Skip to main content
. 2023 Sep 21;36(6):2578–2601. doi: 10.1007/s10278-023-00844-7

Table 2.

Detailed characteristics of endoscopic imaging datasets

Name Findings Clinical detailsa
Endoscopy datasets of polyps (n = 16)
CVC-ColonDB Polyps No
CVC-ClinicDB (CVC-612) Polyps Yes
ETIS-Larib Polyp DB Polyps and normal mucosa No
ASU-Mayo Polyps and normal mucosa No
GI lesions in Regular Colonoscopy Dataset Serrated adenomas, hyperplastic polyps and adenomas Yes
EndoScene Polyps No
Kvasir SEG Polyps No
NBIPolyp-Ucdb Adenomas and hyperplastic polyps No
WLPolyp-UCdb Polyps and normal mucosa No
KUMC Adenomas and hyperplastic polyps No
SUN Polyps Yes
PICCOLO Polyps Yes
CP-CHILD Polyps and normal mucosa No
LD Polyp Video Polyps No
SUN-SEG Polyps Yes
PolypGen Polyps and normal mucosa Yes
Endoscopy datasets of small bowel lesions (n = 6)
KID SB lesions (vascular lesions, inflammatory lesions, lymphangiectasias, polypoid lesions) and normal mucosa No
CAD-CAP SB lesions (vascular lesions, fresh blood, ulcer-inflammatory lesions, and other lesions) and normal mucosa No
Kvasir-Capsule Anatomy (pylorus, ampulla of Vater, ileocecal valve), SB lesions (mucosal atrophy, lymphangiectasia, erythema, angiectasia, blood-fresh, blood-hematin, erosion, ulcer, polyp, foreign body) and normal mucosa No
Endoscopy Crohn’s Disease dataset Clearness degree classification in Crohn’s tract (clearness, blur and invisible) Yes
CrohnIPI Crohn’s lesions (erythema, edema, aphthoid ulceration, 3–10 mm ulceration, > 10 mm ulceration, stenosis) and normal mucosa No
The AICE Project SB lesions (angiodysplasia, erosion, stenosis, lymphangiectasia, lymph follicle, polyp-like lesions, submucosal tumor, bleeding, diverticulum, erythema, foreign body, vein lesions) and normal mucosa No
Endoscopy datasets of gastro-esophageal lesions (n = 2)
IPCL Four classes of abnormal esophageal IPCL (A, B1, B2, B3) and normal mucosa No
IM and GA Benchmark GA, IM and normal images in five gastric lesion location (antrum, angle, cardia, fundus and body) by WLI and LCI No
Endoscopy datasets of comprehensive GI detection (n = 5)
Kvasir 8 classes in GI tract (Z-line, pylorus, cecum, esophagitis, polyps, ulcerative colitis, “dyed and lifted polyp” and “dyed resection margins”) No
Hyper Kvasir 23 classes of GI findings including anatomical landmarks, quality of mucosal views, pathological findings, therapeutic interventions and so onc No
Rhode Island Findings in four anatomical organs (esophagus, stomach, small bowel, colon) No
WCE Curated Colon Disease 3 classes of GI lesions (ulcer, polyps, esophagitis) and normal mucosa No
ERS 34 classes of colonoscopy findings, 70 classes of upper endoscopy findings and 7 classes of healthy tissues, 2 classes of blood and 10 classes of imaging qualityc Yes
Atlases of GI endoscopy (n = 4)
Gastrolab Findings in GI tract (14 anatomical structures, 7 classes of GI lesions and 4 others)c No
WEO Clinical Endoscopy Atlas Findings in 6 classes of GI tract (lumen, contents, mucosa, flat lesions, protruding lesions, excavated lesions) No
