Table 3.
The comparison of the prediction model developed on the original and balance dataset
| Prediction model | Dataset | Accuracy | Precision | Recall | f1-score | AUC | |
|---|---|---|---|---|---|---|---|
| Random forest model | RF-Model-O | Internal validation | 0.83 | 0.84 | 0.82 | 0.83 | 0.87 |
| RF-Model-B | 0.80 | 0.80 | 0.80 | 0.80 | 0.87 | ||
| RF-Model-O | External validation | 0.68 | 0.66 | 0.68 | 0.67 | 0.69 | |
| RF-Model-B | 0.71 | 0.69 | 0.71 | 0.69 | 0.69 | ||
| Support vector | SV-Model-O | Internal validation | 0.78 | 0.80 | 0.78 | 0.78 | 0.82 |
| SV-Model-B | 0.75 | 0.76 | 0.75 | 0.75 | 0.83 | ||
| SV-Model-O | External validation | 0.57 | 0.62 | 0.57 | 0.58 | 0.61 | |
| SV-Model-B | 0.61 | 0.62 | 0.61 | 0.61 | 0.61 | ||
| Gradient boost | GB-Model-O | Internal validation | 0.80 | 0.81 | 0.80 | 0.80 | 0.81 |
| GB-Model-B | 0.80 | 0.82 | 0.80 | 0.80 | 0.86 | ||
| GB-Model-O | External validation | 0.68 | 0.66 | 0.68 | 0.67 | 0.72 | |
| GB-Model-B | 0.65 | 0.63 | 0.65 | 0.64 | .65 | ||
O stands for original data set, B stands for balanced dataset