
Vol.:(0123456789)1 3

Journal of Environmental Health Science and Engineering (2023) 21:403–416 
https://doi.org/10.1007/s40201-023-00867-w

RESEARCH ARTICLE

Synthesis of GG-g-P(NIPAM-co-AA)/GO and evaluation of adsorption 
activity for the diclofenac and metformin

Bhagvan P. Kamaliya1 · Pragnesh N. Dave1  · Lakha V. Chopda2

Received: 15 October 2022 / Accepted: 22 May 2023 / Published online: 17 June 2023 
© The Author(s), under exclusive licence to Tehran University of Medical Sciences 2023

Abstract
The grafting of biopolymer gum ghatti (GG) over the PNIPAM and PAA was done and loaded with graphene oxide (GO). 
Aim of this work is carried out combine adsorption of sodium diclofenac (SD) and metformin (MF) by the prepared hydro-
gels under influence of various parameters. The adsorbent GG-g-P(NIPAM-co-PAA)/GO(3 mg) chosen for adsorption 
activity as it displayed highest swelling capacity. The effect of amount of both adsorbents GG-g-P(NIPAM-co-PAA and 
GG-g-P(NIPAM-co-PAA)/GO(3 mg) showed that highest adsorption capacity found at 40 mg of adsorbents for both drugs 
at conditions: 100 mg/L concentration, 30 °C, 24 h and pH 6 and subsequently became stable. Both the drugs were removed 
in greater amount at 25 mg/L concentration, 24 h of contact time, 30 °C, 40 mg amount of both adsorbents and pH 6. Effect 
of time revealed that as time elevated from 2 h to 12 (100 mg/L concentration,, 30 °C, 40 mg amount of both adsorbents and 
pH 6) led to increase adsorption efficiency and after that increase time did not much impact on adsorption activity. Adsorption 
activity of hydrogels declined with increase of temperature (100 mg/L concentration, 12 h, 40 mg amount of both adsorbents 
and pH 6). The acidic conditions favored adsorption of SD while MF adsorbed under the weak acidic(100 mg/L concentration, 
30 °C, 12 h, 40 mg amount of both adsorbents). However, basic conditions did not much influence on adsorption of MF but 
effected on adsorption activity of SD. Adsorption isotherm and kinetic model suggested that adsorption is homogenous and 
chemical in nature. The maximum adsorption capacity  (qm) found to be 289.01 and 154.55 mg/g for SD and MF respectively.

Highlights
• Synthesis of GG-g-P(NIPAM-co-AA)/GO
• Characterize by FT-IR, XRD, SEM and BET surface area
• The adsorption of sodium diclofenac and metformin was undertaken
• The hydrogel exhibited moderate and good adsorption activity for sodium diclofenac and metformin
• Adsorption process followed the Langmuir adsorption isotherm and pseudo-second kinetic model
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Introduction

Water is the important and essential compound for surviving 
of creature life. It helps to regulate body temperature and other 
cell functions. In general, water assists to prevent urinary tract 

infections, kidney stones, and gallbladder deposit. The water 
pollution by the different kind of pollutants is the growing 
concern problem worldwide. The polluted water led to disturb 
the life of human being and other leaving organisms by causing 
life threatening diseases [1]. The high consumption of phar-
maceuticals led to found in the water body as in the form of 
metabolites, neutral compound and conjugated complex and 
contributed to adverse effect on the human life and environ-
ment [2, 3]. Various classes of antibiotics such as β-lactams, 
tetracyclines, aminopenicillins and others are used to prevent 
infection caused by microorganism and used as s food additive 
in the livestock for promote the growth and weight gain [4]. 
Due to their low metabolism, they are ejected in the urine and 
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feces in the unaltered form hence found in the aquatic environ-
ment and caused the harmful effect [5]. Diclofenac and met-
formin are frequently used to treat the inflammation and type 2 
diabetes respectively. The different kind of toxicity of both has 
found, diclofenac caused several toxicities such as hepatoxic-
ity, nephrotoxicit, neurotoxicity and reproductive toxicity [6]. 
Diclofenac contributed to oxidative stress by forming reactive 
oxygen species (ROS) [7]. Same as various toxicities have 
been caused by metformin also [8, 9]. To lessen the effect of 
both in the water system, some methods were commenced. For 
example, diclofenac and metformin were removed by 90% and 
100% using advanced oxidation process [10]. The adsorbent 
(poly (AN-co-EGDMA-co-VBC) was able to remove 78% and 
72% of diclofenac and metformin respectively [11]. A very few 
examples are available for the combine removal of diclofenac 
and metformin from aqueous system.