Atlas of Gastrointestinal Endoscopy Findings in GI tract (esophagus, stomach, capsule endoscopy, duodenum and ampulla, inflammatory bowel disease, colon and ileum, miscellaneous) with several rare diseases No
El Salvador atlas Findings in GI tract No
Others (n = 7)
GIANA 2017 Polyps and angiodysplasia No
Nerthus 4 degrees of bowel preparation (BBPS 0–3) No
GIANA 2018 Polyps and lesions in WCE No
EAD 2019 7 classes of artifacts during GI endoscopy process (imaging artefacts, pixel contrast, specular reflections, motion blur, bubbles, pixel saturation and instrument) No
Cho et al. 2019 Cecal landmarks in insertion, withdrawal and stopping point No
EDD 2020 5 classes of GI lesions (Barrett’s esophagus, suspicious area, high-grade dysplasia; adenocarcinoma and polyps) No
Kvasir-Instrument Diagnostic and therapeutic tools in endoscopic images (such as biopsy forceps, metallic clip, probe, snares) No
Name Source of ground truth annotations Endoscopy system brand
Ground truthb Content Performed by
Endoscopy datasets of polyps (n = 16)
CVC-ColonDB Binary mask Polyps Expert endoscopists NR
CVC-ClinicDB (CVC-612) Binary mask Polyps and specular highlights Expert endoscopists NR
ETIS-Larib Polyp DB Bounding box Polyps Expert endoscopists NR
ASU-Mayo Binary mask and bounding box Polyps Expert endoscopists NR
GI lesions in Regular Colonoscopy Dataset Annotated file and bounding box in videos Polys Histopathology, and the human operators’ opinion (4 expert endoscopists and 3 beginners) Olympus
EndoScene Binary mask Polyps, specular highlights, and lumen Expert endoscopists NR
Kvasir SEG Binary mask and bounding box Polyps Expert endoscopists Olympus
NBIPolyp-Ucdb Binary mask Polyps Endoscopists (experience not specified) Olympus
WLPolyp-UCdb Annotated file Polyps NR Olympus
KUMC Bounding box Polyps in dataset 3 and 4 Endoscopists (experience not specified) NR
SUN Bounding box Polyps Expert endoscopists and research assistants Olympus
PICCOLO Binary mask Polyps Expert endoscopists Olympus
CP-CHILD Annotated file Polyps Expert endoscopists Olympus for A; Fujifilm for B
LD Polyp Video Bounding box Polyps Annotation tool NR
SUN-SEG Binary mask, bounding box, scribble, and polygon Polyps 10 expert endoscopists and 2 researchers Olympus
PolypGen Binary mask and bounding box Polyps 6 expert endoscopists, 2 post-doctoral researchers and 1 student Multi-brands
Endoscopy datasets of small bowel lesions (n = 6)
KID Binary mask and graphical annotation Small bowel lesions Expert endoscopists NR
CAD-CAP Binary mask Small bowel lesions Expert endoscopists Medtronic
Kvasir-Capsule Bounding box Small bowel lesions Expert endoscopists, master students and junior endoscopists Olympus
Endoscopy Crohn’s Disease dataset Annotated file Clearness degrees in Crohn’s tract Expert endoscopists and junior endoscopists Jinshan Groupd
CrohnIPI Annotated file 6 Crohn’s lesions Expert endoscopists and one reader Medtronic
The AICE Project Annotated file Small bowel lesions NR Medtronic
Endoscopy datasets of gastro-esophageal lesions (n = 2)
IPCL Annotated file IPCL in esophageal Histopathology and expert endoscopists Olympus
