease-related heart surgery as approved by the Alfred Hospital Ethics Committee (Prahran, 

Australia).

Isolation of aortic valve interstitial cells

Aortic valve interstitial cells (VICs) were isolated from porcine aortic valves collected from 

three pig hearts according to previously published methods 37. Briefly, valve leaflets were 

dissected from the aortic root and rinsed in sterile PBS. To assist with removal of endothelial 

cells, partial digestion of the leaflets was performed with collagenase type II (2 mg/mL, 

Sigma-Aldrich, USA) in serum free DMEM (Invitrogen) for 20 minutes at 37°C in an 

incubated shaker. Leaflet surfaces were then wiped with sterile swabs, cut into 1 mm pieces 

and placed into collagenase type III (2 mg/mL in DMEM) for 2-3 hours at 37°C with 

shaking. The digest was strained through a 100 micron filter and cells were pelleted. Cells 

were then dispersed in fresh medium (DMEM containing 5 mmol/L glucose, 10% FBS, 

1% antibiotics), and plated in 75 cm2 flasks. For experimentation, cells between passages 

one to four were used. Confluent cultures were serum-deprived by incubation in DMEM (5 

mmol/L glucose, 0.1% FBS) for 48 hours prior to treatment.

Analysis of proteoglycans and glycosaminoglycans

Quiescent cells were treated in DMEM containing 5 mmol/L glucose, 0.1% FBS, 0.1% 

DMSO with SB431542 (0-10 μmol/L) an inhibitor of ALK5 or SIS3 (0.1-3 μM) an 

inhibitor of Smad3 phosphorylation and exposed to [35S]sulfate (1.85 MBq/mL) or 

[3H]glucosamine (0.37 MBq/mL) under basal conditions or in the presence of TGF-β1 

(0-5 ng/mL) for 24 hours, unless otherwise stated. To synthesize xyloside-initiated GAG 

chains (an independent measure of GAG synthesis) treatment media was supplemented 

with methyl β-D-xylopyranoside (0.5 mmol/l, Sigma). Secreted proteoglycans were isolated 

and concentrated from the conditioned medium as described previously34. Radiolabel 

incorporation into proteoglycans was quantified using the CPC precipitation assay 38. The 

sizes of the proteoglycans and GAG chains (cleaved chemically from the proteoglycan core 

proteins via a β-elimination reaction 39) were analysed by gradient SDS-PAGE 38. GAG 
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chain lengths also were analysed by size exclusion chromatography as described previously 
40 and the data standardised by calculation of Kav values.

Western blotting

Total cell lysates from VIC cultures treated with TGF-β1 (2 ng/ml) and/or SB431542 (3 

μM) for 24 hours were resolved on 10% SDS-PAGE and transferred onto PVDF membranes. 

Membranes were blocked with 5% skim milk powder for one hour at room temperature. 

Membranes were probed with primary antibodies as listed overnight at 4°C and then 

incubated with species specific secondary HRP-IgG (1:5000, 1 hour, RT) followed by 

enhanced chemiluminescent detection of proteins (ECL, Amersham). To assess protein 

loading the membrane was reprobed with anti-smooth muscle α-actin mouse monoclonal 

antibody (Dako, 1:1000, 1 hour, RT) or anti-GAPDH rabbit monoclonal antibody (Cell 

Signaling, USA) followed by incubation with anti-mouse IgG (1:5000, 1 hour, RT) or anti-

rabbit IgG (1:5000, 1 hour, RT) respectively. Antibodies to phosphorylated-Smad2,-Smad2C 

and –Smad2L were obtained from Cell Signaling (USA).

Gel mobility shift assay

Quiescent VICs were treated with SB431542 (3 μmol/L) and TGF-β1 (2 ng/mL) for 24 

hours in the presence of [35S]-Met/Cys (1.85 MBq/mL) to radiolabel the proteoglycan core 

proteins. Increasing concentrations of LDL (0-0.5 mg/mL) purified by ultracentrifugation 

from human blood41 were incubated with equal counts (1250 cpm) of proteoglycans. Bound 

and free proteoglycans were separated on flat bed agarose gels as described previously.40 

Dried agarose gels were exposed to phosphorscreens and calculation of bound proteoglycans 

was performed using MacBas software (v1, Fuji Photo Film Co., Japan).