Hydrogel is the three dimensional peculiar network of 
cross-linked polymer that possessed the unique properties 
such high water adsorption capacity, softness, viscoelasticity 
etc. Presence of hydrophilic groups (-OH, -COOH, -CONH2, 
-NH2,  SO3H etc.) on the hydrogel contribute to swell it in 
the water. Due to its high swelling property in the water, it 
able to adsorb wide variety of impurities found in the water 
[12]. The biohydrogels gained significant interest especially 
biomedical engineering due to their biodegradability and 
biocompatibility [13, 14]. Hydrogel based biopolymer as 
adsorbent has been reported for the removal of pollutants. 
These included NaAlg-g-Poly(acrylic acid-co-acryl amide)/
clinoptilolite hydrogel reported for the removal of a meth-
ylene blue(MB), poly(acrylamide-co-itaconic acid)/MWC-
NTs for the removal of Pb(II), xanthan gum-cl-poly(acrylic 
acid)/o-MWCNTs for the removal of MB and β-cylodextrin-
g-PAAm for the removal of various organic pollutants and 
for the removal of hydrophobic micropollutants [15–18]. 
The gum ghatti is the natural non-starch polysaccharide gum 
obtained from the Anogeissus latifolia. The gum ghatti hydro-
gels devised for the removal of broad range of pollutants from 
the water system [19–22]. This work reports the synthesis of 
GG-g-P(NIPAM-co-AA)/GO for the combine removal of SD 
and MF. The GG biopolymer possessed unique carbohydrates 
that contained hydroxyl, carboxylic acid and amide functional 
groups [23–25] and further additional these functional groups 

and others attached to hydrogel after crosslinking with PNI-
PAM and AA and GO hence prepared hydrogels preferred 
for adsorption of SD and MF. The presence of functionality 
on SD and MF can be interacted with functionality of GG-
g-P(NIPAM-co-AA)/GO hydrogel which ultimately resulted 
into adsorption of both drugs from the solution.

Experimental section

Materials

Gum ghatti (extra pure), acrylic acid (AA-98%), Ammo-
nium persulfate (APS-98%), tetramethylethylenediamine-
(TMED-99%) and N,N’- Methylenebisacrylamide (MBA-
99%) were purchased from Loba Chemie (Mumbai, India). 
N-isopropylacrylamide (NIPAM-97%) was procured from 
TCI. Graphene oxide was purchased from Sigma Aldrich 
(Munich, Germany). Metformin hydrochloride (MF-99%) 
and sodium diclofenac (SD-99%) used in this study brought 
from HiMedia and Sigma Aldrich respectively.

Synthesis of Gum ghatti‑g‑poly 
(N‑isopropylacrylamide‑cl‑acrylic acid)/GO

The hydrogel GG-g- P(NIPA-co-AA)/GO was prepared 
according to reported method [26–29]. The procedure 
involves - first, 0.5 g GG was added to 10mL of distilled 
water in a 100mL beaker. The dissolved solution was 
allowed to stir for 24 h for better dissolution of biopolymer 
and subsequently sonicated for 40 min of GO (1–5 mg), 
monomers NIPAM (0.2 g) and required amount of APS, 
TEMED and MBA as per shown in Table 1 were added to 
above solution. 1 mL of AA was furnished immediately to 
this solution. The whole solution heated at 50 °C for 3 h hot 
air oven. After 3 h, the beaker was allowed to cool at room 
temperature. The formed homo-polymer was extracted using 
consecutive acetone extraction. The hydrogel was allowed 
to dry gradually at 50 °C for 48 h and grounded into powder 
with a mortar and pestle. The composition of all materi-
als was depicted in Table 1 and the reaction illustration is 
depicted in Fig. S1 and the Probable mechanism Scheme S1.