IM and GA Benchmark Annotated file Intestinal metaplasia and gastritis atrophy Biopsy and endoscopists (experience not specified) Fujifilm
Endoscopy datasets of comprehensive GI detection (n = 5)
Kvasir Annotated file 8 classes in GI tract Expert endoscopists Olympus
Hyper Kvasir Annotated file, binary mask, and bounding box Annotated file for 23 classes; bounding box and binary mask only for polyps Expert endoscopists and junior endoscopists Olympus and Pentax
Rhode Island Annotated file Findings in four anatomical organs Endoscopists (experience not specified) Medtronic
WCE Curated Colon Disease Annotated file 3 classes of GI lesions Expert endoscopists NR
ERS Binary mask and bounding box 3600 precise and 22,600 approximate segmentation masks Expert endoscopists NR
Atlases of GI endoscopy (n = 4)
Gastrolab Annotated file Findings in the GI tract NR NR
WEO Clinical Endoscopy Atlas Annotated file Findings in the GI tract Expert endoscopists NR
Atlas of Gastrointestinal Endoscopy Annotated file Findings in the GI tract Expert endoscopists NR
El Salvador atlas Annotated file Findings in the GI tract NR NR
Others (n = 7)
GIANA 2017 Binary mask and bounding box Binary mask for polyps and bounding box for angiodysplasia NR NR
Nerthus Annotated videos Bowel preparation quality Expert endoscopists Olympus
GIANA 2018 Binary mask and bounding box Polys NR NR
EAD 2019 Bounding box Endoscopy artifact Expert endoscopists and postdoctoral fellows Multi-brands
Cho et al. 2019 Annotated file Cecal landmarks Expert endoscopists Olympus
EDD 2020 Binary mask and bounding box GI lesions Expert endoscopists and post-doctoral researchers NR
Kvasir-Instrument Binary mask, bounding box, and image annotation Diagnostic and therapeutic tools in gastrointestinal endoscopy Research assistants and expert endoscopists Olympus and Pentax
Name No. of patients No. of images
Total Annotated/Not annotated Classification of annotated images
Endoscopy datasets of polyps (n = 16)
CVC-ColonDB 13 0 0 0
CVC-ClinicDB (CVC-612) 23 0 0 0
ETIS-Larib Polyp DB NR 1500 300/1200 300 of polyp
ASU-Mayo 20 19,400 19,400/0 5200 of polyp; 14,200 of normal mucosa
GI lesions in Regular Colonoscopy Dataset NR 0 0 0
EndoScene 36 0 0 0
Kvasir SEG NR 1000 1000/0 1000 of polyp
NBIPolyp-Ucdb 10 0 0 0
WLPolyp-UCdb 42 3040 3040/0 1680 of polyp; 1360 of normal colon mucosa
KUMC NR 0 0 0
SUN 99 0 0 0
PICCOLO 40 3433 3433/0 3433 of polyp (2131 by WLI, 1302 by NBI)
CP-CHILD NR 9500 9500/0 1400 of polyp (1000 by Olympus, 400 by Fujifilm); 8100 of non-polyp (7000 by Olympus, 1100 by Fujifilm)
LD Polyp Video NR 0 0 0
SUN-SEG 99 0 0 0
PolypGen  > 300 6282 6282/0 3762 of polyp; 2520 of normal colon mucosa
Endoscopy datasets of small bowel lesions (n = 6)
KID NR 2500 2500/0 2500 of SB lesions
CAD-CAP NR 0 0 0
Kvasir-Capsule NR 0 0 0
Endoscopy Crohn’s disease dataset 15 466 466/0 323 of clearness; 101 of blur; 42 of invisible
CrohnIPI  ≥ 200 3498 3498/0 2124 of normal SB; 1360 of lesions; 14 of inconclusive findings