Data analyses

Western blots were in triplicate and density analysis performed using Image Lab (BioRad). 

All data for proteoglycan experiments were collected in triplicate from at least two separate 

experiments. Data were calculated as means and standard errors and were compared using 

one-way ANOVA, two-way ANOVA, or Student’s t-tests as indicated, with significance 

accepted at p<0.05.

RESULTS

Expression of TGF-β1 and phosphorylated Smad2/3 in human calcified and non-calcified 
aortic valve leaflets

Immunohistochemical staining was used to determine whether the TβR - Smad2/3 pathway 

is activated in CAVD. Human calcified and normal non-calcified aortic valve leaflets were 

examined for expression of the TβR ligand, TGF-β1 and downstream signaling intermediate 

phosphorylated Smad2/3 (pSmad2/3) and representative sections are shown (Figure 1). 

TGF-β1 staining was seen throughout the markedly thickened layers of diseased valves 

and the strongest expression was found in close proximity to calcific nodules (Figure 1B). 

The calcific remnants were stained dark purple by haematoxylin. A similar distribution of 

pSmad2/3 staining was visible in CAVD valves and prominent nuclear staining was also 

evident (Figure 1D). In contrast non-diseased valve leaflets had much lower levels of TGF-
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β1 (Figure 1A) and less intense pSmad2/3 staining with less prominent nuclear staining 

(Figure 1C). Thus in the calcific stages of CAVD we observed staining that indicates an 

activated TβR - Smad2/3 pathway in the valves.

TGF-β1 mediates phosphorylation of Smad2/3 in aortic valve interstitial cells

As it remains technically difficult to demonstrate the activity of the TβR - Smad2/3 pathway 

in situ at the initiation stages of CAVD due to the lack of availability of suitable valves 

we instead utilised isolated porcine aortic valve interstitial cells (VICs). Western blots 

demonstrated VICs expressed smooth muscle α-actin to the same extent under basal and 

TGFβ-stimulated conditions (Figure 2A) demonstrating an activated myofibroblast-like 

phenotype that is associated with aortic valve pathology and remodelling 42-43. After 4 

hours stimulation with TGF-β1 (Figure 2A) VICs showed a nine-fold increase in serine 

phosphorylation of Smad2/3 at the carboxy terminus (pSmad2/3C) above basal and a five-

fold increase in serine phosphorylation of the linker region of Smad2 (pSmad2L). Inhibition 

of TβR1 serine kinase activity with its highly specific inhibitor SB431542 (3 μM) reduced 

phosphorylation of Smad2/3 back to basal levels (Figure 2A). Total Smad2/3 expression 

levels remained constant under all treatments. Clearly in VICs TβR1 can be activated to 

phosphorylate multiple serine residues in different regions of Smad2/3.

We next performed an early time-course study of TβR1-mediated Smad2/3 phosphorylation. 

VICs were treated with TGF-β1 for 5, 15, 30, 60 and 120 minutes and Western blots of 

whole cell lysates probed for pSmad2/3C and pSmad2L (Figure 2B). Carboxy terminal 

phosphorylation was significantly above basal within 15 minutes (p<0.001) and was 

sustained up to 120 minutes. Linker region phosphorylation was slower peaking at 60 

minutes. Smad2/3 linker region phosphorylation in some contexts is known to be a 

consequence of TβR1-mediated activation of the MAP kinase Erk1/2. The blots were 

reprobed to look for activation of Erk1/2 in VICs and we found a two-fold increase in 

pErk1/2 within 15 - 30 minutes of TGF-β1 stimulation (Figure 2B) however this did not 

reach statistical significance.