Table 1  Composition of 
prepared hydrogel

Sample id GG
(gm)

NIPAM
(gm)

AA
(mL)

APS
(mg)

MBA
(mg)

TEMED
(mL)

GO
(mg)

H2O
(ml)

GG-g-P(NIPAM-co-AA) 0.5 0.2 1.0 50 50 0.1 0 10
GG-g-P(NIPAM-co-AA)/GO 0.5 0.2 1.0 50 50 0.1 1 10

0.5 0.2 1.0 50 50 0.1 2 10
0.5 0.2 1.0 50 50 0.1 3 10
0.5 0.2 1.0 50 50 0.1 4 10
0.5 0.2 1.0 50 50 0.1 5 10



405Journal of Environmental Health Science and Engineering (2023) 21:403–416 

1 3

Characterization of hydrogel

Fourier transform infrared (FT-IR) spectra of materials 
recorded on Perkin Elmer Model using KBr plate method 
in the range of 400–4000  cm− 1. X-ray diffraction (XRD) of 
materials was carried out on Rigaku; miniflex 600, Japan with 
CuKα radiation (λ = 1.5418). Micromeritics, ASAP 2020 
nitrogen adsorption-desorption analyzer used to determine 
the surface area and porosity of materials.

Swelling studies

The swelling capacities of different nanocomposite hydro-
gels were determined by soaking method. The weighted 
sample of nanohydrogel (100 mg) was soaked into clean dis-
tilled water for 24 h. The gained weight was measured after 
24 h. The percentage of swelling was determined by Eq. 1.

Swelling was determined using equation presented in (1).

Where WS and Wd represent the dry and swollen masses 
of hydrogels respectively.

Stock solution preparation

The stock solution 1000 ppm (mg/L) of SD and MF was pre-
pared by 1000 mg of SD and MF dissolved 1000 mL triple 
distilled water. For the better dissolution of solution, ultrasoni-
cation and stirring on magnetic stirrer was carried out. The 
solution was stored in refrigerator (4 °C) and used within 2 
days. The required concentration for adsorption was diluted 
from the stock solution.

Adsorption study

The combine adsorption of SD and MF was carried out in batch 
mode by GG-g-P(NIPAM-co-AA)/GO hydrogels in 250mL 
standard sealed Erlenmeyer flasks containg 50mL solution of 
both drug [11, 30, 31]. The maximum λmax of SD and MF was 
found to be 276 and 232.5 nm respectively which was recorded 
on UV- Vis double beam spectrophotometer (TCC-240 A, 
Shimadzu). The effect of amounts of both hydrogels was per-
formed first. The 10–100 mg amount of both hydrogels was 
dispersed into 50 mL solution of 100 ppm of SD and MF at pH. 
The reaction tube was placed in shaker and stirred at 250 rpm 
and room temperature (rt) for 24 h. The adsorption capacity 
of hydrogels measured in changing the concentration of both 
drugs before and after adsorption. The adsorption capacity and 
removal efficiency was calculated by Eqs. 2 and 3 respectively.

(1)Swelling =
Ws −Wd

Wd

× 100

Here,  C0 and  Ce presented the initial and at equilibrium 
concentrations (mg/L) of SD and MF respectively, m repre-
sents the weight of the adsorbent, V is the volume of the solu-
tion (L). The concentration of SD and MF was determined 
in mg/L. The effect of other parameters of SD and MF such 
variation in concentration( 25–200 mg/L at room tempera-
ture and contact time 24 h), time (2–24 h at room tempera-
ture), temperature (20–60 °C at contact time 24 h) was done 
using 40 mg amount of adsorbents at pH 6. The experiment 
of effect of temperature was carried out on magnetic stirrer 
instead of shaker. The influence of pH (2–12) was conducted 
by employing 40 mg adsorbents amount at room temperature 
and 24 h contact time. The pH solution is adjusted by 1 M 
HCl and NaOH solution.

