Journal of Digital Imaging (2023) 36:2578-2601
https://doi.org/10.1007/510278-023-00844-7

=

Check for
updates

Public Imaging Datasets of Gastrointestinal Endoscopy for Artificial

Intelligence: a Review

Shigi Zhu'2. Jingwen Gao'? - Lu Liu'? - Minyue Yin'? . Jiaxi Lin'? - Chang Xu'2 - Chunfang Xu' . Jinzhou Zhu'?

Received: 27 February 2023 / Revised: 3 May 2023 / Accepted: 3 May 2023 / Published online: 21 September 2023
© The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2023

Abstract

With the advances in endoscopic technologies and artificial intelligence, a large number of endoscopic imaging datasets
have been made public to researchers around the world. This study aims to review and introduce these datasets. An extensive
literature search was conducted to identify appropriate datasets in PubMed, and other targeted searches were conducted in
GitHub, Kaggle, and Simula to identify datasets directly. We provided a brief introduction to each dataset and evaluated the
characteristics of the datasets included. Moreover, two national datasets in progress were discussed. A total of 40 datasets
of endoscopic images were included, of which 34 were accessible for use. Basic and detailed information on each dataset
was reported. Of all the datasets, 16 focus on polyps, and 6 focus on small bowel lesions. Most datasets (n=16) were con-
structed by colonoscopy only, followed by normal gastrointestinal endoscopy and capsule endoscopy (n=9). This review
may facilitate the usage of public dataset resources in endoscopic research.
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Introduction

In recent years, gastrointestinal (GI) endoscopy has devel-
oped rapidly. Due to its minimal invasiveness, endoscopy
has become a primary diagnostic tool for early GI lesions
[1]. However, the diagnostic rate of various diseases has
not increased significantly with the development of endos-
copy. The miss rate for colorectal polyps is reportedly as
high as 25% [2]. The endoscopic miss rate of upper gastro-
intestinal cancers is more than 5% [3]. With the increasing
number of GI endoscopies, imaging interpretation makes
endoscopists tired and indirectly influences diagnostic accu-
racy and efficiency. Taking capsule endoscopy (CE) as an
example, although CE is considered the standard criterion
for investigating small bowel (SB) lesions [4], SB-CE read-
ing is tedious (30 to 60 min per video) and time-consuming

P4 Chunfang Xu
xuchunfang @suda.edu.cn

>4 Jinzhou Zhu
jzzhu@zju.edu.cn

Department of Gastroenterology, The First Affiliated
Hospital of Soochow University, 188 Shizi Street, Suzhou,
Jiangsu 215000, China

Suzhou Clinical Center of Digestive Diseases,
Suzhou 215000, China

@ Springer

(approximately 50,000 frames per video) [5]. This increases
the risk of missed diagnosis during the reading process by
endoscopists. The limitation of endoscopy alone provides an
opportunity for objective diagnostic techniques to improve
the detection rate of gastrointestinal lesions.

In the past decade, the development of artificial intelli-
gence (Al)-based technologies in medicine has been advanc-
ing rapidly [6]. In the field of GI endoscopy, various Al
applications have been proposed, especially with the use of
deep learning (DL) technology, including convolutional neu-
ral networks (CNNs). Rapid advances in Al-based technol-
ogy have improved diagnosis accuracy, but they have also
increased the need for endoscopists to be familiar with Al as
well as high-quality and great-quantity endoscopic images.
However, obtaining a large sample size can be time-consum-
ing and expensive. Moreover, due to the lack of manually
labeled data and legal restrictions, it is difficult to create a
dataset. Therefore, publicly available datasets have gained
increasing popularity and may overcome the difficulties
described above. Compared with the clinical dataset, the
endoscopy dataset is defined as a dataset of high-defini-
tion endoscopic videos or images from the esophagus to
the cecum used in endoscopic research in a peer-reviewed
journal, and is not restricted by visit duration or encounter
setting. The images or videos from the endoscopy dataset
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are used for different tasks, such as segmentation, classifica-
tion and detection. However, because of barriers to access
and usability, such as governance and cost barriers, endos-
copy datasets need specialized websites, which are hard to
find. Currently, there is no centralized directory of endos-
copy datasets and, therefore, little knowledge regarding
available endoscopic imaging data.

With the significant advances in endoscopic technolo-
gies and Al, a large number of endoscopic imaging data-
sets have been made public to researchers worldwide. This
review aims to collect these datasets and provide a guide for
researchers using them.

Method
Eligibility Criteria

The search was restricted to humans and English. Datasets
containing endoscopic videos and images were eligible for
inclusion since 2010. No datasets were excluded due to the
age, sex, or ethnicity of the patients. Datasets containing
nonendoscopic images, videos, or numerical-only data were
excluded.

Retrieval of Gl Endoscopy Dataset

PubMed was initially searched for relevant publications.
Two independent authors used the following search terms
to perform a systematic search of the endoscopy dataset:
“endoscop*,” “gastrointestinal endoscop*,” “colonoscop*,”
“capsule endoscop*,” “database*,” and “dataset*,” and then
we attempted to access these datasets at the source. After
the initial search, we performed a second search of Kaggle
(https://www.kaggle.com/), GitHub (https://github.com/),
and Simula (https://datasets.simula.no/). We also manually
reviewed the references of the articles identified from the
initial search. The last search was performed on December
31, 2022. This systematic search was performed under the
supervision of a medical doctor. Endnote, which is a spe-
cialized software for managing bibliographies, was used for
recording.

Dataset Selection

Two authors independently screened search results in dupli-
cate to identify the name and source of any relevant study.
Where the status of availability was unclear, we checked these
datasets and attempted to access their source. Duplicates were
excluded, and obviously irrelevant studies were removed
based on title and abstract. Then, full-text screening was
performed. Search results from Kaggle, GitHub, and Simula
were also screened by two authors to identify relevant datasets

directly. Discrepancies were resolved through negotiation. In
our reviews, dataset accessibility was defined as three types:
(1) not available anymore because of unpredictable reasons,
such as no response to request; (2) available publicly: there
are no requirements or restrictions; and (3) available only by
request or registration: there are minimum requirements (sub-
mission for personal information) or formal agreement.

Extraction of Dataset Characteristics

Two independent authors recorded the characteristics of
each dataset, including the direct link to the dataset, pub-
lish year, accessibility, country, content (imaging number,
data type, and endoscopic type), and other features. Two
other authors reviewed the characteristics for correctness
and resolved inconsistencies.

Results

Datasets Identified from the Literature and Targeted
Search

The dataset search and selection process flowchart is shown
in Fig. 1. A total of 532 articles were identified from the
initial PubMed search, of which 279 were excluded after
screening the title and abstract. A total of 253 were assessed
to be eligible for full-text review. Of these, 13 unique data-
sets were identified, and 69 potential articles were chosen for
further review. The same datasets were often referenced by
multiple articles. The second search from Kaggle, Simula,
GitHub, and references identified 52 potential endoscopic
imaging datasets. After combining the results, 21 duplicate
datasets were excluded, and 4 datasets with old versions
were excluded. Finally, 40 endoscopic imaging datasets were
identified and included for further data extraction. The basic
information of these datasets is summarized in Table 1. The
detailed characteristics are summarized in Table 2. Moreo-
ver, the application of these datasets in the establishment of
the Al model is presented in Supplementary Table 2.
According to the data type, we divided 40 endoscopic
imaging datasets into 6 groups: polyp datasets (n=16),
small bowel lesions datasets (n=06), gastro-esophageal
lesions datasets (n=2), comprehensive GI detection datasets
(n=75), atlases of GI endoscopy (n=4), and others (n=7).

Polyp Datasets

Most endoscopy datasets are polyp related (n=16). One
dataset collected GI polyp images by wireless capsule endos-
copy (WCE). The others collected colon-polyp images by
colonoscopy.