To clarify the extent of MAP kinase involvement in Smad2/3 linker phosphorylation we 

pre-incubated VICs with each of the specific MAP kinase inhibitors UO126 (MEK1/2 

inhibitor that blocks Erk1/2), SP600125 (Jnk inhibitor) and SB202190 (p38 inhibitor) and 

then stimulated with TGF-β1 for 4 hours to ensure sustained Smad2/3 activation (Figure 

2C). None of the MAP kinase inhibitors blocked carboxy or linker region phosphorylation of 

Smad2/3 significantly while TβR1 inhibitor SB431542 completely blocked phosphorylation 

as expected. These results suggest that in VICs at 4h post- TGF-β1 treatment Smad2/3 linker 

phosphorylation is not dependent on MAP kinase activation. However further studies would 

be useful to clarify the role of MAP kinases in Smad2/3 linker phosphorylation at 30 -60 

minutes following TβR1 activation.

Antagonism of TβR1 inhibits TGF-β1 mediated proteoglycan synthesis and GAG 
elongation

In previous studies we and others have shown that activation of the TβR - Smad2/3 pathway 

increases proteoglycan synthesis in vascular smooth muscle cells and induces elongation of 
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the glycosaminoglycan (GAG) chains and consequently greater lipid binding capacity33-34. 

From our findings of TβR - Smad2/3 pathway activation in VICs we hypothesized that a 

similar upregulation of proteoglycan synthesis and GAG elongation may occur in these cells 

and potentially contribute to the thickening of valve cusps in CAVD.

To evaluate the involvement of the classic TGF-β1-mediated cell signalling pathway in 

proteoglycan synthesis VICs were stimulated with TGF-β1 (2 ng/mL) in the presence 

of SB431542 (0 - 10 μmol/L). SB431542 decreased TGF-β1-mediated [35S]-sulfate 

incorporation into proteoglycans in a dose-dependent manner, with data normalised to 0% 

and 100% inhibition at 0 μmol/L and 0.03-10 μmol/L SB431542, respectively (Figure 

3A). The IC50 for SB431542 was approximately 0.7 μmol/L. At 3 μmol/L SB431542, TGF-

β1-mediated [35S]-sulfate incorporation was inhibited by 77%, with no observed decrease 

in cell number. This concentration of SB431542 was chosen for subsequent experiments. 

SB431542 treatment resulted in a dose-dependent increase in electrophoretic mobility of 

complete proteoglycans compared to TGF-β1 treatment alone, indicating a decrease in 

proteoglycan size (Figure 3B). An alternate radiolabel, [3H]-glucosamine was employed 

to confirm these findings. Under basal conditions, SB431542 decreased [3H]-glucosamine 

incorporation by approximately 20%, (Figure 3C). TGF-β1 stimulated an 87% increase 

in [3H]-glucosamine incorporation, p<0.01, which was 100% inhibited in the presence 

of SB431542, p<0.01 (Figure 3C). TGF-β1 stimulated a 12% increase in proteoglycan 

core protein synthesis compared to control (p<0.01), which was decreased by 19% in 

the presence of SB431542 (data not shown). To determine whether both Smad2 and 

Smad3 are involved in TGF-β1-mediated proteoglycan synthesis we employed SIS3, a 

compound which inhibits TGF-β1-mediated phosphorylation of Smad3. In VICs TGF-β1 

stimulated a 70% increase in [35S]-sulfate incorporation into proteoglycans that was not 

significantly affected by the presence of 0.1-3 μM SIS3 (Figure 3D). These data indicate 

that in this context phosphorylation of Smad2 rather than Smad3 mediates TGF-β1-induced 

proteoglycan synthesis.