Adsorption isotherm

The four adsorption isotherms such as Langmuir Isotherm 
[17], Freundlich isotherm [17], Temkin Isotherm [32] and 
Dubinin–Kaganer–Radushkevich [17] were assessed for 
adoption phenomena. The detail equation of four adsorption 
isotherms are represented by following equations (4, 6, 7 and 
8) respectively.

1. Langmuir Isotherm

  Ce is the equilibrium concentration of SD in the solu-
tion (mg/L), qe is the adsorption capacity at equilib-
rium (mg/g), qmax is the maximum adsorption capacity 
(mg/g), and  KL Langmuir constant (L/mg).

  The value of qmax and  KL defined from the slope 
and intercept from the plot of  Ce/qe against  Ce,  KL 
is an important tool in the calculation of the dimen-
sionless equilibrium parameters,  RL that explain the 
favorability of adsorption process,  RL is calculated 
from following equation

2. Freundlich isotherm

(2)qe =
(C0 − Ce) × V

m

(3)Removal % =
C0 − Ce

C0

× 100

(4)
Ce

qe
=

1

qmKL

+
Ce

qm

(5)RL =
1

1 + KLC0
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  Kf is the Freundlich constant (mg/g), n is Freundlich 
exponent related to the adsorption intensity or surface 
heterogeneity (dimensionless). The values of isotherm 
constants (Kf and n) are defined from the intercept and 
slope of the linear plot of log qe versus log  Ce respec-
tively.

3. Temkin Isotherm

  B = is the heat of sorption constant,  KT is the bind-
ing constant  KT and B were determined by the from the 
slope and intercept of plot  qe against  lnCe

4. Dubinin–Kaganer–Radushkevich

  β  (mol2/kJ2) is the constant related to the adsorption 
energy,  qm (mg/g) is the theoretical saturation capac-
ity, Ɛ (kJ/mol) is the Polanyi potential  qm and β were 
calculated from the from the intercept and the slope of 
plot  lnqe against Ɛ2, Ɛ and E (free energy of adsorption) 
calculated by following equations

Kinetic studies

The three kinetic models such as Pseudo-1st -Order and 2nd 
Order Model [17] and Elovich model [17] were checked for 
the interaction between adsorbent and adsorbate which are 
shown by following equations (11, 12 and 13) respectively.

1. Pseudo-1st -Order Model and 2nd Order Models

  qe (mg/g) is the adsorption capacity at equilibrium;  qt 
(mg/g) is the adsorption capacity at time t;

(6)log qe = log Kf +
1

n
log Ce

(7)qe = BlnKT + BlnCe

(8)lnqe = lnqm − � �2

(9)� = RT ln(1 +
1

Ce

)

(10)E =
1

√

2β

(11)ln
(

qe − qt
)

= ln qe − K1t

t

qt
=

1

K2q
2
e

+
t

qe

  k1 (1/min) and  k2 (g/(mg.min)) are the first-order rate 
and the second-order rate constants,

  The rate constants  (k1 and  k2) were determined from 
the slope and intercept of the plots of log  (qe−  qt) against 
t and t/qt against. t, respectively.

2. Elovich model

  Where,  qt represents adsorption capacity at time t, β 
and α are the Elovich constants equivalent to the extent 
of surface coverage and rate of adsorption at zero cover-
age respectively.

3. Intraparticle diffusion model [33]

  Where, qt presents adsorption capacity at time t, inter-
cept  CIP reflects the boundary layer thickness effect and 
KIP indicates rate constants of intraparticle diffusion.