@ Springer
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Fig. 1 Flowchart of literature
search

69 articles only used public
datasets

532 articles identified through
PubMed

279 articles excluded after
title and abstract screening

Y

253 articles full text screening I

164 articles excluded during
full text screening

> -4 no full text available

‘L -160 datasets used not

publicly available

89 articles describing or using
endoscopy datasets

7 articles excluded after

checking website provided

A 4

52 potential relevant
additional datasets identified
-21 by searching in
references from 69 articles
-11 by searching in Kaggle
-7 by searching in Simula
-13 by searching in GitHub

»| -4 with wrong image format
L -2 in pathological perspective
-1 involving animal

13 unique endoscopy datasets experiments

from PubMed

v

65 datasets from PubMed I 25 datasets excluded

-21 duplicated
»| -4 with old version (such as
old version Kvasir)

v

40 unique endoscopic imaging
datasets

|

l }

datasets

6 non-available

13 datasets available
by request

21 open access
datasets

CVC-ColonDB, the first endoscopy colon-polyp data-
set constructed in 2013, contained 300 polyp images with
associated masks from 13 polyp videos. In addition to
polyp images, the dataset reported three key characteristics
of each video: length, number of frames, and polyp shape
(flat or peduncular). CVC-ColonDB was used to train and
test automatic polyp detection models from 2013 to 2015
[7, 46—48]. However, rough boundary outlines and a small
number of polyp images cannot be ignored. Moreover, the
dataset is unavailable from the official website.

CVC-ClinicDB, a dataset from Spain in 2015, contained
612 polyp images from 31 polyp videos. Compared with
CVC-ColonDB, more polyp images were included. Moreo-
ver, it provided binary masks for both polyps and specular
highlights. Clinical metadata associated with each polyp
were also included, such as polyp size and classification
according to Paris criteria [49]. However, complete bound-
ary information was still lacking in the CVC-ClinicDB,
which might lose the advantage over the gradient informa-
tion accumulation process.

@ Springer

ETIS-Larib Polyp DB contained 300 colon-polyp images
with corresponding bounding boxes and 1200 non-polyp
images by WCE. However, the dataset is unavailable.

ASU-Mayo, built in 2016 by Arizona State University
in America, contained 10 positive shots and 10 negative
shots from colonoscopy. A total of 5200 polyp frames were
extracted from positive shots, while 14,200 normal frames
were extracted from negative shots. More than 3500 frames
came with corresponding masks and boxes. To avoid overfit-
ting, images varied from different levels of colon prepara-
tion, colonoscopy events, and artifacts, which maintained a
large degree of variability and complexity. The copyrighted
dataset is only available through direct contact with the
administrations.

GI lesions in the Regular Colonoscopy Dataset included
76 colonoscopy videos from 15 serrated adenomas, 21
hyperplastic lesions, and 40 adenomas. Lesions were
recorded from five modalities: WL frame, NBI frame, WL
video less than 30 s, NBI video less than 30 s, and camera
calibration. The calibration was associated with ground truth
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from histopathology and the human operators’ diagnosis (4
experts and 3 beginners). This was the first endoscopy data-
set to provide a detailed ground truth for videos and dif-
ferentiate between serrated adenomas, hyperplastic polyps,
and adenomas.

The LD PolypVideo dataset, the largest polyp-related
dataset to date, was constructed at the First Affiliated Hos-
pital of Anhui Medical University, Hefei, China. The dataset
contained 160 colonoscopy videos and 40,266 frames with
annotation in total. Moreover, there were 33,884 frames of
colon polyps, which were more than 11 times that of CVC-
ClinicVideoDB. Due to diverse morphologies and data, the
LD PolypVideo dataset can be used in unsupervised and
semi-supervised tasks.

The Kvasir-SEG, EndoScene, and KUMC datasets are
secondary datasets that were constructed based on original
datasets. The Kvasir-SEG dataset was based on the polyp
class of Kvasir. Researchers replaced 13 original polyp
images with new high-quality images and added corre-
sponding segmentation masks and bounding boxes for 1000
images of polyps. The EndoScene dataset was composed
of 912 images (300 from CVC-ColonDB and 612 from
CVC-ClinicDB). Each frame came with three correspond-
ing masks: poly, specular highlights, and lumen masks.
However, the dataset is unavailable online. The KUMC
dataset contained 4955 images with corresponding bound-
ing boxes from 38 adenomatous and 38 hyperplastic pol-
yps. The KUMC dataset was based on the CVC-ColonDB,
ASU-Mayo, and Colonoscopic and KUMC Colonoscopy
datasets. It provided two sets of supporting information, in
which set 1 contained the extracted polyp patches, while set
2 contained not only the extracted polyp patches but also the
background around the polyps.

The NBIPolyp-Ucdb and WLPolyp-UCdb datasets
came from the same author and organization in Portugal.
NBIPolyp-Ucdb contained 86 colon-polyp images from
10 adenomas and 1 hyperplastic polyp, recorded with NBI
colonoscopy. A corresponding mask of each image was also
provided. WLPolyp-UCdb contained 1680 images of polyps
and 1360 of normal colon mucosa with WL colonoscopy.
A form with personal information needs to be completed to
download both datasets.

The SUN dataset was collected from the Showa Univer-
sity and Nagoya University databases in Japan and updated
in December 2022. The dataset included 49,136 polyp
frames annotated with bounding boxes and 109,554 non-
polyp frames. Moreover, detailed characteristics of each
polyp, including shape, median size, location, and patho-
logical diagnosis, were provided. The data can be requested
by email.

The SUN-SEG dataset, a secondary dataset based on the
SUN dataset, contained 1106 short video clips with 158,690
frames in total. Researchers manually separated 113 original

colonoscopy videos into 378 positive and 728 negative
sequences. Moreover, in addition to primary bounding boxes
and detailed information, more annotations and ground truth
were provided, including visual attributes, masks, scribbles,
and polygons in SUN-SEG.

The PICCOLO dataset was collected from October 2017
to December 2019 in Spain. This dataset included 2131 WL
and 1302 NBI polyp images from 76 different lesions. For
each image, a binary mask was created manually, indicating
that there was a polyp. Moreover, clinical metadata were pro-
vided as follows: the number of polyps, polyp identification,
polyp size (in millimeters), Paris classification, NICE rating,
preliminary and literal diagnoses, and histological stratifica-
tion. Although the PICCOLO dataset is publicly available,
a dedicated form to request a download must be completed.

The CP-CHILD dataset recorded the colonoscopy data
of children from Hunan Children’s Hospital in China. It
was divided into CP-CHILD-A and CP-CHILD-B datasets.
The CP-CHILD-A dataset contained 8000 RGB images,
including 1000 colonic polyp images and 7000 normal or
other pathological images by Olympus PCF-H290DI; the
CP-CHILD-B dataset contained 1500 RGB images taken by
FUJIFLIM EC-530wm, including 400 colon-polyp images
and 1100 normal or other pathological images.

PolypGen, a multicenter polyp detection and segmen-
tation dataset, was composed of 3672 positive frames and
2520 negative frames. For each polyp frame, a mask was
created by expert endoscopists. Moreover, detailed informa-
tion containing size, location, artifacts, and visibility was
provided.

Small Bowel Lesion Dataset

Capsule endoscopy has been used as a complementary test
for patients with GI bleeding since early 2020, with great
potential to become an authoritative diagnostic tool for the
small bowel [50, 51]. The development of CE contributes
several datasets to small bowel lesions.