To analyse whether the observed proteoglycan size changes were due to changes in GAG 

chain length, size exclusion chromatography was employed. Initially, GAG chains were 

chemically cleaved from proteoglycan core proteins via a β-elimination reaction and both 

complete proteoglycans and chemically cleaved GAG chains were separated by SDS-PAGE 

(Figure 4A). Under basal conditions, SB431542 treatment of VICs had negligible effect 

on the electrophoretic mobilities of either complete proteoglycans or cleaved GAG chains 

compared to control (Figure 4A). TGF-β1 treatment resulted in a decrease in electrophoretic 

mobility of both complete proteoglycans and cleaved GAG chains relative to control, which 

was attenuated in both cases in the presence of SB431542 (Figure 4A). Analysis of cleaved 

GAG chain length by size exclusion chromatography confirmed that the increase in GAG 

size demonstrated by SDS-PAGE was due to increased chain length. One representative 

analysis is shown in Figure 4B with the vertical line indicating mean Kav of control. Under 

basal conditions, cleaved GAG chains derived from SB431542 treated VICs had a mean 

Kav of 0.42±0.01 compared to 0.41±0.01 for control (Table 1). In the presence of TGF-β1, 

SB431542 treatment resulted in GAG chains with a mean Kav of 0.41±0.01 compared to 

0.36±0.01 for TGF-β1 treatment alone, p<0.02 (Table 1) indicating a stimulation of GAG 

elongation in the presence of TGF-β1 that was inhibited by SB431542.
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Synthesis of GAG chains on a xyloside primer is a technique that allows evaluation of GAG 

synthesis independent of the proteoglycan core protein and was used to confirm TGF-β1-

mediated effects on GAG chains. VICs were treated with SB431542 under basal conditions 

and in the presence of TGF-β1 in culture media supplemented with β-xyloside. TGF-β1 

treatment increased [35S]-sulfate incorporation by 136%, p<0.01 (Figure 5A). SB431542 

treatment had little effect under basal conditions but inhibited the TGF-β1-mediated increase 

in [35S]-sulfate incorporation by 88%, p<0.01 (Figure 5A). Xyloside-initiated GAG chains 

were separated by SDS-PAGE (Figure 4B). TGF-β1 treatment resulted in xyloside initiated 

GAG chains with decreased electrophoretic mobility, indicative of an increase in GAG size 

(Figure 5B). SB431542 inhibited this TGF-β1-mediated change in electrophoretic mobility. 

By size exclusion chromatography, TGF-β1 treatment decreased the mean Kav of xyloside-

initiated GAG chains from 0.53±0.01 for control to 0.48±0.01, p<0.02, (Table 1, Figure 5C) 

indicating an increase in GAG chain size. SB431542 treatment under basal conditions and 

in the presence of TGF-β1 resulted in mean Kav values of 0.52±0.01 and 0.54±0.01 (p<0.05 

vs TGF-β1), respectively (Table 1), indicating that SB431542 inhibited TGF-β1-mediated 

increases in xyloside-initiated GAG elongation.

TβR1 inhibition decreases VIC proteoglycan/low density lipoprotein binding

To assess the role of TβR1 in the LDL binding to secreted proteoglycans from TGF-

β1-stimulated VICs, gel mobility shift assays were used (Figure 6). The migration of 

proteoglycans, metabolically radiolabelled with [35S]-Met/Cys, through agarose gel is 

reduced in the presence of increasing amounts of bound LDL. Proteoglycans from cells 

treated with SB431542 + TGF-β1 had decreased LDL binding compared to TGF-β1 

treatment alone, p<0.001 (Figure 6A). The half maximal saturation value for proteoglycans 

from SB431542 treated cells in the presence of TGF-β1 was approximately four-fold 

higher at 0.13 mg/mL compared to 0.03 mg/mL for TGF-β1 treatment alone, indicating 

a substantial decrease in LDL binding affinity with SB431542 treatment. The LDL binding 

capacity of proteoglycans from SB431542 treated cells in the presence of TGF-β1 treated 

cells was also decreased compared to proteoglycans from TGF-β1 treated cells (Figure 6A). 

Thus inhibition of TβR1-mediated changes in VIC proteoglycans is sufficient to reduce the 

ability of the proteoglycans to bind LDL.

