Table 3.
Comparison of the removal methods of polyethylene, polystyrene, polypropylene and polyethylene terephthalate microplastics in different removal processes
Removal Method | Removal process | Removal efficiency (%) | |||
---|---|---|---|---|---|
PE | PS | PP | PET | ||
Physical | Adsorption | NA | 81 | NA | 100 |
Filteration | 96 | 90 | NA | NA | |
Adsorption using biochar | NA | 54 | NA | NA | |
flotation with dissolved air | 69 | NA | NA | 61 | |
Chemical | Coagulation | 64 | 85 | NA | 74 |
Electrocoagulation | 82 | NA | 90 | - | |
Electrooxidaition | NA | 60 | NA | NA | |
VU radiation of zinc oxide nanotubes | NA | NA | NA | NA | |
Physico-chemical | Coagulation and filtration | 57 | NA | NA | NA |
Coagulation and sedimentation | NA | 80 | NA | NA | |
Coagulation and flotation | 89 | NA | NA | NA | |
Coagulation and flocculation and sedimentation and filtration | 90 | 90 | NA | NA | |
Adsorption and thermal degradation | NA | 97 | NA | NA | |
Photocatalytic | 83 | NA | NA | NA | |
Thermophotocatalytic | NA | NA | 89 | NA | |
Afran coagulating gas | NA | 94 | NA | NA | |
Magnetic carbon nanotubes | 100 | NA | NA | NA | |
Organosyls | 97 | 58 | 97 | NA | |
Laser beam and sunlight | NA | 54 | NA | NA | |
Ferrofluid | NA | NA | NA | 99 | |
Nano ferrofluid | 49 | 49 | NA | NA | |
Biological | Activated sludge process | 98 | NA | 98 | 17 |
Zalerion maritimum mushroom | 43 | NA | NA | NA | |
Wetland | NA | 73 | 73 | 73 | |
Shell | 66 | NA | NA | NA | |
Integrated | Membrane biological reactor | 86 | 84 | 86 | 98 |
Rapid sand filter (RSF) | 75 | 75 | 75 | NA | |
Extended activated sludge | 90 | NA | 90 | NA | |
Oxidation ditch and RSF | 97 | 97 | 97 | 97 | |
Wetland with vertical flow | 98 | 98 | 98 | NA | |
Adsorption and electrocoagulation | 92 | NA | 92 | NA | |
A2/O, secondary sedimentation, denitrification, UF, O3, UV | NA | 95 | 95 | 95 |
PE: Polyethylene; PS: Polystyrene; PP: Polypropylene; PET: Polyethylene terephthalate; NA: Not available