Skip to main content
. 2023 Sep 21;36(6):2519–2531. doi: 10.1007/s10278-023-00835-8

Table 3.

The comparison of the prediction model developed on the original and balance dataset

Prediction model Dataset Accuracy Precision Recall f1-score AUC
Random forest model RF-Model-O Internal validation 0.83 0.84 0.82 0.83 0.87
RF-Model-B 0.80 0.80 0.80 0.80 0.87
RF-Model-O External validation 0.68 0.66 0.68 0.67 0.69
RF-Model-B 0.71 0.69 0.71 0.69 0.69
Support vector SV-Model-O Internal validation 0.78 0.80 0.78 0.78 0.82
SV-Model-B 0.75 0.76 0.75 0.75 0.83
SV-Model-O External validation 0.57 0.62 0.57 0.58 0.61
SV-Model-B 0.61 0.62 0.61 0.61 0.61
Gradient boost GB-Model-O Internal validation 0.80 0.81 0.80 0.80 0.81
GB-Model-B 0.80 0.82 0.80 0.80 0.86
GB-Model-O External validation 0.68 0.66 0.68 0.67 0.72
GB-Model-B 0.65 0.63 0.65 0.64 .65

O stands for original data set, B stands for balanced dataset