DISCUSSION

The pathological and actively regulated disease processes of CAVD have been well 

recognised recently and understanding basic valve biology and signaling pathways of VICs 

is acknowledged as a high priority for progress in CAVD research 44. Diseased valves 

have been shown previously to express the pleiotropic growth factor, TGF-β130, 32, 45 

and a mouse model of CAVD has demonstrated elevated levels of phosphorylated Smad 

transcription factors in aortic valves 46. This study demonstrates that in human aortic valve 

lesions expression of both TGFβ1 and phosphorylated Smad2/3 are elevated throughout 

the thickened valve leaflets. Because TGF-β1 may be present in tissues in both active 

and latent forms, demonstrating the presence of TGF-β1 cannot determine whether the 

molecule is biologically active. However, canonical signaling by active TGF-β1 involves 

phosphorylation of Smad2/3 by TβR1 and subsequent translocation of pSmad2/3 to the 
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nucleus. Thus, the demonstration that, in regions with immunostaining for TGF-β1, positive 

staining was also detected for both cytoplasmic and nuclear localization of pSmad2/3 

provides supportive evidence of active TGF-β1 signalling in human aortic valve lesions. 

TGF-β1 and pSmad2/3 colocalization is also reported to occur in early lesions of the 

fibrosa in aortic valve leaflets from hypercholesterolemic pigs 47. Significantly elevated 

levels of pSmad2/3 are also observed in mouse models of early stage CAVD 46 and after 

lipid lowering treatment in late stage CAVD mouse models 48 and underlines the key role 

Smad2/3 in CAVD processes.

We investigated the signaling pathways through which TGF-β1 mediates its effects in 

VICs and demonstrated the involvement of the canonical Smad phosphorylation pathway. 

In porcine VICs TGF-β1 stimulated a significant increase in the level of both pSmad2/3C 

and pSmad2/3L. This specific response was blocked by SB431542, an inhibitor of the 

kinase activity of TβR1, for which both Smad2 and 3 are targets. Phosphorylation of 

Smad2/3 carboxy terminus was immediate and rapid, within 5 min, while linker region 

phosphorylation was elevated significantly after 30 minutes of TGF-β1 stimulation (Figure 

2). A similar differential in regional Smad2/3 phosphorylation is also seen in vascular 

smooth muscle cells 49. Blocking pSmad2/3 phosphorylation inhibited proteoglycan GAG 

elongation however further studies are necessary to determine whether these downstream 

processes have a requirement for phosphorylation of both carboxy terminal and linker 

regions. Our results indicate that at 4h after TGF-β1 stimulation the linker phosphorylation 

is not conditional on MAP kinase activity. Further investigations are necessary to determine 

if MAP kinases are important immediately following TGF-β1 stimulation or whether 

alternate linker region phosphorylation kinases possibly cyclin-dependent kinase, glycogen 

synthase 3-β, calcium-calmodulin-dependent protein kinase II or G protein-coupled 

receptor kinase-2 are involved. Our findings correlate with recent reports of activated 

Smad2/3 signaling with TGF-β1 treated porcine VICs grown in Wnt3A-conditioned media 

demonstrating induction of pSmad2/3 nuclear translocation 47. The phosphorylation of 

Smad2/3 in aortic valves appears cell and context dependent since pSmad2 levels are not 

elevated in human aortic valve endothelium both in non-calcified and calcified valves 50.