The AICE Project NR 18,481 18,481/0 12,320 images with 19,459 annotations (931 of angiodysplasia, 5988 of erosion, 477 of stenosis, 612 of lymphangiectasia, 6792 of lymph follicle, 547 of SMT, 3236 of polyp, 875 of bleeding); 6161 of normal SB
Endoscopy datasets of gastro-esophageal lesions (n = 2)
IPCL 114 67,740 67,740/0 39,662 of lesion; 28,078 of normal mucosa
IM and GA Benchmark 630 21,420 21,240/0 2438 of WLI-IM; 3381 of WLI-GA; 5854 of WLI-Normal; 2549 of LCI-IM; 3270 of LCI-GA; 3928 of LCI-Normal
Endoscopy datasets of comprehensive GI detection (n = 5)
Kvasir NR 8000 8000/0 1000 of Z-line; 1000 of pylorus; 1000 of cecum; 1000 of esophagitis; 1000 of polyps; 1000 of ulcerative colitis; 1000 of “dyed and lifted polyp”; 1000 of “dyed resection margins”
Hyper Kvasir NR 110,079 10,662/99,417 3452 of 7 classes from upper GI tract; 7210 of 16 classes from lower GI tractc
Rhode Island 424 0 0 0
WCE Curated Colon Disease NR 6000 6000/0 1500 of polyp; 1500 of ulcerative colitis; 1500 of esophagitis; 1500 of normal mucosa
ERS 1135 0 0 0
Atlases of GI endoscopy (n = 4)
Gastrolab NR  ≥ 1498  ≥ 1498/0  ≥ 1498 of GI findingsc
WEO Clinical Endoscopy Atlas NR 148 148/0 31 of lumen; 5 of content; 25 of mucosa; 14 of flat lesions; 49 of protruding lesions; 24 of excavated lesions
Atlas of Gastrointestinal Endoscopy NR 1259 1259/0 1259 of GI findings
El Salvador atlas NR 0 0 0
Others (n = 7)
GIANA 2017 NR  ≥ 1500  ≥ 1500/0 600 of angiodysplasia; ≥ 900 of poly
Nerthus 21 5525 5525/0 5525 of four classes of bowel cleanliness
GIANA 2018 NR 8262 8262/0 8262 of polyp and small bowel lesion
EAD 2019 NR  ≥ 2500  ≥ 2500/0  ≥ 2500 of endoscopy artifacts
Cho et al. 2019 112 0 0 0
EDD 2020 NR 385 385/0 385 images with 502 ground truth annotations (160 of non-dysplastic Barrett’s; 88 of precancerous lesion; 74 of high-grade dysplasia; 53 of cancer; 127 of cancer)
Kvasir-Instrument NR 590 590/0 590 of diagnostic and therapeutic tools
Name No. of videos (frames) Image/ frame resolution (pixels) Imaging modality
Total Annotated/Not annotated Classification of annotated videos(frames)
Endoscopy datasets of polyps (n = 16)
CVC-ColonDB 13 (300) 13 (300)/0 13 (300) of polyp 500 × 574 WLI
CVC-ClinicDB (CVC-612) 31 (612) 31 (612)/0 31 (612) of polyp 576 × 768 WLI
ETIS-Larib Polyp DB 0 0 0 1225 × 966 NR
ASU-Mayo 0 0 0 512 × 512 NR
GI lesions in Regular Colonoscopy Dataset 76 (NR) 76 (NR)/0 15 of serrated adenoma; 21 of hyperplastic polyp; 40 of adenoma 30 frames of 768 × 576 pixels every second NBI and WLI
EndoScene 44 (912) 44 (912)/0 44 (912) of polyp (300 from CVC-ColonDB and 612 from CVC-ClinicDB) 224 × 224 WLI
Kvasir SEG 0 0 0 320 × 320 WLI
NBIPolyp-Ucdb 11 (86) 11 (86)/0 10 videos of adenoma and 1 video of hyperplastic polyp 726 × 576 NBI
WLPolyp-UCdb 0 0 0 726 × 576 WLI
KUMC 157 (35,981) 76 (4955)/81 (31,026) 76 (4955) of polyp (38 videos of adenoma and 38 videos of hyperplastic polyp) 224 × 224 WLI
SUN 113(158,690) 113 (158,690)/0 100 (49,136) of polyp; 13 (109,554) of non-polyp 416 × 416 WLI
PICCOLO 0 0 0 854 × 480 or 1920 × 1080 NBI and WLI
CP-CHILD 0 0 0 256 × 256 NR