Results and discussion

Mechanism of formation of GG‑g‑P(NIPMA‑co‑AA)/
GOand swelling property

Scheme S1 presents the detail mechanism of formation of 
GG-g-P(NIPMA-co-AA)/GO hydrogel [34]. TheSO4 •– radi-
cal anions and  OH• radicals initiated the reaction (Initiation 
step). The active side on GG formed by these both reac-
tive species  (GG•). The formed  GG• propagated reaction 
by forming active side on NIPAM and AA that caused the 
grafting on GG. The crosslink agents end-up with formation 
of GG-g-P(NIPMA-co-AA) hydrogel. The measurement of 
swelling property is shown in the Table 2. It showed that 
swelling property of GG-g-P(NIPAM-co-AA) (GNAGO-0) 
enhanced as loading of GO increased from 1 mg to 3 mg 

(12)qt =
1

β
ln(αβ) +

1

β
ln t

(13)qt = KIPt
1

2 + CIP

Table 2  Measurement of swelling property of hydrogel

Sample id Swelling (g/g)

GG-g-P(NIPAM-co-AA)-GNAGO-0 3.14
GG-g-P(NIPAM-co-AA)/GO (1 mg)- GNAGO-1 3.07
GG-g-P(NIPAM-co-AA)/GO (2 mg)- GNAGO-2 3.15
GG-g-P(NIPAM-co-AA)/GO (3 mg)- GNAGO-3 3.43
GG-g-P(NIPAM-co-AA)/GO (4 mg)- GNAGO-4 3.15
GG-g-P(NIPAM-co-AA)/GO (5 mg)- GNAGO-5 2.95
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then after decreased. The 3 mg loading of GO exhibited 
high swelling efficiency hence it was chosen for adsorption 
of SD and MF.

Swelling studies

The measurement of swelling property of hydrogels is 
shown in the Table 2. It showed that increased the amount 
of GO from 1 to 3 mg led to enhance the swelling property 
and then after it decreased as amount increased from 4 to 
5 mg. The 3 mg of GO over to GG-g-P(NIPMA-co-AA) 
exhibited highest water holding capacity hence it preferred 
for combine adsorption of SD and MF.

FT‑IR analysis

The FT-IR spectra of GG, GO, GG-g-P(NIPAM-co-AA) 
(GNAGO-0) and GG-g-P(NIPAM-co-AA) (GNAGO-3) is 
shown in the Fig. 1. The FT-IR spectra of GG confirmed 
about feature functional groups presence in GG. The bands 
at 3340  cm-1 (broad peak) and 2934  cm-1 corresponded to 
stretching vibration of O-H and C-H respectively [22, 35]. 
The band visualized at 1004  cm-1 ascribed of strong vibra-
tion of C-O and band at 541  cm-1 (low intense) assigned 
to bending vibration of C-O or O-H functionality [22, 36]. 
The strong band found at 1710  cm-1 revealed of stretch-
ing vibration of C = O group of carboxylic acid group of 
AA present in GG-g-P(NIPAM-co-AA)(GNAGO-0) [37]. 
The stretching vibration of N-H of amide functional group 
of PNIPAM attributed at 1600   cm-1 (low intense band) 
[37–39]. The band at 3750  cm-1can be assigned to stretch-
ing vibration of hydroxyl functional group of carboxylic 
acid of AA. The FT-IR spectra of GO showed that required 
functionality found in the GO [40]. The FT-IR spectra of 

GG-g-P(NIPAM-co-AA) indicated that after loading of 
GO did not alter the spectra of GG-g-P(NIPAM-co-AA). 
The special bands of GO did not evaluate in the GG-g-Poly 
(NIPAM-co-AA) which is the signing of homogeneous dis-
persion of GO over to GG-g-P(NIPAM-co-AA).