Recently it was highlighted that despite an abundance of proteglycans and GAGs in valves 

in CAVD the role of proteoglycans and GAGs has not been investigated 31. Our study 

demonstrates that in porcine VICs TGF-β1 weakly induces proteoglycan core protein 

synthesis, and strongly stimulates proteoglycan GAG chain elongation. In addition we have 

clearly demonstrated that this is mediated by the classical TGF-β1 signaling pathway and 

by application of a pharmacological approach using SIS3 showed that Smad3 was not 

involved in proteoglycan synthesis, thereby demonstrating that the pathway specifically 

involves phosphorylation of Smad2. Previous in vitro studies using smooth muscle cells 

(SMCs) have demonstrated that TGF-β1 stimulates elongation of GAG chains on SMC-

secreted proteoglycans 33, specifically on the chondroitin sulfate (CS) /dermatan sulfate 

(DS) proteoglycans, biglycan and decorin 33 and that these TGF-β1-induced changes in 

SMC-produced proteoglycans mediates increased lipoprotein binding 34. In the present 

study we show that TGF-β1 has similar effects on proteoglycans produced by aortic 

VICs. In VICs, TGF-β1 stimulated GAG chain elongation on CS/DS proteoglycans, as 

well as elongation of the GAGs initiated on xyloside. Moreover proteoglycans synthesized 
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in response to TGF-β1 demonstrate enhanced LDL binding, an effect that is blunted by 

inhibition of classical TGF-β1 signalling via Smad2. This finding demonstrates that TGF-β1 

is acting on proteoglycans primarily at the level of the GAG synthesizing machinery in the 

Golgi apparatus, an effect that is independent of the presence of core proteins. TGF-β1 also 

appears to stimulate a small increase in total proteoglycan core proteins by aortic VICs; we 

speculate that this is most likely an increase in biglycan and/or decorin. Although in this 

study we did not formally evaluate which individual core proteins were increased because 

the apparent effect on core protein synthesis was small and because our major interest 

was in the more robust effect on GAGs and their binding to LDL. Specific proteoglycan 

identification may be useful considering the impact of extracellular matrix components on 

myofibroblast differentiation and behaviour in CAVD 51. Biglycan and decorin are observed 

in early calcific nodule formation in human calcified aortic valves 29 and in late-stage 

CAVD there is increased accumulation of biglycan and with it a co-localization of oxidised-

LDL, phospholipid transfer protein and Apo A1 52. By implicating biglycan and TGF-β1 

influencing proteoglycan-mediated retention of lipoproteins within CAVD lesions, these 

findings suggest that inhibition of TGF-β1 and/or manipulation of proteoglycan/lipoprotein 

interactions may represent novel therapeutic targets in CAVD.

In conclusion, our data confirm that TGF-β1 is present in diseased human aortic valves, 

extends this observation to demonstrate the presence of important components of the 

canonical TGF-β1 signalling pathway in these same valves, and elucidates how stimulation 

of specific TGF-β1 signaling pathways affects proteoglycan synthesis and lipoprotein 

binding in cultured porcine VICs. Together, these findings provide strong support to the 

proposal that CAVD is a complex, mechanism based disease that shares some similar 

pathogenic features with atherosclerosis. Tentative evidence is provided that lipid trapping 

by modified GAG chains on proteoglycans may also represent an early step in CAVD, 

as has been hypothesized53 and strongly implicated by recent data54 for atherosclerosis. 

Although we have demonstrated that the canonical Smad phosphorylation pathway is present 

in diseased human aortic valves and cultured porcine VICs, studies of TGF-β1 signaling 

pathways in emerging animal models of CAVD would be of great interest. Moreover, 

TGF-β1 is critically involved in the immune system, most likely through Smad-dependent 

pathways. Thus, notwithstanding the involvement of TGF-β1 in CAVD, blocking those 

pathways may not be an option for treating CAVD and atherosclerosis. However, recent 

evidence has shown that TGF-β1 signalling pathways are much more complex and can 

involve tyrosine and serine/threonine phosphorylation and activation of MAP kinases , 

particularly ERK and p38 55-57. In addition to Smad,Erk1/2 and p38 MAP kinases are 

involved in the regulation of GAG synthesis in vascular smooth muscle cells.49, 57. 