The Kid dataset, the earliest open-source CE dataset
in 2017, aimed to provide a reference for research on the
development of medical decision support systems for CE.
More than 2500 annotated CE images and 47 videos were
provided through the Kid dataset. Images included normal
CE and vascular lesions. Detailed information on the classi-
fication can be seen in Table 2. Researchers need to register
for access to the Kid database. However, precise definitions
are lacking for several diseases in the small intestine, and a
certain number of images are difficult to annotate and set.

CAD-CAP, a national multicenter dataset from twelve
French endoscopic units, provided 1685 SB-CE videos, 5124
images with abnormal findings, and 20,000 normal images.
Abnormal findings are divided into three categories: vascular
lesions (n=3103), fresh blood (n=651), ulcer-inflammatory
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lesions (n=1370). However, bowel preparation quality and
polyps were not considered in this version of the CAD-CAP.
The dataset is unavailable now.

Kvasir-Capsule, a large VCE dataset collected from
Norwegian Hospital in 2021, contained 117 videos and
4,741,504 extracted frames. A total of 47,238 frames were
labeled and divided into 2 classes: anatomy and small bowel
findings. There were also 74 unlabeled videos and 4,694,266
unlabeled images for further research. Detailed information
on the classification can be seen in Table 2.

The AICE Project dataset was created at Kaggle in 2022.
The dataset contained 18,481 images. It consisted of 12,320
lesion images and 6161 normal images. Small bowel lesions
included angiodysplasia, erosion, stenosis, lymphangiecta-
sia, lymph follicle, polyp-like lesions, submucosal tumor,
bleeding, diverticulum, erythema, foreign body, and vein
lesions. The data are available by the author.

CrohnlIPI dataset, a multicentric dataset of pathological
and nonpathological images of Crohn’s disease, included
3498 annotated images extracted from 66 video capsules
of diagnosed patients. A total of 1630 images contained
6 Crohn’s lesions (erythema, edema, aphthoid ulceration,
3—10 mm ulceration, > 10 mm ulceration, stenosis), 2124
images were labeled as nonpathological, and 14 images were
inconclusive findings.

Endoscopy Crohn’s Disease dataset, a large-scale Crohn’s
gastrointestinal image dataset for lesions and challenges
faced in CE, covered 466 images from 15 patients. The con-
tent involved in Crohn’s lesions includes various complex
challenges, including motion blur, excreta occlusion, and
reflection. Moreover, the clinical and demographic char-
acteristics of 15 patients were provided by the dataset. To
obtain the data, a message needs to be sent.

Gastroesophageal lesion Datasets

IPCL, the first dataset of normal and abnormal intrapapillary
capillary loops (IPCL), was constructed from magnification
endoscopy (ME) in Taiwan. IPCL is a clinical microvascular
feature considered an endoscopic marker for early squamous
cell neoplasia (ESCN). A total of 67,740 frames from 114
videos were classified into four types of IPCL, A, B1, B2,
and B3, based on the Japanese Endoscopic Society (JES)
IPCL system correlated with histopathology. The IPCL data-
set can serve as a benchmark for future work on the detec-
tion of ESCNs and has great potential in the endoscopic
diagnosis of early esophageal neoplasia, which remains in
its infancy [52].

IM and GA Benchmark, a dataset to detect intestinal
metaplasia (IM) and gastritis atrophy (GA), was built in
China by traditional WLI and LCI endoscopy. The dataset
included GA, IM, and normal images in five gastric lesion
locations (antrum, angle, cardia, fundus, and body). There

@ Springer

were 21,420 annotated LCI and WLI images that were anno-
tated by four radiologists and validated by biopsy examina-
tion results. The advantages of this dataset are as follows: (1)
more than 20,000 images covering all five key locations in
the stomach, (2) detailing and reserving the original image
resolution, and (3) few studies of LClI-related GI and IM.

Comprehensive Gl Detection Datasets

Conventional endoscopy examination is currently the gold-
standard procedure for investigating the GI tract, including
gastroscopy and colonoscopy. Gastroscopy covers the upper
GI tract from the esophagus to the duodenum, while colo-
noscopy covers the colon and rectum [53, 54]. Comprehen-
sive GI detection datasets are considered multiclass image or
video datasets in GI endoscopy. It covers several anatomical
structures or lesions and has abundant data for automatic
algorithmic detection of many aspects of the GI tract, which
is not limited to a specific lesion, a specific part or a specific
endoscopic technology.

Kvasir, the first comprehensive GI detection dataset con-
taining multiclass images, was created in 2017 from the Ves-
tre Viken Health Trust in Norway. Images were classified
into three important anatomical landmarks, three clinically
pathological findings, and two endoscopic procedures. Eight
detailed classes included Z-line, pylorus, cecum, esophagi-
tis, polyps, ulcerative colitis, “dyed and lifted polyp,”
and “dyed resection margins.” Each class contained 1000
images, which was sufficient for different tasks. Two sets
of images related to the removal of polyps, the “dyed and
lifted polyp” and “dyed resection margins,” were provided
for automatic recognition of the site of polyp removal. The
dataset was used for the Multimedia for Medicine Challenge
(the Medico Task) in 2017 [55] and 2018 [56] at the Medi-
aEval Benchmarking Initiative for Multimedia Evaluation.
However, due to only frame-wise annotations, the dataset is
limited to frame classification only.

HyperKvasir, a comprehensive multiclass image and
video dataset of the GI tract available today, was collected
during gastroscopy and colonoscopy at Beerum Hospital in
Norway from 2008 to 2016. It contained 110,079 images
and 374 videos, including anatomical landmarks and path-
ological & normal findings. A total of 10,662 labeled
images showed 23 different classes, including anatomical
landmarks, quality of mucosal views, pathological findings,
and therapeutic interventions. One thousand mask images of
corresponding polyps were provided for the segmentation
task. Thirty classes of findings were identified in 374 videos
from the GI tract. Moreover, HyperKvasir provided 99,417
unlabeled images that can be used for semi-supervised and
unsupervised tasks. Chang et al. combined 10,417 images
from a local hospital and 3157 from the HyperKvasir dataset
to develop a quality assurance algorithm for colonoscopy
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[57]. To the best of our knowledge, HyperKvasir is the most
diverse dataset of GI endoscopy, which enables researchers
not only to analyze, classify, segment, and retrieve various
GI findings but also to differentiate between the severity of
the findings.

The Rhode Island Gastroenterology VCE dataset, the lat-
est and largest public dataset available, included 424 videos
and 5,247,588 labeled images from the VCE procedures.
Images were divided into four classes by anatomical organ:
esophagus (n=13,715), stomach (n=557,049), small bowel
(n=4,111,865), and colon (n = 564,959).

WCE Curated Colon Disease, a secondary dataset con-
structed in 2022, relied on two readily available datasets:
Kvasir and ETIS-Larib Polyp DB. After intensive data col-
lection and evaluation, a total of 6000 images were chosen
for this dataset. Images were divided into four classes: nor-
mal, ulcer, polys, and esophagitis. Each class had equal num-
bers for training, validation, and testing, which contained
800, 500, and 200 images, respectively.

The ERS dataset, a multitissue comprehensive imaging
dataset from flexible endoscopy, colonoscopy, and capsule
endoscopy, described all possible findings in the GI tract.
It contained 6000 precisely and 115,000 approximately
labeled images from endoscopy videos and 3600 precisely
and 22,600 approximately labeled images with segmentation
masks. Images were annotated and divided into 27 differ-
ent types of colonoscopic findings and 54 different upper
endoscopy findings. In addition to traditional findings, three
categories of terms were included in the dataset: healthy GI
tract tissues, image quality attributes (such as sharp, blur,
motion, and stool), and images with blood. Detailed information
is provided in Supplementary Table 1. Researchers can fill
in a form and obtain a link to download the ERS dataset.

Atlases of Gl Endoscopy

In the next section, there are four atlases of GI endoscopy
with several findings in the GI tract. It is more of a medical
atlas or database for education than a dataset for traditional
ML or DL. With the appearance of few-shot learning [58],
the atlas of GI endoscopy might be used in this field.