XRD analysis

The Fig. 2 depicted the XRD of GG, GG-g-P(NIPAM-
co-AA)(GNAGO-0) and GG-g-P(NIPAM-co-AA))/GO)
(GNAGO-1).The peak at 2θ = 18.7° is the characteristic 
peak of GG and shifted to higher angle after grafting of 
NIPAM and PAA to GG [41]. The same observation found 
in the case of grafting of PAA over to GG. In this case, 
after grafting of PAA to GG caused to slightly shifted peak 
at higher angle [42]. After loading of GO, this was more 
shifted to higher angle. In the case of GG-g-P(NIPAM-co-
AA))/GO)(GNAGO-1), it shifted from 18.7° to 20.42° while 
loading of GO to GG-g-P(NIPAM-co-AA)(GNAGO-0) 
caused to shifted peak at slightly higher range (20.7°). It 
has been observed that this peak became less broad com-
pared to GG as grafting of PNIPAM and PAA and load-
ing of GO. It showed that successfully formation of GG-
g-P(NIPAM-co-AA)(GNAGO-0) hydrogel and loading of 
GO to GG-g-P(NIPAM-co-AA)(GNAGO-0).

SEM images of hydrogel study

SEM images of pure GO, GG-g-P(NIPAM-co-AA) 
(GNAGO-0) and GG-g -P(NIPAM-co-AA))/GO)
(GNAGO-1) have been shown in the Fig. 3. The Fig. 3a 
shows that GO possessed multi-layered, disordered struc-
ture, as well as a pleated sheet-like structure [43]. The 
surface morphology of the hydrogel without graphene 
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oxide found to be rough but it became smooth after load-
ing of graphene oxide.

Brunauer‑Emmett‑Teller (BET) surface area

The BET theory used to understand adsorption of mol-
ecule on the surface of solid. It provided the information 

Fig. 3  FE-SEM images 
for a pure graphene oxide, 
b GNAGO-0 hydrogel and 
c GNAGO-3 hydrogel

Fig. 4  FT-IR of SD and MF 
before and after adsorption
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of the effects of GO on the surface area and pore volume 
of the polymer matrix of GG-g-P(NIPAM-co-AA) [31]. 
The BET surface area, pore volume, and pore diameter of 
GG-g-P(NIPAM-co-AA) were estimated to 0.1785m2/g, 
0.001314cm3/g, and 294.42Å, respectively and these val-
ues were increased to 0.3031  m2/g, 0.002792  cm3/g, and 
932.45 Å respectively by incorporation of 3 mg of GO in 
the polymer matrix.

Adsorption activity

The FT-IR of SD and MF (Fig. 4) before and after adsorp-
tion showed that SD and MF adsorbed over the hydro-
gels. The adsorption study of SD and MF indicated that 
as the amount of both adsorbents GG-g-P(NIPAM-co-
AA)–GNAGO-0 and GG-g-P(NIPAM-co-AA)/GO(3 mg)-
GNAGO-3 increased led enhance the removal efficiency 
as shown in the Fig. 5a and Table S1. The 40 mg of adsor-
bents showed highest removal efficiency. The adsorbents 
GNAGO-0 and GNAGO-3 displayed 43.64% and 50.77% 
removal efficiency for MF while for SD, they showed 
82.78% and 85.99% removal efficiency. The loading of 
GO enhanced the removal efficiency. The removal effi-
ciency became almost stable as the loading of adsorbents 
enhanced from 40 mg. The concentration of both adsor-
bents increased led to decrease the removal efficiency 
(Fig. 5b and Table S2). The 25 mg/L found to be best 
concentration where highest removal efficiency has been 
achieved. The influence of time revealed that as the time 
increase from 2 to 12  h, removal efficiency increased 
and further increase in time did not much effect on the 
removal efficiency (Fig. 5c and Table S3). The increase 
temperature showed that as the temperature increased led 
to decrease the removal efficiency. The highest removal 
efficiency found at 20 °C (Fig. 5d and Table S4). The 
effect of pH on removal efficiency indicated that as pH 
increased from 2 to 6, removal efficiency of MF elevated 
and little bit decrease as the pH increases from 6 to 
12(Fig. 5e and Table S5). The removal efficiency of SD 
drastically decreased as the pH of solution increased from 
2 to 12(Fig. 5e and Table S5). The enhance pH caused to 
decrease the removal efficiency of SD and did not much 
change for MF indicated that as pH of solution increased, 
surface charge of adsorbent could be negative charge 
and could became positive charge as the pH decreased. 
The presence of hydroxyl and carboxylic acid functional 
groups on GG-g-P(NIPAM-co-AA)/GO easily underwent 
protonation in acidic pH and convert adsorbent surface 
into positive charge while reverse trend can observe at 
high pH. At acidic pH, positive surface charge of adsor-
bent interacted well with negative charge of SD. and 
caused to increase the removal efficiency but high acidic 
and basic conditions disfavored adsorption of MF because 