Therefore, further investigations may provide an opportunity to discover Smad-independent 

TGF-β1 mediated signaling pathways that are associated with diseases processes and not 

immune functions, and that may well serve as more therapeutically useful targets for CAVD 

prevention and provides further strong impetus for studying the potential positive and/or 

negative effects of inhibiting these pathways in animal models of CAVD. Alternatively, 

strategies that avoid interference with TGF-β1 signaling by directly targeting proteoglycan/

lipoprotein interactions may also represent useful therapeutic goals in CAVD.
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Figure 1. Expression of TGF-β and phosphorylated Smad2/3 is increased in CAVD.
Immunohistochemistry on paraformaldehyde-fixed, paraffin-embedded human aortic valve 

leaflets, non-diseased (Normal) or late-stage CAVD (CAVD), was performed using 

antibodies against TGF-β (A and B) and phosphorylated Smad2/3 (C and D). Arrows 

indicate nuclear staining. Scale bars 100 μm.
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Figure 2. TGF-β activates carboxy and linker region phosphorylation of Smad2/3 in VICs.
(A) Cells were pre-treated with medium (−) or the TβR1 inhibitor SB431542 (SB, 3 μM) 

for 30 min prior to the addition of TGF-β (2 ng/ml) for 4h. Western blots of whole cell 

lysates were probed for carboxy phosphorylated Smad2/3 (pSmad2/3C) or linker region 

phosphorylated Smad2/3 (pSmad2/3L) and reprobed for total Smad2 and smooth muscle 

α-actin. Density analysis of phospho-blots is plotted in the adjacent histogram. (B) Time-

course of TGF-β-mediated Smad2/3 phosphorylation. Cells were treated with TGF-β (0 

– 120 min) and Western blots of whole cell lysates probed for pSmad2/3C, pSmad2/3L 
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and phosphorylated Erk1/2 (pErk1/2). (C) MAP kinase inhibition does not block Smad2/3 

phosphorylation in VICs. Cells were pre-treated with either medium (−), Erk1/2 blocker 

U0126 (UO, 3 μM), p38 inhibitor SB202190 (SB*, 3 μM), Jnk inhibitor SP600125 (SP, 1 

μM) or TβR1 inhibitor SB431542 (SB, 3 μM) for 30 min prior to the addition of TGF-β (2 

ng/ml) for 4h. Western blots of whole cell lysates were probed for pSmad2/3C, pSmad2/3L 

and GAPDH as a loading control. ### P<0.001 versus control, *** P<0.001 versus TGF and 

** P<0.01 versus TGF using a 1-way ANOVA.
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Figure 3. TβR1 mediates glycosaminoglycan elongation of VIC secreted proteoglycans
(A) Inhibition of TβR1 by SB431542 dose-dependently decreases TGF-β mediated [35S]-

sulfate incorporation into proteoglycans secreted by VICs. Data was normalised to 0% and 

100% inhibition at 0 μM and 10 μM SB431542, respectively. Normalised data are shown as 

mean ± SEM. (B). SB431542 treatment (0 – 10 μM) resulted in a concentration dependent 

increase in electrophoretic mobility of secreted proteoglycans compared to TGF-β (2 ng/ml) 

treatment alone (−), indicating a decrease in proteoglycan size. A representative gradient 

SDS-PAGE (4-13%) is shown, the dotted line indicates estimated mid-line of biglycan 

band size. (C) Confirmation of TGF-β and SB431542 effects seen in (A) using alternate 

radiolabel [3H]-glucosamine. Normalised data in each case are shown as mean ± SEM 
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from at least two experiments in triplicate, **p<0.01 vs control and ##p<0.01 vs TGF-β 
using a 1-way ANOVA. (D) Specific inhibition of Smad3 phosphorylation using chemical 

inhibitor SIS3 (0-3 μM) does not block TGF-β mediated [35S]-sulfate incorporation into 

proteoglycans secreted by VICs.
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Figure 4. Size analysis of proteoglycans produced in VICs treated with TGF-β.
(A) VICs were pre-treated with medium (−) or SB431542 (SB, 3 μM) for 30 min prior to 

the addition of TGF-β (2 ng/ml) for 24h in the presence of [35S]-sulfate to metabolically 

label proteoglycans. Secreted proteoglycans were isolated and purified by Sepharose anion 

exchange chromatography and subjected to SDS-PAGE (Complete PGs). Replicate samples 

were treated with sodium cyanoborohydride and alkali to cleave the GAG chains from the 

proteoglycan core protein. Free GAG chains were also analysed by SDS-PAGE (Cleaved 