The WEO Clinical Endoscopy Atlas, an atlas of GI from
the World Endoscopy Organization (WTO), was compiled
from personal contributions to endoscopists throughout
the web from 2009 to 2022. The atlas contained hundreds
of images divided into 6 classes: lumen (n=31), contents
(n=35), mucosa (n=25), flat lesions (n=14), protruding
lesions (n=49), and excavated lesions (n=24). The web-
site provides a description, source, and data below every
image. Researchers can search for images of interest using
the minimal standard terminology (MST) term.

The Atlas of Gastrointestinal Endoscopy was constructed
by Atlanta South Gastroenterology from 1996 to 2016. It

provided 1259 images from the esophagus to the colon/
ileum. To our surprise, the atlas provided several rare lesions
in the GI tract, such as gastrointestinal syphilis and gastros-
tomy tube ulcers. It can be used for educational and general
informational purposes with a brief case report and descrip-
tion for every lesion.

The El Salvador atlas, a video atlas of GI endoscopy, con-
tains 5138 video clips of the GI tract. Although covering
almost all areas of GI pathology is detectable, low-quality
and low-resolution videos cannot be avoided.

Gastrolab contains more than 1498 images of GI anatomi-
cal structure, lesions, infectious diseases, and GI devices.
Detailed classification information is provided in Sup-
plementary Table 1. Moreover, hundreds of videos can be
downloaded through this website.

Others

A number of detection and segmentation challenges posted
online contribute endoscopy datasets to GI lesions. How-
ever, these datasets are restricted to being available to the
registers of these challenges only. Here, we find three chal-
lenges and corresponding datasets: GIANA 2017, GIANA
2018, and EDD 2020.

GINAN 2017 defined four different tasks: polyp detec-
tion, polyp segmentation, angiodysplasia detection, and
angiodysplasia localization. It contained 600 images of
angiodysplasia, 38 videos captured by WCE, and more than
900 images of polys captured by colonoscopy. Organizers
provided ground-truth segmentation masks with each image
for detection, segmentation, and classification.

GINAN 2018 defined three types of tasks: polyp detec-
tion and localization in video colonoscopy, polyp segmen-
tation in colonoscopy images, and lesion detection and
localization in WCE images. It contained 8262 images and
38 videos with corresponding ground-truth segmentation
masks.

Moreover, due to successful iterations of the Endoscopic
Vision Challenge (GIANA 2017 and GIANA 2018), a new
challenge was released in 2021 that was associated with
colonoscopy image analysis: lesion detection, segmentation,
and classification. More information about GIANA 2021 can
be found at https://giana.grand-challenge.org/.

EDD 2020, a multiclass, multiorgan, and multipopula-
tion disease detection and segmentation challenge in clinical
endoscopy, provided a comprehensive dataset to benchmark
algorithms for disease detection. The dataset incorporated
multiple populations with 4 different international centers
and 3 GI organs: the colon, esophagus, and stomach. There
were 385 images from GI videos and 503 ground-truth
annotations consisting of five types of GI lesions: normal
dysplastic Barrett’s esophagus, suspicious area, high-grade
dysplasia, adenocarcinoma, and polyps.

@ Springer


https://giana.grand-challenge.org/

2596

Journal of Digital Imaging (2023) 36:2578-2601

The final section, with databases not easily lying within
the earlier categories, contains the unusual content of the
GI tract.

The Cho et al. 2019 dataset is a single-center colon-polyp
dataset from Seoul National University Hospital in Korea. It
recorded the complete process in colonoscopy, containing
328,927 frames of cecal landmarks in insertion, withdrawal
and stopping points, but data were only available for 100
polyp images from 2 videos online. The complete raw data
may be available through direct contact with the author.

EAD (endoscopy artifact detection) 2019, a multiclass
artifact detection dataset, was constructed from 6 different
institutions in 2019. Artifacts are considered heavy imag-
ing interference during the GI endoscopy process, such as
motion blur and bubbles, which remain a challenge and
problem in the diagnosis and treatment of disease in hol-
low organs through GI endoscopy. The dataset contained 7
classes of artifacts: imaging artifacts, pixel contrast, specu-
lar reflections, motion blur, bubbles, pixel saturation, and
instruments from multiple organs (the esophagus, stomach,
liver, colon, and bladder) and multiple modalities (white
light, narrow band, and fluorescence light). EAD 2019 was
used to solve three tasks: multiartifact detection, region seg-
mentation, and generalization.

For detection, 2147 annotated frames over all 7-artifact
classes were provided. For semantic segmentation, 475
annotated frames for 5 classes (pixel saturation, specular
reflections, imaging artifacts, bubbles, and instrument) were
provided. For generalization, 53 images were provided.

a SUBJECT b

Others (n=7, 18%) Normal gastrointestinal
en

endoscopy (n=9, 23%)
Polyp (n=16, 40%)

Atlas of Gl en

(n=4, 10%)
Multi-tissue endoscopy

endos:
(n=4,10%)

Comprehensive GI
detection (n=5, 13%)

Small bow
(n=6,

Total=40

d GEOGRAPHICAL DISTRIBUTION

Online (n=5, 13%)

Poland (n=1, 3%)

Japan (n=2, 5%)
America (n=2, 5%)

Spain (n=3, 8%)

Korea (n=1,3%)

Portugal (n=2, 5%) China, including

na, in
Taiwan (n=5, 13%)
France (n=4, 10%)

Total=40

Fig.2 Characteristics of datasets involved
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ENDOSCOPY C

Total=40

Multi-sites (n=5, 13%)

Kvasir-Instrument, the first diagnostic and therapeu-
tic tool segmentation dataset in GI endoscopy, was partly
collected from endoscopic examinations performed at the
Beaerum Hospital and partly extracted from the HyperKvasir
and Kvasir-SEG datasets. There were 590 annotated frames,
including GI procedure tools such as snares, balloons,
and biopsy forceps. In addition to the images, ground-
truth masks and bounding boxes were provided. Kvasir-
Instrument helped to set up an automated system algorithm
for the segmentation of GI tract diagnostic and therapeutic
endoscopy tools to locate and guide GI tract biopsies and
surgeries.

Nerthus showed different degrees of bowel preparation.
It contained a total number of 5525 annotated frames. The
frames were divided into four classes (ranging from O to
3) by the Boston bowel preparation scale (BBPS) [59, 60]
within each section according to a defined numeric scale.
Most frames were provided with the location inside the
bowel due to different values in different positions. Thanks
to the Nerthus dataset, automatic systems would be made for
evaluating the quality of bowel cleansing to achieve high-
quality colonoscopy examinations.

Dataset Characteristics
The study includes 40 endoscopy datasets from 2010 to 2022.
The subject of the datasets included is summarized in Fig. 2a.

A total of 36 (90%) datasets are endoscopy datasets, includ-
ing a large number of images for ML or DL, and 4 (10%)

AVAILABILTY

Unavailable anymore
6, 15%)

Only colonoscopy
(n=16, 40%)

Available publicly
(n=21, 53%)

Only capsule
endoscopy (n=9, 23%)

Total=40

€ IMAGE FORMAT

NR (n=7,

18%)

Png (n=4, 10%)
Jpeg (n=22, 55%)

Bmp (n=3, 8%)

Tiff (n=4, 10%)

Total=40
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are atlases of GI endoscopy with several samples of various
findings in the GI tract. Polyp-related datasets were the most
numerous (n= 16, 40%), followed by small bowel lesions
(n=6, 15%), comprehensive GI detection (n=5, 13%), and
gastroesophageal lesions (n=2, 5%). Of the remaining 7 data-
sets, 3 (8%) are challenge-related datasets, and 4 (10%) are
related to unusual findings such as instruments and artifacts.