of at these conditions concentration of positive and nega-
tive charge can be increase on adsorbents and MF which 
can repel each other (adsorbents and MF) which can be 
contribute to low removal efficiency of MF under high 
acidic and basic conditions. Highest adsorption of MF.

found at pH 6 where MF can bear positive charge and 
adsorbents can have negative charge or vice versa. The 
reversed trend obtained in the case of xanthan gum-g-PAA/
oxidize MWCNT [16]. In this case increased pH led to 
increase the removal efficiency of MB. The increased pH 
ionize carboxylic acid group of adsorbent into carboxylate 
ion which interacted more with cationic MB dye. Based on 
above argument, adsorption proceeded through electrostatic 
interaction.

Adsorption isotherm

The adsorption process of contaminants over the sur-
face of adsorbent explains by the isotherms. The adsorp-
tion isotherms describe the how the adsorbent interacts 
with adsorption site of adsorbate. Various adsorption 
isotherms were assessed for this one. The four adsorp-
tion models are shown in Fig.  6. such as Langmuir, 
Freundlich, Temkin and Dubinin–Kaganer–Radushk-
evich (DKR) were undertook for the understanding the 
interaction mechanism. The results obtained from the 
adsorption isotherms indicated that adsorption followed 
the Langmuir adsorption isotherm model for SD and 
MF. It indicates that nature of interaction is monolayer 
and homogeneous [44]. The various parameters from the 
Langmuir adsorption isotherms such  asqe(adsorption 
capacity-mg/g) at equilibrium,  KL(Langmuir constant 
–L/mg) and  RL (separation factor) were determined as 
shown in the Tables S6 to S7. The value of  RL suggested 
that favorable adsorption of SD and MF over the surface 
of adsorbent [17]. The value of 1/n(relates to adsorption 
intensity or surface heterogeneity) shows chemisorption 
[45]. The value of free energy (E) of adsorption calcu-
lated by DKR isotherm reflects that adsorption proceeds 
through strong chemisorption [46].

Kinetics and thermodynamic studies

Kinetic model provides the information about adsorption 
rate, and sorption mechanism that involved mass transfer, 
diffusion and reaction on the adsorbent surface. The four 
kinetic models were also assessed. Various kinetic param-
eters were determined as shown in Fig. 7. (Tables S8 and 
S9). The SD and MF followed the pseudo-second–order 
model which also suggested about the chemisorp-
tion. The intra-particle diffusion model suggested that 
adsorption occurred in the two stages [33]. The first stage 
involves surface adsorption and second stage contains 
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intra-particle diffusion. Based on the evaluated kinetic 
models, adsorption of MF followed the sequence order: 
Pseudo second order > Elovich > intra-particle diffu-
sion > Pseudo first order while SD followed order: Pseudo 
second order > Elovich > > Pseudo first order > intra-
particle diffusion. The thermodynamic parameters was 
also investigated (Figs. S2, S3, Tables S10 and S11) and 
value of ΔH° and ΔG°(KJ/mol) indicates that adsorption 
is exothermic and spontaneous in nature.

