Skip to main content
. 2023 Aug 3;36(6):2441–2460. doi: 10.1007/s10278-023-00889-8

Table 6.

Comparison of results (%) obtained with the prior state-of-art methods developed for brain gliomas using MRI datasets

Author(s) Number of images Method Validation Results (%)
Raghavendra et al. [58] 800

Method 1: elongated quinary patterns and entropy analysis (EQPE), kNN

Method 2: deep learning (VGG16), kNN

10 fold cross-validation

Method 1:

Acc. = 92.5

Sen. = 90.66

Spe. = 93.6

Method 2:

Acc. = 94.25

Sen. = 94.33

Spe. = 94.20

Hsieh et al. [59] 107 Histogram moments, local statistics (correlation, entropy, energy, etc.), logistic regression Leave-one-out cross-validation

Acc. = 88.0

Sen. = 82.0

Spe. = 90.0

Anaraki et al. [60] 9035 Data augmentation, dataset (4 datasets combined), genetic algorithm, and CNN

Hold-out

80:20

Acc. = 90.9
Sert et al. [61] 200 Single image super-resolution, deep learning (ResNet), and SVM 5-fold cross validation

Acc. = 95.0

Auc. = 0.98

Banerjee et al. [62] 2043 CNN (PatchNet, SliceNet, and VolumeNet) Leave one patient out Acc. = 97.19
Our method 8328 PFP-HOG, IChi2, kNN 10-fold cross-validation

Acc. = 98.19

Pre. = 98.18

Rec. = 98.19

F1 = 98.19

Acc. Accuracy, Sen. Sensitivity, Spe. Specificity, Rec. recall, Pre. Precision, F1 F1-score, Auc. area under curve