The endoscopic type of the datasets included is shown
in Fig. 2b. Most datasets (n= 16, 40%) were constructed
by colonoscopy only, followed by normal gastrointestinal
endoscopy consisting of gastroscopy and colonoscopy and
capsule endoscopy (n=9, 23%).

Dataset access is evaluated in Fig. 2c. Twenty-one (53%)
datasets can be viewed and downloaded freely and publicly,
while 6 (15%) are unavailable from official websites and 13
(33%) are available by request or registration with minimum
requirements for access (such as creating an account or a
form for personal information).

The geographical distribution of the datasets included is
shown in Fig. 2d. Five (13%) were secondary datasets based
on original datasets, 5 (13%) were collected online, and 5 (13%)
were constructed from multiple endoscopic centers from differ-
ent countries. Other studies (n=25, 63%) were conducted in a
single country. Of these, Norway and China (including Taiwan)
developed the most endoscopy datasets (n=5, 13%, respec-
tively), followed by France (n=4, 10%), Spain (n=3, 8%),
Japan, America, and Portugal (n=2, 5%, respectively). One
(3%) dataset was retrieved in Poland and Korea.

Most datasets (22 of 40, 55%) stored images in joint photo-
graphic experts portable network graphics JEPG/JIPG), 4 (10%)
in tagged image file format (TIFF), 4 (10%) in portable network
graphics (PNG), and 3 (8%) in bitmap image file (BMP). The
image format is unreported in 7 datasets (18%). The image for-
mat of the datasets included is summarized in Fig. 2e.

National Endoscopy Datasets

When constructing a public dataset, processes such as
encryption and de-identification are required to remove data
related to patient identification [61]. This protects patients’
privacy, but restricts certain areas of clinical metadata. This
issue can be resolved by a large-scale, high-quality dataset.
Here, we introduce two potential national datasets in pro-
cess: Japan Endoscopy Database (JED) [62] and the United
Kingdom National Endoscopy Database (NED) [63].

JED, a multicenter endoscopy dataset launched by the
Japan Gastroenterological Endoscopy Society, was proposed
in 2015 [64]. The purposes of JED were as follows: (1) to
construct the largest endoscopic practice database world-
wide; (2) to store diagnostic information for therapeutic
procedures and examinations; (3) to standardize the termi-
nology and fundamental items for endoscopy; and (4) to
provide adequate data for clinical and basic research. JED

consisted of both structured and unstructured information.
Structured information was obtained for all endoscopic pro-
cedures including patients’ fundamental information and
the duration of the procedure. Unstructured information
was obtained from four endoscopic examinations: upper GI
endoscopy, small bowel endoscopy, lower GI endoscopy,
and endoscopic retrograde cholangiopancreatography-
related procedures (ERCP). Taking upper GI endoscopy as
an example, endoscopic images of upper GI findings and
Helicobacter pylori (Hp) infection status were collected.

There were several reports and researches based on JED.
Kodashima et al. published the first JED project status report
in 2017, describing over 60,000 endoscopic procedures
and identifying several problems that need to be addressed
[65]. Based on JED, Saito et al. reported the current sta-
tus of diagnostic and therapeutic colonoscopy, while Oda
et al. reported the current status of Hp infection and gastric
mucosal atrophy in patients with gastric cancer [66, 67].

Due to combination with structured and unstructured
data, JED will contribute to the future development of GI
endoscopy Al technology. More multi-model algorithms will
be mined based on JED.

The United Kingdom National Endoscopy Database (NED),
a centralized dataset launched by the Joint Advisory Group,
comprehensively represents the entire UK endoscopy practice.
It was used to capture near-real-time data from GI endoscopy
procedure. Standardization of endoscopic data and key perfor-
mance indicators made for the implementation of NED, such
as the modified Aronchick classification for bowel preparation
quality. At present, 411 of 520 UK endoscopic units, both pub-
lic and private, are actively uploading endoscopic data to NED,
which has collected more than 2.5 million endoscopic proce-
dures. The initial purpose of NED was to generate personalized
trainee metrics and learning curves to evaluate competency
progression and quantify endoscopy quality. With the devel-
opment of NED, the NED IT team promised that they would
provide procedure-level data and images of the GI tract. Rutter
et al. utilized NED data from January 2020 to May 2020 to
evaluate the impact of the COVID-19 pandemic on endoscopic
activity in UK [68]. NED is likely to become a high-quality
endoscopic dataset for future.

Discussion

From the broad search of medical literature and targeted
search engines, we found 40 unique endoscopy datasets. The
most common subject is polyp-related lesions. Colorectal
polyp detection and characterization have been most likely
representative of the application of DL for GI endoscopy
[69, 70].

Across all datasets, colonoscopy is the most com-
mon endoscopy type, probably because of its widespread
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availability and common use of colonic lesions. The sec-
ond most common endoscopy is capsule endoscopy. Cap-
sule endoscopy has been developed rapidly not only for the
small bowel but also for the whole GI tract. Moreover, Al
with capsule endoscopy has demonstrated better diagnostic
accuracy with a shorter reading time [71].

The availability of the current endoscopy datasets appears
to be an issue. Of 40 datasets, 53% of datasets (n=21) are
available publicly, while 33% of datasets (n=13) are avail-
able by request or registration. Although a number of studies
used endoscopy datasets, they did not open access to data-
sets. Moreover, discoverability also appears to be an issue.
Although a few datasets have been used multiple times, such
as CVC-ClinicDB, Kvasir-SEG, and HyperKvasir, many are
not. This difference in use might lead to a loss of research
opportunities and selection bias due to an overuse of sev-
eral potential nonrepresentative datasets. In this regard, it
is necessary to improve their discoverability. Therefore, our
study provides an initial point of access that will improve
their discoverability. We encourage journals and authors to
improve data accessibility for the future.

Most datasets (n=33, 82%) provided images in a com-
mon and portable file, which is generally accepted in various
algorithms in ML or DL.

Strengths and Weaknesses

To the best of our knowledge, this is the first review to curate
a comprehensive list of endoscopic imaging datasets. One of
the strengths is the broad search strategy, including scientific
and online search engines. Moreover, two public colonos-
copy image datasets are included for reference [72, 73].

Furthermore, we attempt to verify the statements and
availabilities of all datasets involved because several datasets
that could be obtained publicly are unavailable today, such
as CVC-ColonDB and ETIS-Larib Polyp DB. This process
helps us determine the extent to which datasets are truly
accessible and provide users with the latest guidance.

Finally, whether image labels, ground masks, and clinical
metadata are provided is included in the brief introduction of
each dataset involved. Therefore, users can select an appro-
priate dataset according to the introduction, which greatly
saves time and energy.

There are several limitations in our review. First, only
one medical search engine, PubMed, was used to screen
endoscopy datasets. In addition, we failed to report details
regarding the selection and annotation processes which have
an effect on the establishment of the dataset [74]. Finally, we
excluded specific datasets for the purpose of Visual Simulta-
neous Localization and Mapping, such as Endomapper and
VR-Caps.

@ Springer

Implications

To reduce tedious work and accomplish complicated tasks,
the need for Al-assisted tools in clinical practice is on the
rise. Publicly available imaging datasets can be a power-
ful and essential benchmark for Al-assisted tools; however,
the implications and limitations of these datasets must be
considered. In this section, we discuss three implications of
these datasets: accessibility, details, and adequate samples.

The first implication is accessibility. It is amazing that
we identified 34 datasets that have open access; however,
there are two issues remaining. One is that unbalanced use
and reference might result in bias or neglect of the latest
but high-quality datasets. Another is that users’ desire for
datasets with regulated access might not be strong. Although
these datasets might have higher quality and reflect stronger
attention to governance and metadata reporting, users still
prefer to select datasets that have immediate, unregulated
access but low quality.

