Table 5.
Comparison of results (%) obtained with the prior state-of-art methods developed for brain tumors using MRI datasets
| Author(s) | Number of images | Method | Validation | Results (%) | 
|---|---|---|---|---|
| Saleh et al. [54] | 4480 | Data augmentation and CNN (Xception) | Hold-out 60:20:20 | Acc. = 98.75 | 
| Kang et al. [55] | 3000 | Ensemble deep learning features (DenseNet169, ShuffleNet, and MnasNet), SVM | Hold-out 80:20 | Acc. = 93.72 | 
| Shoaib et al. [56] | 6517 | Custom-designed CNN (BrainTumorNet) | Hold-out 75:25 | Acc. = 93.15 Rec. = 93.14 Spe. = 97.72 Pre. = 93.14 Coh.Ka. = 81.74 F1 = 93.11 | 
| Khan et al. [57] | 8298 | Dataset (3 datasets combined), feature extraction (standard dev., entropy, energy, etc.), CNN | Hold-out 70:15:15 | Acc. = 97.92 F1 = 98.0 | 
| Our method | 3264 | PFP-HOG, IChi2, kNN | 10-fold cross-validation | Acc. = 94.67 Pre. = 94.41 Rec. = 93.84 F1 = 94.10 | 
Acc. Accuracy, Pre precision, Rec. recall, F1 F1-score, Spe. Specificity, Coh.Ka. Cohen’s kappa