LD Polyp Video 263 (901,666) 160 (40,266)/103 (861,400) 33,884 frames of polyp; 6382 frames of non-polyp 560 × 480 WLI
SUN-SEG 1106 (158,690) 1106 (158,690)/0 378 (49,136) of polyp; 728 (109,554) of non-polyp 416 × 416 WLI
PolypGen 0 0 0 384 × 288 to 1920 × 1080 NR
Endoscopy datasets of small bowel lesions (n = 6)
KID 47 47/ 0 47 videos of SBesions NR NR
CAD-CAP 1686 (25,124) 1686 (25,124)/0 1480 (5124) of abnormal SB findings (3103 of vascular lesion, 651 of fresh blood, 1370 of ulcer-inflammatory lesion); 206 (20,000) of normal SB NR WLI
Kvasir-Capsule 117 (4,741,504) 43 (47,238)/74 (4,694,266) 1529 frames of pylorus; 10 frames of ampulla of Vater; 4189 of ileocecal valve; 2906 of mucosal atrophy; 592 of lymphangiectasia; 159 of erythema; 866 of angiectasia; 466 of fresh blood; 12 of blood-hematin; 506 of erosion; 854 of ulcer; 55 of polyp; 776 of foreign body; 4189 of normal mucosa 256 × 256 to 512 × 512 WLI
Endoscopy Crohn’s disease dataset 0 0 0 240 × 240 WLI
CrohnIPI 0 0 0 NR WLI
The AICE Project 0 0 0 NR WLI
Endoscopy datasets of gastro-esophageal lesions (n = 2)
IPCL 0 0 0 256 × 256 ME-NBI
IM and GA Benchmark 0 0 0 1280 × 1024 WLI and LCI
Endoscopy datasets of comprehensive GI detection (n = 5)
Kvasir 0 0 0 720 × 574 to 1920 × 1072 WLI
Hyper Kvasir 374 374/ 0 60 videos of 14 classes from upper GI tract; 314 videos of 16 classes from lower GI tractc 332 × 352 to 1921 × 1073 WLI
Rhode Island 424 (5,247,588) 424 (5,247,588)/0 13,715 frames of esophagus; 557,049 frames of stomach; 4,111,865 frames of small bowel; 564,959 frames of colon 320 × 320 WLI
WCE Curated Colon Disease 0 0 0 224 × 224 NR
ERS 1520 (≥ 1,230,000) 121,000/1230000 (frames) 6000 frames of precisely labeled; 115,000 frames of approximately labeledc NR NR
Atlases of GI endoscopy (n = 4)
Gastrolab 0 0 0 NR NR
WEO Clinical Endoscopy Atlas 0 0 0 NR NR
Atlas of Gastrointestinal Endoscopy 0 0 0 NR NR
El Salvador atlas 5138 (NR) 5138 (NR)/0 5138 videos of GI findings NR NR
Others (n = 7)
GIANA 2017  ≥ 38  ≥ 38/0  ≥ 38 videos of polyp NR NR
Nerthus 0 0 0 720 × 576 WL
GIANA 2018 38 38/0 38 videos of polyp and SB lesions NR NR
EAD 2019 0 0 0 NR Multi-modal (WLI, BNI and fluorescence)
Cho et al. 2019 112 (328,927) 2 (100) available 2 (100) of cecal landmarks 850 × 750 WLI
EDD 2020 0 0 0 NR NR
Kvasir-Instrument 0 0 0 720 × 576 to 1280 × 1024 NR

NR not reported, SB small bowel, GA gastric atrophy, IM intestinal metaplasia, WLI white light imaging, LCI linked color imaging, BBPS Boston bowel preparation scale, WCE wireless capsule endoscopy, NBI narrow band imaging

aClinical details includes clinical metadata (patients’ information, location of polyp, type of polyp and so on) or annotation details (annotators’ number, annotation process and so on)

bAnnotated file for classification task, binary mask for segmentation task, and bounding box for detection task

cComplete information of classification was shown in Supplementary Table 1

dChongqing Jinshan Science & Technology (Jinshan Group), a national high-tech enterprise that integrates research and development, manufacturing, marketing, and service of digital medical devices