The second implication is the details. Most endoscopy
datasets provide original images with corresponding masks
or bounding boxes to outline the subjects. However, clini-
cal and annotation details are not reported in most datasets.
Clinical data includes what type of patients and lesions were
involved and categories & locations of lesions. Taking the
PICCOLO dataset as an example, in addition to original
images, it provides a bounding box, binary mask, polyp
identification, polyp size, Paris classification, NICE rating,
preliminary and literal diagnoses, and histological stratifi-
cation for each polyp. These clinical metadata help distin-
guish the diverse population of humans and their diseases
to launch more accurate algorithms and make assumptions
on the generalization of the real world. Annotation details
regarding annotators’ number, annotators’ expertise, and
annotation processes are reported in a few datasets. There is
no doubt that several assumptions and definitions were made
during the annotation process, which could influence the
ultimate performance of an algorithm. Incomplete annota-
tion details may result in inappropriate use of data and even
biased results. However, there are acknowledged challenges
associated with clinical and annotation details. In addition to
ethical supervision during curation, storage, and access, the
curation of metadata is demanding, costly, time-consuming,
and requires careful treatment to ensure accuracy and com-
pleteness. Therefore, such a dataset is difficult to build.

The last key implication is adequate samples. A small
sample size of images may make models overfitted, which
limits the development of Al systems in the diagnosis of GI
diseases. Fortunately, there have been an adequate number of
endoscopic images in datasets in recent years. Additionally,
it is of great significance to ensure adequate high-quality
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samples. Specifically, multicenter, authoritative datasets
are needed; therefore, we introduced two national endos-
copy datasets. Meanwhile, more video-related datasets are
required to improve model verification by simulating the real
setting in clinical practice [75]. Al has been applied to most
GI lesions, especially in intestinal polyps and inflammatory
bowel disease; however, esophageal polyps, gastric cysts,
and other lesions remain apparent exceptions [76]. In addi-
tion, esophageal, stomach, and colorectal cancers continue
to pose major challenges to public health; however, we find
that there are few endoscopy datasets regarding GI cancers
[77]. Moreover, there are relatively few datasets that focus
on the change between diagnosis and prognosis due to the
difficulty of follow-up.

Conclusions

Publicly available endoscopy datasets, as prerequisites for
computer vision-based algorithms, can be used both as
training datasets or validation datasets. Endoscopy datasets
can assist in the development of state-of-the-art solutions
for lesion images captured by GI endoscopy, and decrease
the morbidity and mortality of GI diseases. However, poor
accessibility and visibility, absence of details, and inad-
equate samples dissuade researchers from further usage.
This brief review of the comprehensive list of endoscopic
imaging datasets provides potential value to promoting Al’s
application in gastroenterology. We hope that more research-
ers can use these datasets through this review and more
large, high-quality, comprehensive, annotated endoscopic
imaging datasets can be made accessible.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10278-023-00844-7.

Author Contribution All authors contributed to the study conception
and design. Zhu JZ conception and design; Zhu SQ drafting of the
article; Zhu SQ and Yin MY literature research; Gao JW and Lin JX
data extraction; Xu C and Liu L quality assessment; Zhu JZ and Xu
CF critical revision of the article; Xu CF and Zhu JZ final approval of
the article.

Funding This work was supported by the National Natural Science
Foundation of China (82000540), Science and Technology Plan of
Suzhou City (SKY2021038), Suzhou Clinical Center of Digestive
Diseases (Szlcyxzx202101), and Youth Program of Suzhou Health
Committee (KIXW2019001).

Data Availability The endoscopic imaging data supporting the findings

of the review are available within the article. The websites of available
datasets are provided in Table 1.

Declarations

Competing Interests The authors declare no competing interests.

References

1. Nishiyama S, et al.: Clinical usefulness of endocytoscopy in the
remission stage of ulcerative colitis: a pilot study. J Gastroen-
terol 50:1087-1093, 2015

2. Corley DA, Levin TR, Doubeni CA: Adenoma detection rate
and risk of colorectal cancer and death. N Engl ] Med 370:2541,
2014. https://doi.org/10.1056/NEJMc 1405329

3. Telford JJ, Enns RA: Endoscopic missed rates of upper gastroin-
testinal cancers: parallels with colonoscopy. Am J Gastroenterol
105:1298-1300, 2010

4. Iddan G, Meron G, Glukhovsky A, Swain P: Wireless capsule
endoscopy. Nature 405:417, 2000. https://doi.org/10.1038/
35013140

5. McAlindon ME, Ching HL,, Yung D, Sidhu R, Koulaouzidis A:
Capsule endoscopy of the small bowel. Ann Transl Med 4:369,
2016. https://doi.org/10.21037/atm.2016.09.18

6. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K: The practical
implementation of artificial intelligence technologies in medi-
cine. Nat Med 25:30-36, 2019

7. Bernal J, Sanchez J, Vilarifio F: Towards automatic polyp
detection with a polyp appearance model. Pattern Recognition
45:3166-3182, 2012

8. Bernal J, Sdnchez FJ, Fernandez-Esparrach G, Gil D, Rodriguez
C, Vilarifio F: WM-DOVA maps for accurate polyp highlighting
in colonoscopy: Validation vs. saliency maps from physicians.
Comput Med Imaging Graph 43:99-111, 2015

9. Silva J, Histace A, Romain O, Dray X, Granado B: Toward
embedded detection of polyps in WCE images for early diag-
nosis of colorectal cancer. Int J Comput Assist Radiol Surg
9:283-293, 2014

10. Tajbakhsh N, Gurudu SR, Liang J: Automated Polyp Detection
in Colonoscopy Videos Using Shape and Context Information.
IEEE Trans Med Imaging 35:630-644, 2016

11. Mesejo P, et al.: Computer-Aided Classification of Gastrointes-
tinal Lesions in Regular Colonoscopy. IEEE Trans Med Imaging
35:2051-2063, 2016

12. Vazquez D, et al.: A Benchmark for Endoluminal Scene
Segmentation of Colonoscopy Images. J Healthc Eng
2017:4037190, 2017. https://doi.org/10.1155/2017/4037190

13. Jha D, Smedsrud PH, Riegler MA et al.: Kvasir-seg: A seg-
mented polyp dataset. In: International Conference on Multi-
Media Modeling (MMM), pp 451-462, 2020. https://doi.org/
10.1007/978-3-030-37734-2_37

14. Figueiredo I, Pinto L, Figueiredo P, Tsai R: Unsupervised seg-
mentation of colonic polyps in narrow-band imaging data based
on manifold representation of images and Wasserstein distance.
Biomedical Signal Processing and Control 53:101577, 2019.
https://doi.org/10.1016/j.bspc.2019.101577

15. Figueiredo P, Figueiredo I, Pinto L, Kumar S, Tsai R, Mamonov
A: Polyp detection with computer-aided diagnosis in white light
colonoscopy: comparison of three different methods. Endoscopy
International Open 07:E209-E215, 2019

16. Patel K, et al.: A comparative study on polyp classification using
convolutional neural networks. PLoS One 15:e0236452, 2020.
https://doi.org/10.1371/journal.pone.0236452

17. Misawa M, et al.: Development of a computer-aided detection
system for colonoscopy and a publicly accessible large colonos-
copy video database (with video). Gastrointest Endosc 93:960-
967.963, 2021

18. Sanchez-Peralta LF, et al.: PICCOLO White-Light and Narrow-
Band Imaging Colonoscopic Dataset: A Performance Compara-
tive of Models and Datasets. Applied Sciences 10:8501, 2020.
https://doi.org/10.3390/app 10238501