GAG chains). A representative gradient gel (4-20%) is shown. The dotted line indicates 
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estimated mid-line of biglycan band size for complete PGs and mid-line of cleaved GAG 

chain sizes. (B) Size exclusion chromatography (Sepharose CL-6B) of radiolabeled cleaved 

GAG chains isolated from secreted proteoglycans from treatments given in (A) medium 

(Con), SB431542 (SB), TGF-β (TGF), SB431542 and TGF-β (SB + TGF). Vertical dotted 

line indicates the calculated apparent Kav of control GAG chains. Three measurements were 

performed from three separate experiments with a representative shown. Note that TGF-β 
shifts the peak to the left, indicating larger size.
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Figure 5. TGF-β increases the size of GAG chains initiated on xyloside by VICs.
(A) TGF-β increased [35S]-sulfate incorporation into xyloside-GAGs and inhibition of 

TβR1. VICs were pretreated with medium (−) or SB431542 (SB 3 μM) for 30 min followed 

by TGF-β (2 ng/ml) for 24h in the presence of [35S]-sulfate and β-xyloside (0.5 mM). Data 

show mean ± SEM from two experiments in triplicate, **p<0.01 vs control and ##p<0.01 

vs TGF-β using a 1-way ANOVA. (B) Xyloside-GAGs from above listed treatments were 

purified on DEAE-Sepharose ion-exchange columns and then run on gradient SDS-PAGE 

gels (4 – 20%). A representative gel from three separate experiments is shown and the dotted 
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line indicates estimated mid-line of xyloside-GAGs size. (C) Size exclusion chromatography 

(Sepharose CL-6B) of radiolabeled xyloside-GAG chains isolated from VICs. Treatments 

as given above medium (Con), SB431542 (SB), TGF-β (TGF), SB431542 and TGF-β (SB 

+ TGF). Vertical dotted line indicates the calculated apparent Kav of control GAG chains. 

Three measurements were performed from three separate experiments with a representative 

shown. Note that TGF-β shifts the peak to the left, indicating larger size.
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Figure 6. Inhibition of TβR1 reduces LDL binding to proteoglycans produced by TGF-β-treated 
VICs
Gel mobility shift assay for the analysis of LDL binding to proteoglycans (A and B) VICs 

were treated with medium (Control), TGF-β (2 ng/ml), TGF-β + SB431542 (TGF-β+ SB) 

for 24h and proteoglycan core proteins were labelled with [35S]-Met/Cys (50 μCi/ml). 

Equal counts of core protein-radiolabeled proteoglycans were combined with increasing 

concentrations of LDL and separated using the gel shift mobility assay. Three separate 

experiments were performed with data shown as mean ± SEM. ***p<0.001 using a 2-way 

interaction ANOVA comparing the two data sets. Earlier experiments using proteoglycans 
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isolated from vascular smooth muscle cells showed the effect of SB431542 treatment alone 

on LDL binding is negligible (unpublished data).
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Table 1.

Mean Kav values for GAG chains measured by size exclusion chromatography

Control SB TGF-β SB + TGF-β

Cleaved chains

Kav 0.41±0.01 0.42±0.01 0.36±0.01# 0.41±0.01*

Xyloside GAGs

Kav 0.53±0.01 0.52±0.01 0.48±0.01θ 0.54±0.01κ

SB SB154132, Kav values are expressed as mean ± SEM from three separate size exclusion experiments,

#
p<0.05 vs control,

*
p<0.02 vs TGF-β,

θ
p<0.02 vs control,

κ
p<0.05 vs TGF-β using a paired Student’s t-test.
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