Comparison of adsorption capacity

The adsorption capacity of combine adoration of SD and 
MF was compared with individual adsorption capacity 

of SD and MF reported in literature was presented in the 
Table 3. It shows that hydrogel GG-g-P(NIPAM-co-AA)/
GO exhibited high adsorption capacity towards combine 
adsorption of SD and MF.

Regeneration and reusability studies

The reusability of the adsorbent is a significant factor 
for estimating the cost-effective applicability and satis-
fying the ecological and economic thresholds. Sodium 
diclofenac and metformin adsorption onto Gum ghatti-
cl-poly(NIPA-co-AA)/GO was carried out at SD and MF 
concentration (100 mg/L). To further examine the reus-
ability, the experiments were reiterated (up to Six times) 
by exposing a reacted GNAGO to a fresh SD and MF 
solution. Each time following the reaction, the GNAGO 
was collected from the solution by filtrate and washed 
with ethanol and 0.02 N NaOH solution and dried in the 
oven at 50 °C before being used for the next adsorption 
recycle.

The optimized conditions were followed for this 
experiment. Results are presented in Fig. 8 The adsorp-
tion percentage decreased SD from 95.6% in the first 
cycle to 80.7% in the sixth cycle and MF from 93.8% in 
the first cycle to 75.8% in the sixth cycle. This decrease 
in adsorption percentage may be due to the entrapment 
of SD and MF molecules onto the hydrogel surface that 
reduced the adsorption. Therefore, it could be concluded 
that GNAGO could be considered an economical adsor-
bent. The decrease of specific surface area and functional 
groups might contribute to the lower adsorption capacity 
of SD and MF onto GNAGO.

Table 3  Comparison of maximum  qe of various adsorbents for MF and SD

S.No Adsorbent Adsorption capacity(mg/g) Reference

Metformin removal
1 Gg-cl-poly(NIPA-co-AA)/CoFe2O4 151.057  [31]
2 Graphene Oxide nanoparticles 122.61  [47]
3 Graphene Oxide 96. 748  [48]
4 HXL poly(AN-co-EGDMAco-VBC)

(combine adsorption)
61.0 (diclofenac )
5.1 (metformin)

 [11]

5 GG-g-P(NIPAM-co-AA)/GO 154.56 Present work
Sodium diclofenac

7 PAA/poly(ethylene imine) 32.42  [49]
8 Chitosan/magnetic composite 196  [50]
9 (SA/CNC/PVA)@PE 418.41  [51]
10 GG-g-PAA/-O-MWCNT 229.36  [52]
11 GG-g-P(NIPAM-co-AA)/GO 289.01 Present work

Fig. 8  Reusability study of Gum ghatti-cl-poly(NIPA-co-AA)/GO 
hydrogel for the removal of SD and MF
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Conclusions

The hydrogel GG-g-P(NIPAM-co-AA)/GO was prepared 
by free radical polymerization using APS initiator which 
cross-linked by the cross-linking agents and loaded by GO 
during the polymerization. FT-IR and XRD were used to 
characterize the GG-g-P(NIPAM-co-AA)/GO hydrogel. 
The hydrogel GG-g-P(NIPAM-co-AA)/GO (3 mg) was 
preferred for combine adsorption of SD and MF as it 
exhibited high swelling property. Both techniques revealed 
that NIPAM and AA were grafted over to GG. Incorpora-
tion of GO over to GG-g-P(NIPAM-co-AA) improved the 
adsorption of drugs. The effect of various parameters over 
combine adsorption of drugs indicated that SD adsorbed 
more than MF. The high adsorption of SD can attribute to 
presence of carboxylic acid group of SD which efficiently 
interacted with hydroxyl group of GG. The effect of pH 
showed that acidic condition favored the adsorption of 
SD over to MF and adsorption of MF enhanced under the 
mild acidic condition. The adsorption of SD and MF fol-
lowed the Langmuir adsorption isotherm, Pseudo second 
order kinetics models and thermodynamic study indicated 
adsorption of SD and MF over hydrogel surface is mon-
olayer ,adsorption process is chemisorption and spontane-
ous in nature.
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