Skip to main content
. 2023 Aug 3;36(6):2441–2460. doi: 10.1007/s10278-023-00889-8

Table 4.

Comparison of results (%) obtained with the prior state-of-art methods developed for automated Alzheimer’s using MRI datasets

Author(s) Number of images Method Validation Results (%)
Puspaningrum et al. [47] 6400 Oversampling data, custom-designed CNN Unspecified Acc. = 55.27
Acharya et al. [48] 6400 Deep learning (VGG16, ResNet-50, and AlexNet)

Hold-out

75:25

Acc. = 95.70

Pre. = 91.90

Rec. = 92.30

F1 = 94.70

Fu’adah et al. [49] 6400 Deep learning (AlexNet)

Hold-out

75:25

Acc. = 94.58

Pre. = 92.0

Rec. = 90.20

F1 = 91.0

Subramoniam [50] 6400 Data augmentation, deep learning (ResNet101)

Hold-out

80:20

Acc. = 99.71

Pre. = 99.5

Rec. = 99.25

F1 = 99.5

Liang and Gu [51] 6400 Weakly supervised learning-based deep learning (ADGNET) 5-fold cross-validation

Acc. = 99.61

Pre. = 99.53

Spe. = 99.53

Rec. = 99.69

Alshammari and Mezher [52] 6400 Custom-designed CNN

Hold-out

80:20

Acc. = 97.0
Murugan et al. [53] 6400 Custom-designed CNN (DEMNET)

Hold-out

80:10:10

Acc. = 95.23

Auc. = 97.0

Coh.Ka. = 93.0

Our method 6400 PFP-HOG, IChi2, kNN 10-fold cross-validation

Acc. = 100

Pre. = 100

Rec. = 100

F1 = 100

Acc. Accuracy, Pre. Precision, Rec. recall, F1 F1-score, Spe. Specificity, Coh.Ka. Cohen’s kappa, Auc. area under curve