Skip to main content
. 2023 Aug 3;36(6):2441–2460. doi: 10.1007/s10278-023-00889-8

Table 5.

Comparison of results (%) obtained with the prior state-of-art methods developed for brain tumors using MRI datasets

Author(s) Number of images Method Validation Results (%)
Saleh et al. [54] 4480 Data augmentation and CNN (Xception)

Hold-out

60:20:20

Acc. = 98.75
Kang et al. [55] 3000 Ensemble deep learning features (DenseNet169, ShuffleNet, and MnasNet), SVM

Hold-out

80:20

Acc. = 93.72
Shoaib et al. [56] 6517 Custom-designed CNN (BrainTumorNet)

Hold-out

75:25

Acc. = 93.15

Rec. = 93.14

Spe. = 97.72

Pre. = 93.14

Coh.Ka. = 81.74

F1 = 93.11

Khan et al. [57] 8298 Dataset (3 datasets combined), feature extraction (standard dev., entropy, energy, etc.), CNN

Hold-out

70:15:15

Acc. = 97.92

F1 = 98.0

Our method 3264 PFP-HOG, IChi2, kNN 10-fold cross-validation

Acc. = 94.67

Pre. = 94.41

Rec. = 93.84

F1 = 94.10

Acc. Accuracy, Pre precision, Rec. recall, F1 F1-score, Spe. Specificity, Coh.Ka. Cohen’s kappa