@ Springer


https://doi.org/10.1007/s10278-023-00844-7
https://doi.org/10.1056/NEJMc1405329
https://doi.org/10.1038/35013140
https://doi.org/10.1038/35013140
https://doi.org/10.21037/atm.2016.09.18
https://doi.org/10.1155/2017/4037190
https://doi.org/10.1007/978-3-030-37734-2_37
https://doi.org/10.1007/978-3-030-37734-2_37
https://doi.org/10.1016/j.bspc.2019.101577
https://doi.org/10.1371/journal.pone.0236452
https://doi.org/10.3390/app10238501

2600

Journal of Digital Imaging (2023) 36:2578-2601

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

Wang W, Tian J, Zhang C, Luo Y, Wang X, Li J: An improved
deep learning approach and its applications on colonic polyp
images detection. BMC Med Imaging 20:83, 2020. https://doi.
org/10.1186/512880-020-00482-3

Ma Y, Chen X, Cheng K, Li Y, Sun B: LDPolypVideo Bench-
mark: A Large-Scale Colonoscopy Video Dataset of Diverse
Polyps. In: Medical Image Computing and Computer Assisted
Intervention (MICCAI), pp 387-396, 2021. https://doi.org/10.
1007/978-3-030-87240-3_37

Ji GP, et al.: Video Polyp Segmentation: A Deep Learning Per-
spective. Machine Intelligence Research 19:1-19, 2022

Ali S, et al.: A multi-centre polyp detection and segmentation
dataset for generalisability assessment. Sci Data 10:75, 2022
Koulaouzidis A, et al.: KID Project: an internet-based digital
video atlas of capsule endoscopy for research purposes. Endosc
Int Open 5:E477-e483, 2017

Leenhardt R, et al.: CAD-CAP: a 25,000-image database serv-
ing the development of artificial intelligence for capsule endos-
copy. Endosc Int Open 8:E415-e420, 2020

Smedsrud PH, et al.: Kvasir-Capsule, a video capsule endos-
copy dataset. Sci Data 8:142, 2021. https://doi.org/10.1038/
$41597-021-00920-z

Kong Z, et al.: Multi-Task Classification and Segmentation for
Explicable Capsule Endoscopy Diagnostics. Front Mol Biosci
8:614277, 2021. https://doi.org/10.3389/fmolb.2021.614277
de Maissin A, et al.: Multi-expert annotation of Crohn's disease
images of the small bowel for automatic detection using a con-
volutional recurrent attention neural network. Endosc Int Open
9:E1136-e1144, 2021

Garcia-Peraza-Herrera LC, et al.: Intrapapillary capillary loop clas-
sification in magnification endoscopy: open dataset and baseline
methodology. Int ] Comput Assist Radiol Surg 15:651-659, 2020
Yang J, et al.: A benchmark dataset of endoscopic images and
novel deep learning method to detect intestinal metaplasia and
gastritis atrophy. IEEE Journal of Biomedical and Health Infor-
matics 27:7-16, 2023

Pogorelov K, Randel KR, Griwodz C, Lange TD, Halvorsen P:
KVASIR: A Multi-Class Image Dataset for Computer Aided
Gastrointestinal Disease Detection. In: the 8th Acm on Multi-
media Systems Conference, pp 164-169, 2017. https://doi.org/
10.1145/3083187.3083212

Borgli H, et al.: HyperKvasir, a comprehensive multi-class
image and video dataset for gastrointestinal endoscopy. Sci Data
7:283, 2020. https://doi.org/10.1038/s41597-020-00622-y
Charoen A, et al.: Rhode Island gastroenterology video capsule
endoscopy data set. Sci Data 9:602, 2022. https://doi.org/10.
1038/541597-022-01726-3

Montalbo F: Diagnosing gastrointestinal diseases from endos-
copy images through a multi-fused CNN with auxiliary layers,
alpha dropouts, and a fusion residual block. Biomedical signal
processing and control 76:103683, 2022. https://doi.org/10.
1016/j.bspc.2022.103683

Cychnerski J, Dziubich T, Brzeski A: ERS: a novel comprehen-
sive endoscopy image dataset for machine learning, compliant
with the MST 3.0 specification. arXiv e-prints, 2022. https://
doi.org/10.48550/arXiv.2201.08746

Gastrolab. Available at: http://www.gastrolab.net/index.htm
WEO Clinical Endoscopy Atlas. Available at: http://www.
endoatlas.org/index.php

Atlas of Gastrointestinal Endoscopy. Available at: http://www.
endoatlas.com/atlas_1.html.

El salvador atlas. Available at: http://www.gastrointestinalatlas.
com/index.html.

Gastrointestinal Image Analysis (GIANA) Angiodysplasia D&L
challenge. [Online] https://endovissub2017-giana.grand-challenge.
org/home/. Accessed 20 Nov 2017

@ Springer

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Pogorelov K, et al.: Nerthus: A Bowel Preparation Quality
Video Dataset. In: the 8th Acm on Multimedia Systems Con-
ference, pp 170-174, 2017. https://doi.org/10.1145/3083187.
3083216

Angermann Q, et al.: Towards Real-Time Polyp Detection in
Colonoscopy Videos: Adapting Still Frame-Based Methodolo-
gies for Video Sequences Analysis. In: Computer Assisted and
Robotic Endoscopy and Clinical Image-Based Procedures, pp
29-41, 2017. https://doi.org/10.1007/978-3-319-67543-5_3
Endoscopy Artefact Detection (EAD) Dataset. [Online] https://
doi.org/10.17632/c7fjbxcgj9.2. Accessed 30 Aug 2019

Cho M, Kim JH, Hong KS, Kim JS, Kong HJ, Kim S: Identifi-
cation of cecum time-location in a colonoscopy video by deep
learning analysis of colonoscope movement. Peer] 7:¢7256,
2019. https://doi.org/10.7717/peerj.7256

Endoscopy Disease Detection and Segmentation (EDD2020).
[Online] https://edd2020.grand-challenge.org/Home/

Jha D, et al.: Kvasir-Instrument: Diagnostic and Therapeutic
Tool Segmentation Dataset in Gastrointestinal Endoscopy. In:
International Conference on MultiMedia Modeling (MMM), pp
218-229, 2020. https://doi.org/10.1007/978-3-030-67835-7_19
Bae S-H, Yoon K-J: Polyp Detection via Imbalanced Learn-
ing and Discriminative Feature Learning. IEEE transactions on
medical imaging 34, 2015. https://doi.org/10.1109/TMI.2015.
2434398

Bernal J, Sanchez J, Vilarifio F: Impact of image preprocessing
methods on polyp localization in colonoscopy frames. In: Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society IEEE Engineering in Medicine and Biology
Society Conference, pp 7350-7354, 2013. https://doi.org/10.1109/
EMBC.2013.6611256

Tajbakhsh N, Gurudu S, Liang J: A Classification-Enhanced
Vote Accumulation Scheme for Detecting Colonic Polyps. Com-
putation and Clinical Applications 8198:53-62, 2013

Inoue H KH, et al: The Paris endoscopic classification of superfi-
cial neoplastic lesions: esophagus, stomach, and colon: November
30 to December 1, 2002. Gastrointest Endosc 58:S3-43, 2003
Enns RA, et al.: Clinical Practice Guidelines for the Use of
Video Capsule Endoscopy. Gastroenterology 152:497-514, 2017
Hale M, McAlindon ME: Capsule endoscopy as a panenteric
diagnostic tool. BrJ Surg 101:148-149, 2014

Everson M, et al.: Artificial intelligence for the real-time clas-
sification of intrapapillary capillary loop patterns in the endo-
scopic diagnosis of early oesophageal squamous cell carcinoma:
A proof-of-concept study. United European Gastroenterol J
7:297-306, 2019

Nishihara R, et al.: Long-term colorectal-cancer incidence and
mortality after lower endoscopy. N Engl J Med 369:1095-1105,
2013

Norwood DA, Montalvan EE, Dominguez RL, Morgan DR: Gastric
Cancer: Emerging Trends in Prevention, Diagnosis, and Treatment.
Gastroenterol Clin North Am 51:501-518, 2022

Riegler M, et al.: Multimedia for Medicine: The Medico Task
at MediaEval. In: MediaEval Benchmarking Initiative for Mul-
timedia Evaluation 2017, pp 13-15, 2017

Pogorelov K, et al.: Medico Multimedia Task at MediaEval
2018. In: MediaEval 2018, pp 29-31, 2018

Chang YY, et al.: Development and validation of a deep learn-
ing-based algorithm for colonoscopy quality assessment. Surg
Endosc 36:6446-6455, 2022

Das D, Lee CSG: A Two-Stage Approach to Few-Shot Learning
for Image Recognition. IEEE Trans Image Process 29:3336-
3350, 2020

Calderwood AH, Jacobson BC: Comprehensive validation of the
Boston Bowel Preparation Scale. Gastrointest Endosc 72:686-
692, 2010


https://doi.org/10.1186/s12880-020-00482-3
https://doi.org/10.1186/s12880-020-00482-3
https://doi.org/10.1007/978-3-030-87240-3_37
https://doi.org/10.1007/978-3-030-87240-3_37
https://doi.org/10.1038/s41597-021-00920-z
https://doi.org/10.1038/s41597-021-00920-z
https://doi.org/10.3389/fmolb.2021.614277
https://doi.org/10.1145/3083187.3083212
https://doi.org/10.1145/3083187.3083212
https://doi.org/10.1038/s41597-020-00622-y
https://doi.org/10.1038/s41597-022-01726-3
https://doi.org/10.1038/s41597-022-01726-3
https://doi.org/10.1016/j.bspc.2022.103683
https://doi.org/10.1016/j.bspc.2022.103683
https://doi.org/10.48550/arXiv.2201.08746
https://doi.org/10.48550/arXiv.2201.08746
http://www.gastrolab.net/index.htm
http://www.endoatlas.org/index.php
http://www.endoatlas.org/index.php
http://www.endoatlas.com/atlas_1.html
http://www.endoatlas.com/atlas_1.html
http://www.gastrointestinalatlas.com/index.html
http://www.gastrointestinalatlas.com/index.html
https://endovissub2017-giana.grand-challenge.org/home/
https://endovissub2017-giana.grand-challenge.org/home/
https://doi.org/10.1145/3083187.3083216
https://doi.org/10.1145/3083187.3083216
https://doi.org/10.1007/978-3-319-67543-5_3
https://doi.org/10.17632/c7fjbxcgj9.2
https://doi.org/10.17632/c7fjbxcgj9.2
https://doi.org/10.7717/peerj.7256
https://edd2020.grand-challenge.org/Home/
https://doi.org/10.1007/978-3-030-67835-7_19
https://doi.org/10.1109/TMI.2015.2434398
https://doi.org/10.1109/TMI.2015.2434398
https://doi.org/10.1109/EMBC.2013.6611256
https://doi.org/10.1109/EMBC.2013.6611256

Journal of Digital Imaging (2023) 36:2578-2601

2601

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Lai EJ, Calderwood AH, Doros G, Fix OK, Jacobson BC: The
Boston bowel preparation scale: a valid and reliable instrument
for colonoscopy-oriented research. Gastrointest Endosc 69:620-
625, 2009

Yang CB, Kim SH, Lim YJ: Preparation of image databases for
artificial intelligence algorithm development in gastrointestinal
endoscopy. Clin Endosc 55:594-604, 2022

Tanaka K: Japan Endoscopy Database project. Dig Endosc 34
Suppl 2:20-22, 2022

Lee TJ, et al.: Development of a national automated endoscopy
database: The United Kingdom National Endoscopy Database
(NED). United European Gastroenterol J 7:798-806, 2019
Matsuda K, et al.: Design paper: Japan Endoscopy Database
(JED): A prospective, large database project related to gastro-
enterological endoscopy in Japan. Dig Endosc 30:5-19, 2018
Kodashima S, et al.: First progress report on the Japan Endos-
copy Database project. Dig Endosc 30:20-28, 2018

Oda I, Hoteya S, Fujishiro M: Status of Helicobacter pylori
infection and gastric mucosal atrophy in patients with gastric
cancer: Analysis based on the Japan Endoscopy Database. Dig
Endosc 31:103, 2019. https://doi.org/10.1111/den.13287

Saito Y, et al.: Current status of diagnostic and therapeutic colo-
noscopy in Japan: The Japan Endoscopic Database Project. Dig
Endosc 34:144-152, 2022

Rutter MD, Brookes M, Lee TJ, Rogers P, Sharp L: Impact of
the COVID-19 pandemic on UK endoscopic activity and can-
cer detection: a National Endoscopy Database Analysis. Gut
70:537-543, 2021

Hann A, Troya J, Fitting D: Current status and limitations of
artificial intelligence in colonoscopy. United European Gastro-
enterol J 9:527-533, 2021

Nogueira-Rodriguez A, et al.: Deep Neural Networks approaches
for detecting and classifying colorectal polyps. Neurocomputing
423:721-734, 2021

71.

72.

73.

74.

75.

76.

77.

Chetcuti Zammit S, Sidhu R: Capsule endoscopy - Recent
developments and future directions. Expert Rev Gastroenterol
Hepatol 15:127-137, 2021

Houwen B, Nass KIJ, Vleugels JLA, Fockens P, Hazewinkel Y,
Dekker E: Comprehensive review of publicly available colo-
noscopic imaging databases for artificial intelligence research:
availability, accessibility, and usability. Gastrointest Endosc
97:184-199.e116, 2023

Nogueira-Rodriguez A, Reboiro-Jato M, Glez-Pefia D, Lopez-
Fernandez H: Performance of Convolutional Neural Networks
for Polyp Localization on Public Colonoscopy Image Datasets.
Diagnostics (Basel) 12, 2022. https://doi.org/10.3390/diagnostic
512040898

Krause J, et al.: Grader Variability and the Importance of Reference
Standards for Evaluating Machine Learning Models for Diabetic
Retinopathy. Ophthalmology 125:1264-1272, 2018

Luo H, et al.: Real-time artificial intelligence for detection of
upper gastrointestinal cancer by endoscopy: a multicentre, case-
control, diagnostic study. Lancet Oncol 20:1645-1654, 2019
Zhou J, et al.: Application of artificial intelligence in gastro-
intestinal disease: a narrative review. Ann Transl Med 9:1188,
2021. https://doi.org/10.21037/atm-21-3001

Arnold M, et al.: Global Burden of 5 Major Types of Gastroin-
testinal Cancer. Gastroenterology 159:335-349.e15, 2020

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

@ Springer


https://doi.org/10.1111/den.13287
https://doi.org/10.3390/diagnostics12040898
https://doi.org/10.3390/diagnostics12040898
https://doi.org/10.21037/atm-21-3001

	Public Imaging Datasets of Gastrointestinal Endoscopy for Artificial Intelligence: a Review
	Abstract
	Introduction
	Method
	Eligibility Criteria
	Retrieval of GI Endoscopy Dataset
	Dataset Selection
	Extraction of Dataset Characteristics

	Results
	Datasets Identified from the Literature and Targeted Search
	Polyp Datasets
	Small Bowel Lesion Dataset
	Gastroesophageal lesion Datasets
	Comprehensive GI Detection Datasets
	Atlases of GI Endoscopy
	Others
	Dataset Characteristics
	National Endoscopy Datasets

	Discussion
	Strengths and Weaknesses
	Implications

	Conclusions
	Anchor 23
	References


